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Objective Bayes Model Selection: Some Methods and Some Theory [1]

Overview

I Yesterday

. Variable Selection Methods

. Intrinsic Priors

. Stochastic Search Driven by Bayes Factors

I Things We Did Today

. Variable Selection Theory: Consistency

. Changepoint Problems

I Tomorrow Never Knows

. Clustering

. Conclusions
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Part One: Yesterday
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Variable Selection in Normal Regression Models

I The full model:

Y = Dependent Variable

{X1, ..., Xk} = k potential explanatory regressors

I Every model with regressors

{Xi1, ..., Xiq}
is a priori a plausible model for Y .

I 2k−1 potential models (intercept always included)
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Model Selection
as

Multiple Hypothesis Testing

• Specify the hypotheses for each model evaluation.

• Evaluate model M by

H0 : M = candidate model v. HA : M = reference model.

• For a Bayesian evaluation, the prior distribution should be

◦ centered at each H0.

◦ specific to each null model M under consideration.
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Reference Model

I The reference model encompasses all other models

. Models need to be nested

. Can do this in two ways

I Casella/Moreno (JASA 2006): Encompassing from Above

H0 : M = reduced model This tests whether the
vs. reduced model explains
HA : M = model with all predictors significant variation

. Reduced Model ∈ Full Model
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Encompassing

I Casella/Moreno (JASA 2006): Encompassing from Above

H0 : M = reduced model This tests whether the
vs. reduced model explains
HA : M = model with all predictors significant variation

. Candidate Model ∈ Full Model

I Girón et al. (2006): Encompassing from Below

H0 : M = intercept-only model This tests whether the
vs. reduced model significantly
HA : M = reduced model improves on intercept-only

. Null Model ∈ Candidate Model
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Objective Bayes Model Selection: Some Methods and Some Theory [7]

Bayes Factors

I Compare

M1 : {f1(x|θ1), π1(θ1)} vs. M2 : {f2(x|θ2), π2(θ2)}

I Marginal Distributions

M1 : m1(x) =

∫

Θ
f1(x|θ1)π1(θ1) dθ

M2 : m2(x) =

∫

Θ
f2(x|θ2)π2(θ2) dθ

I Bayes Factor

BF =
m1(x)

m2(x)

George Casella, University of Florida 7



Objective Bayes Model Selection: Some Methods and Some Theory [8]

Objective Probabilities

I Model Selection ⇒
. not confident about any given set of explanatory variables

. little prior information on the regression coefficients

I Objective model choice approach is justified.

I Typical default priors are improper, and cannot be used.

. The Bayes factor cannot be determined

I Intrinsic Priors (Berger/Pericchi 1996) address this problem
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Intrinsic Priors

I Berger and Pericchi (1996)

. Handle the impropriety problem

. Provide sensible objective proper priors

I Moreno et al. (1998) develop intrinsic priors further

. They show there is an entire class

. They show which one to use
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Intrinsic Priors - Details

I Compare

M1 : {f1(x|θ1), π
N
1 (θ1)} vs. M2 : {f2(x|θ2), π

N
2 (θ2)}

. f1(x|θ1) is nested in f2(x|θ2)

. πN
i (θi) are the conventional (improper) priors.

I We can use a training sample to convert πN
i (θi) into a

proper posterior. That is,

πN
i (θi|x(`)) =

fi(x(`)|θi)π
N
i (θi)

mN
i (x(`))

, i = 1, 2.
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Intrinsic Priors - Details

I Actually, we use (Moreno 1997),

πI
2(θ2|θ1) = πN

2 (θ2)E
M2
x(`)|θ2

(
f1(x(`)|θ1)∫

Θ2
f2(x(`)|θ2)π

N
2 (θ2)dθ2

)

πI
1(θ1) = πN

1 (θ1)

I We average over all training samples

I No data dependence
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Evaluating the Models - Encompassing from Above

I Full Model MF : y = Xα + ε, ε ∼ Nn(0, σ2In)
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Evaluating the Models - Encompassing from Above

I Full Model MF : y = Xα + ε, ε ∼ Nn(0, σ2In)

I Submodels Mγ: y = Xβγ, ε ∼ Nn(0, σ2
γIn)

βγ = α · γ, and γi =

{
0, if αi = 0,
1, otherwise,

for i = 1, ..., k.
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Evaluating the Models - Encompassing from Above

I Full Model MF : y = Xα + ε, ε ∼ Nn(0, σ2In)

I Submodels Mγ: y = Xβγ, ε ∼ Nn(0, σ2
γIn)

βγ = α · γ, and γi =

{
0, if αi = 0,
1, otherwise,

for i = 1, ..., k.

