R Material for Chapter 09

> attach(bill.data)

> bill.data

<table>
<thead>
<tr>
<th></th>
<th>bill</th>
<th>income</th>
<th>persons</th>
<th>sqft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>228</td>
<td>3220</td>
<td>2 1160</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>156</td>
<td>2750</td>
<td>1 1080</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>648</td>
<td>3620</td>
<td>2 1720</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>528</td>
<td>3940</td>
<td>1 1840</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>552</td>
<td>4510</td>
<td>3 2240</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>636</td>
<td>3990</td>
<td>4 2190</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>444</td>
<td>2430</td>
<td>1 830</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>144</td>
<td>3070</td>
<td>1 1150</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>744</td>
<td>3750</td>
<td>2 1570</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1104</td>
<td>4790</td>
<td>5 2660</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>204</td>
<td>2490</td>
<td>1 900</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>420</td>
<td>3600</td>
<td>3 1680</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>876</td>
<td>5370</td>
<td>1 2550</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>840</td>
<td>3180</td>
<td>7 1770</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>876</td>
<td>5910</td>
<td>2 2960</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>276</td>
<td>320</td>
<td>2 1190</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1236</td>
<td>5920</td>
<td>3 3130</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>372</td>
<td>3520</td>
<td>2 1560</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>276</td>
<td>3720</td>
<td>1 1510</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>450</td>
<td>4840</td>
<td>1 2190</td>
<td></td>
</tr>
</tbody>
</table>

All-Subsets Selection of a Model – Requires a Special Library

> library(leaps) ## loads the special library of functions
 ## SEE THE END OF THIS DOCUMENT

> subs <- regsubsets(bill~., data=bill.data, nbest=3, method=c("exhaustive"))
 ## (response variable~., name of data set, number of best subsets per model size,
 ## "exhaustive" means all-subsets
> summary(subs)

Subset selection object
Call: regsubsets.formula(bill ~ ., data = bill.data, nbest = 3, method = c("exhaustive"))
3 Variables (and intercept)
Forced in Forced out
income FALSE FALSE
persons FALSE FALSE
sqft FALSE FALSE
3 subsets of each size up to 3
Selection Algorithm: exhaustive

income persons sqft
1 (1) " " " " " " " " " ## orders the one variable models by R^2
1 (2) "*" " " " " " "
1 (3) " " "*" " " "
2 (1) " " "*" " " " " " ## orders the two variable models by R^2
2 (2) "*" " " " " " "
2 (3) " " " " " " " "
3 (1) "*" " " " " " " ## the only three variable model

> result1 <- with(bill.data,leaps(cbind(income, persons, sqft), bill, method="r2", nbest=3))
 ## with(name of data set, leaps(list of predictors, response variable, selection
 ## criterion, number of best subsets per model size))
> plot(result1$size, result1$r2, xlab="# predictors +1", ylab="R-Square") ## plot of r^2 values
> result1$r2 ## printing the r^2 variable in the result1 object

[1] 0.7171831 0.4879795 0.2947749 0.7834572 0.7231502 0.6983454 0.7842642
these are the r^2 values for each of the above models
> result2 <- with(bill.data,leaps(cbind(income, persons,sqft),bill,method="adjr2", nbest=3))
> plot(result2$size,result2$adjr2,xlab="# predictors +1",ylab="Adjusted R-Square")
> result2$adjr2

[1] 0.7014711 0.4595339 0.2555957 0.7579816 0.6905797 0.6628566 0.7438137

these are the adjusted r^2 values for each of the above models

> result3 <- with(bill.data,leaps(cbind(income, persons,sqft),bill,method="Cp", nbest=3))
> plot(result3$size,result3$Cp,xlab="# predictors +1",ylab="Cp")
> result3$Cp

these are the Cp values for each of the above models

> n <- nrow(bill.data) ## number of data points
> n

[1] 20

> SSE <- (1-result1$r2)*var(bill)*(n-1) ## error sum of squares
> AIC <- n*log(SSE) -n*log(n) +2*result1$size ## computing AIC values
> plot(result1$size,AIC,xlab="# predictors +1",ylab="AIC")
> AIC

[1] 207.8968 219.7681 226.1712 204.5566 209.4703 211.1865 206.4819

these are the AIC values for each of the above models

> SBC <- n*log(SSE) -n*log(n) + log(n)*result1$size ## computing SBC values
> plot(result1$size,SBC,xlab="# predictors +1",ylab="SBC")
> SBC

[1] 209.8883 221.7596 228.1626 207.5438 212.4575 214.1737 210.4649

these are the SBC values for each of the above models

A Convenient Stepwise Search Process Based on AIC – Does not require a Special Library

> reg <- lm(bill~income+persons+sqft) ## model with all potential predictors

> step(reg) ## begins stepwise elimination of variables based on the AIC criterion
Start: AIC=206.48 ## starting AIC with all variables in the model
bill ~ income + persons + sqft

Df Sum of Sq RSS AIC
<none> 408329 206.48
- income 1 1527 409856 204.56 ## It considers eliminating one of the variables
- persons 1 115672 524001 209.47 ## It chooses income because its elimination
- sqft 1 162621 570950 211.19 ## produces the smallest AIC and it is smaller

Step: AIC=204.56
bill ~ persons + sqft

Df Sum of Sq RSS AIC
<none> 409856 204.56
- persons 1 125439 535295 207.90 ## smallest AIC, so this model is chosen and is
- sqft 1 924942 1334799 226.17 ## displayed below.

Call:
 lm(formula = bill ~ persons + sqft)

Coefficients:
(Intercept) persons sqft
 -202.670 54.874 0.351
Validation of a Model using PRESS – Requires a Special Library

> reg <- lm(bill~persons+sqft)
> anova(reg)
Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>persons</td>
<td>1</td>
<td>557928</td>
<td>557928</td>
<td>23.142</td>
<td>0.0001632 ***</td>
</tr>
<tr>
<td>sqft</td>
<td>1</td>
<td>924942</td>
<td>924942</td>
<td>38.365</td>
<td>9.81e-06 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>17</td>
<td>409856</td>
<td>24109</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(boot) ## Special Library - SEE THE END OF THIS DOCUMENT

> model2 <- glm(bill~sqft+persons) ##using the best two predictor model (best overall)
> MSPRESS <- cv.glm(bill.data, model2)$delta[1]
> MSPRESS
[1] 1
27437.5
> n <- nrow(bill.data) ## number of data points
> n
[1] 20
> PRESS <- n*MSPRESS
> PRESS
[1] 548750

Loading External Libraries:

From time to time we need to use libraries of programs stored on the R system but not included in the installation of R.

Suppose you need to download the set of programs in the library called “leaps”. This can be accomplished in the following manner. First you must be in a setting in which you are connected to the internet. When in the R workspace window type:

> install.packages(“leaps”)
 ## You will have to answer a few questions in the process,\n ## but it will download onto your computer.\n ## Then type:

> library(leaps) ## This brings the library into your active workspace. You\n ## should have access to the programs in “leaps” now.