I Test H0 : M = Mγ vs. HA : M = MF , using

P (Mγ|y,X) =
mγ(y,X)

m1(y,X) +
∑

γ∈Γ,γ 6=1 mγ(y,X)
,

to measure the support for H0.
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A Serious Discussion

Eĺıas and Javier discussing appropriate model selection priors?

George Casella, University of Florida 15



Objective Bayes Model Selection: Some Methods and Some Theory [16]

A Serious Discussion

Model selection priors?———-NO !!
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A Serious Discussion

Eĺıas and Javier discussing appropriate wines for dinner!
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An Intrinsic Prior for α

πI(α|β γ, σγ) =

∫
Nk(α|β γ, (σ2

γ+σ2)W−1)
1

σγ

(
1 +

σ2

σ2
γ

)−3/2

dσ

• An elliptical multivariate distribution with mean βγ.

I Centered at the null.

. Not typical among variable selection priors.

I Moments ≥ 2 do not exist ⇒ very heavy tails.
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Encompassing Details

I Practically we have seen that the direction of encompassing
makes little difference

I Computationally the formulas are very similar

I The Bayes factor to compare

H0 : model i vs. H1 : model j

Bji(y,X) =
2(j + 1)(j−i)/2

π

×
∫ π/2

0

(sin φ)j−i[n + (j + 1) sin2 φ](n−j)/2

[n
RSSj

RSSi
+ (j + 1) sin2 φ](n−i)

dφ

where RSS = residual sum of squares.
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Encompassing Details

I Encompassing from below

H0 : intercept only vs. H1 : model j

. Bayes Factor = Bj1(y,X)

I Encompassing from above

H0 : model j vs. H1 : all regressors

. Bayes Factor = Bkj(y,X)

George Casella, University of Florida 20
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Implementation: Stochastic Search

I Why a Stochastic Search?

. Number of Models . Multiple Maxima

I What Drives the Search?

. Choice of Objective Function

I How to Search?

. Explore the entire space

. Hot/Cold Searching

. Metropolis is practical solution

George Casella, University of Florida 21
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Modern search algorithms

I Developed by George and McCulloch (1993)

. Using the Gibbs sampler

I The stochastic search algorithm

. ‘visits” models having high probability

. a ranking of models is obtained

. can escape from local modes

I Models were not ranked according to any obvious criterion.

I We want a stochastic search with stationary distribution
proportional to the model posterior probabilities.

George Casella, University of Florida 22
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Why a Stochastic Search?

I Predictors x1, x2, x3, using squares and interactions, there
are 218 possible model,

218 = 262, 144.

I We will see the Ozone data example, in which there are 265

possible models.

265 = 36,893,488,147,419,103, 232

I A search algorithm is needed.

George Casella, University of Florida 23



Objective Bayes Model Selection: Some Methods and Some Theory [24]

How to Search?

I Choice of Objective Function ⇒ Stationary Distribution

. Use a Markov Chain (MCMC) with

Stationary Distribution ∝ Model Posterior Probabilities

I Explore the entire space

. Don’t get trapped in local modes

. Visit models with high posterior probability

. Be sure to see everything

. Greedy algorithms can get “stuck”
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How to Search?

I Metropolis-Hastings

I Have been through many incarnations

I We currently use a two-part hybrid algorithm

. One part: Independent Jumps - Global Moves

. Other part: Random Walk - Local Moves

George Casella, University of Florida 25
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Hybrid Metropolis-Hastings

I At iteration t, first part:

. Choose candidate Mγ′ ∼ g(·), Independent

. Calculate

MHRatio = log

(
P (Mγ′|y,X)/g(Mγ′)

P (Mγ|y,X)/g(Mγ)

)

. Accept candidate Mγ′ ∼ g(·) with probability

min
{

eT1×MHRatio, 1
}
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Hybrid Metropolis-Hastings

I At iteration t, second part:

I Choose candidate Mγ′ ∼ Random Walk

. Select variable at random:

. Change 0 → 1 or 1 → 0

I MHRatio = log

(
P (Mγ′|y,X)

P (Mγ|y,X)

)

I Accept candidate Mγ′ with probability

min
{
eT2×MHRatio, 1

}

George Casella, University of Florida 27
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Hybrid Metropolis-Hastings

I Tuning Parameters !!

I Acceptance Probabilities

. Independent Jump: min
{

eT1×MHRatio, 1
}

. Random Walk: min
{

eT2×MHRatio, 1
}

I T1 =Cold

I T2 =Hot

George Casella, University of Florida 28
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Details

I Search Algorithm:

. This is a reversible ergodic Markov chain

. Stationary distribution ∝ P (Mγ|y,X).

I Convergence

. Finite Sample Space - Uniformly Ergodic

George Casella, University of Florida 29
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Details

I Search Algorithm:

. This is a reversible ergodic Markov chain

. Stationary distribution ∝ P (Mγ|y,X).

I Convergence

. Finite Sample Space - Uniformly Ergodic - HA HA!

George Casella, University of Florida 30
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Details

I Search Algorithm:

. This is a reversible ergodic Markov chain

. Stationary distribution ∝ P (Mγ|y,X).

I Convergence

. Finite Sample Space - Uniformly Ergodic - HA!

I Exploration

. Don’t have bound on convergence rate

. Close to stationary distribution?

. Probably do not see entire space
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Details

I Finally, Metropolis is the only practical solution

. Note that

P (Mγ|y,X) =
Bγ1(y,X)

1 +
∑

γ∈Γ,γ 6=1 Bγ1(y,X)
,

. Denominator incalculable in large problems

. But all probabilities have the same denominator.

. Thus, it cancels out in

P (Mγ′|y,X)

P (Mγ|y,X)
.

. This is all we need for Metropolis.

George Casella, University of Florida 32



Objective Bayes Model Selection: Some Methods and Some Theory [33]

Examples - Hald Regression Data

I Supports Intrinsic Prior/Encompassing from above

I Stochastic Search not needed

I An ancient and often-analyzed data set

. Measure the effect of heat on cement

◦ 13 observations on the dependent variable (heat)

◦ 4 predictor variables

◦ 24 = 16 possible models
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Examples - Hald Regression Data

I Posterior probabilities for the best models.

I Other models had posterior probability less than 0.00001.

Variables Posterior Probability
x1, x2 0.5224
x1, x4 0.1295

x1, x2, x3 0.1225
x1, x2, x4 0.1098
x1, x3, x4 0.0925
x2, x3, x4 0.0120

x1, x2, x3, x4 0.0095
x3, x4 0.0013
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Examples - Hald Regression Data

I Comparison to Other Findings

Top Models
Intrinsic Prior Berger/Pericchi Draper/Smith

x1, x2 x1, x2 x1, x2

x1, x4 x1, x4 x1, x4

x1, x2, x3 −−− −−−
x1, x2, x4 −−− x1, x2, x4

x1, x3, x4 −−− −−−
x2, x3, x4 −−−− −−−

x1, x2, x3, x4 −−− −−−
x3, x4 x3, x4 −−−

I Berger/Pericchi: “...{x1, x2} is moderately preferred to {x1, x4}
and quite strongly preferred to {x3, x4}”.
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Examples - Ozone Data

I First analyzed by Breiman and Friedman (1985)

I Breiman (2001) remarked that in the 1980s large linear re-
gressions were run, using squares and interaction terms,
with the goal of selecting a good prediction model.

I However, the project was not successful because the false-
alarm rate was too high.

I We take the full model to be

. all linear, quadratic, and two-way interactions

. 10 + 10 + 45 = 65 predictors and 265 models

George Casella, University of Florida 36
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Ozone Data - Top Three Models

Variables Post. R2 Avg. Pred.
Prob. Error

{x2, x
2
1, x

2
7, x

2
9, x1x5, 0.214 0.758 0.873

x2x6, x3x7, x4x6,
x6x8, x6x10}

{x1x9, x1x10, x4x6, 0.122 0.718 0.908
x5x8, x6x7}

{x6, x
2
5, x

2
7, x

2
9, x1x10, 0.114 0.748 0.818

x4x7, x4x8, x5x10, x6x8}

. Prediction data not used in fitting

. All models improve on Breiman/Friedman
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Examples - Ozone Data - Model Predictions

0 10 20 30

0
1

0
2

0
3

0

actual

p
re

d
ic

te
d

◦ = B/F, • = our model

Better predictions
at smaller values
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Part Two: Things We Did Today
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It Does OK with Data, So...

I Testing a Procedure on Examples is Necessary

I But Examples Don’t Cover All Situations

I Can We Establish a Theoretical Property?

I We Go for the Minimum - Consistency

George Casella, University of Florida 40



Objective Bayes Model Selection: Some Methods and Some Theory [41]

Pairwise Consistency

I To test the hypothesis

H0 : Model Mi vs. HA : Model Mj.

I Mi is nested in the model Mj

I The posterior probability of Mi is

P (Mi|y,X) =
mi(y,X)

mi(y,X) + mj(y,X)
=

BFij

1 + BFij
,

George Casella, University of Florida 41
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Pairwise Consistency

I For testing

H0 : Model Mi vs. HA : Model Mj.

I It is well known that, under regularity conditions,

P (Mi|y,X) →
{

1 if Mi is true
0 if Mj is true

,

as n → ∞

I We want to extend this to the entire class of models.
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Consistency in the Class of Models

I We compare all models Mj ∈ M through testing

H0 : Model M1 vs. HA : Model Mj.

where M1 is the intercept only model.

I This gives an ordering in the space of all models M with

P (Mj|y,X) =
BFj1

1 +
∑

j′ 6=1 BFj′1
, Mj ∈ M.

George Casella, University of Florida 43
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Consistency in the Class of Models

I We have the following theorem.

I Suppose that MT ∈ M is the true model.

Theorem In the class of linear models M with design matrices satis-

fying conditions . . ., the intrinsic Bayesian variable selection procedure

is consistent. That is, when sampling from MT we have that

P (Mj|y,X)

P (MT |y,X)
→ 0, ,

whenever the model Mj 6= MT .

George Casella, University of Florida 44
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Consistency in the Class of Models - Proof

I As n → ∞, the ratio is approximated by

P (Mj|y,X)

P (MT |y,X)
≈ K exp

(
T − j

2
log n +

n

2
log

Bn
1T

Bn
1j

)
.

I Assuming MT 6= M1,

Bn
1T

Bn
1j

|MT → c < 1.

I Thus
P (Mj|y,X)

P (MT |y,X)
→ 0 for all j 6= T
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One Step Harder: Changepoints

I Variable Selection: n observations, k variables

. Number of Models = 2k−1

I Changepoint: n observations

. Number of Models = 2n−1

George Casella, University of Florida 46
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Changepoint Formulation

I p, 1 ≤ p ≤ n − 1,= the number of changepoints

I rp = (r1, . . . , rp) the positions

I The sample density is

f(y|θp+1, rp, p) =

r1∏

i=1

f(yi|θ1)

r2∏

i=r1+1

f(yi|θ2) × · · · ×
n∏

i=rp+1

f(yi|θp+1),
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Changepoint Models

I Similar to before, we test

H0 : M0 vs. H1 : Mrp,

where M0 = the no change point model

I Here we need a prior distribution on Mrp

. In Variable Selection we used Uniform on Models

. In Changepoint, there are too many models to be totally
uniform
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Changepoint Models

I To test H0 : M0 vs. H1 : Mrp

I Model Mrp has prior probability

π(r, p) =
1

n︸︷︷︸
× 1(n−1

p

)
︸ ︷︷ ︸

Uniform on Number Uniform Given Number
of Changepoints of Changepoints

I And Rank Models by P (Mr|y).

George Casella, University of Florida 49



Objective Bayes Model Selection: Some Methods and Some Theory [50]

Changepoint Models - Simulated Data

5 10 15

1
2

3
4

5

x

y

Do you see
the changepoints?
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Changepoint Models - Simulated Data
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Changepoint Models - Nile River Data
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Changepoint Models - Nile River Data
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Part Three: Tomorrow Never Knows
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One Step Harder: Clustering

I Variable Selection: n observations, k variables

. Number of Models = 2k−1

I Changepoint: n observations

. Number of Models = 2n−1

. n = 20 ⇒ 524, 288 Models

I Clustering: n observations

. Number of Models = Bn

. n = 20 ⇒ 51, 724, 158, 235, 372 Models
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Cluster Models

I Similar to before, we test H0 : M0 vs. H1 : Mωp

. M0 = the no cluster model

I Here we need a prior distribution on Mωp

I Uniform: π(ωp) = 1
n × 1

Sn,p

. Sn,p = Stirling Number of the Second Kind

. There are too many models to be totally uniform

. Too much time in extreme models
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Cluster Models

I To test H0 : M0 vs. H1 : Mωp

. M0 = the no cluster model

I π(ωp|λ) =
Γ(λ)

Γ(n+λ)
λp∏p

i=1 Γ(nj)

. Crowley (1997 JASA)

. Prior Expectation:

Ep = λ

n−1∑

i=0

1

λ + i

(Booth et al. 2006)

I Rank Models by P (Mωp|y).
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Cluster Models - Stochastic Search

I Mixes Biased Random Walk and Independent Metropolis

I Biased Random Walk:

. Randomly move object to another occupied cluster

. Or start new cluster

I Independent Metropolis

. Select partition size p with probability 1/n

. Generate random partition with p clusters
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Generating Partitions of size p from n

I Example n = 8, k = 3

Eight spaces

1 Fix 1 in first space

1 0 1 0 0 1 0 0 Randomly distribute
remaining 1s - Fill in 0s

I One cluster of size 2, Two clusters of size 3

I The probability of a partition ω = {n1 n2 · · · nk} is

g(ω) =
k!(n−1

k−1

)( n
n1 n2 ··· nk

).
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Hybrid Metropolis-Hastings - Variations

I Independent Jump

. pk = posterior probability of partitions with k clusters

. Choose k ∼ pk, then choose model

. Need to estimate pk

I Split-Merge Moves

. With probability p: Merge two randomly chosen clusters

. With probability 1 − p: Randomly split a cluster

I Searching for good global moves
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Cluster Models - Simulated Data
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Changepoint and Cluster Models

I To Do: Establish Consistency Results

I Similar to variable selection,

. Show that when sampling from MTrue

P (Mj|y,X)

P (MTrue|y,X)
→ 0, ,

whenever the model Mj 6= MTrue

I Problem: Model space ↑ with n
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Conclusions- Model Selection

I Two distinct parts of a model selection method

Model selection criterion
Stochastic search
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Conclusions- Model Selection

I Two distinct parts of a model selection method

Model selection criterion
Stochastic search

I Here

Model selection criterion Intrinsic Post. Probabilities
Stochastic search Driven by Criterion
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Conclusions- Model Selection

I Two distinct parts of a model selection method

Model selection criterion
Stochastic search

I Here

Model selection criterion Intrinsic Post. Probabilities
Stochastic search Driven by Criterion

I Intrinsic posterior probabilities favor small models
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Conclusions - Model Selection

I This strategy can be used in other settings

. Can use other criteria to rank models

. Can use other criteria drive search
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Conclusions - Model Selection

I This strategy can be used in other settings

. Can use other criteria to rank models

. Can use other criteria drive search

I We use two “prior” distributions on model space

1. Generate Independent Candidates More Diffuse
2. Calibrate Bayes Factors Less Diffuse
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Conclusions - Model Selection

I We use two “prior” distributions on model space

1. Generate Independent Candidates More Diffuse
2. Calibrate Bayes Factors Less Diffuse

I For example, in clustering

1. Independent Candidates g(ω) = 1
n

k!

(n−1
k−1)(

n
n1 n2 ··· nk

)
.

2. Calibrate Bayes Factors π(ωp|λ) =
Γ(λ)

Γ(n+λ)
λp∏p

i=1 Γ(nj)
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Conclusions - Stochastic Search

I The search algorithm is Metropolis-Hastings

. Candidate from mixture

I Important to choose a good candidate distribution.

I The candidate must

. find states having large values of the criterion

. escape from local modes to better explore the space.

• The construction proposed here seems to do this.
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To Do

I Some Theory for Changepoint and Clustering Algorithms
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To Do

I Some Theory for Changepoint and Clustering Algorithms

I Improve the R code ⇒ Handle Large Problems

I Improve the R code ⇒ R package
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To Do

I Some Theory for Changepoint and Clustering Algorithms

I Improve the R code ⇒ Handle Large Problems

I Improve the R code ⇒ R package

I Other Model Selections Problems

. Mixed Models

. GLM(M)
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Details Can be Found In

I Yesterday

. Casella and Moreno (2006) Objective Bayes Variable Selection JASA

I Things We Did Today

. Casella et al. (2006). Consistency of Bayesian Procedures for Vari-
able Selection. Technical Report.

. Girón et al. (2007) Objective Bayesian Analysis of Multiple Change-
points for Linear Models. Bayesian Statistics 8

I Tomorrow Never Knows

. Clustering paper to be written

I Available at http://www.stat.ufl.edu/∼casella/Papers
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Thanks!
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