These questions are only meant as a study aid and to help you test your knowledge. Being able to solve them does not guarantee that you are well-prepared for the exam.

1. For each of the following joint densities, indicate whether Y_1 and Y_2 are independent (Yes or No). No explanation is required.

 (a) $f(y_1, y_2) = \begin{cases} 2, & 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1, 0 \leq y_1 + y_2 \leq 1, \\ 0, & \text{elsewhere}. \end{cases}$

 (b) $f(y_1, y_2) = \begin{cases} e^{-(y_1+y_2)}, & y_1 \geq 0, y_2 \geq 0, \\ 0, & \text{elsewhere}. \end{cases}$

 (c) $f(y_1, y_2) = \begin{cases} y_1 + y_2, & 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1, \\ 0, & \text{elsewhere}. \end{cases}$

 (d) $f(y_1, y_2) = \begin{cases} e^{-y_1}, & y_1 \geq 0, 0 \leq y_2 \leq 1, \\ 0, & \text{elsewhere}. \end{cases}$

 (e) $f(y_1, y_2) = \begin{cases} e^{-y_1}, & 0 \leq y_2 \leq y_1 < \infty, \\ 0, & \text{elsewhere}. \end{cases}$

2. Let Y_1 and Y_2 denote the proportion of time, out of one workday, that employees I and II, respectively, actually spend performing their assigned tasks. The joint relative frequency behavior of Y_1 and Y_2 is modeled by the density function

 $f(y_1, y_2) = \begin{cases} y_1 + y_2, & 0 \leq y_1 \leq 1; 0 \leq y_2 \leq 1 \\ 0, & \text{elsewhere}. \end{cases}$

 (a) Find $P(Y_1 \geq \frac{1}{2}, Y_2 \geq \frac{1}{2})$.

 (b) Find the marginal density function for Y_2.

 (c) Find $P(Y_2 \geq \frac{1}{2})$.

 (d) Find $P(Y_1 \geq \frac{1}{2} | Y_2 \geq \frac{1}{2})$.

 (e) Find the conditional density of Y_1 given Y_2.

 (f) Find $P(Y_1 \geq \frac{1}{2} | Y_2 = \frac{1}{4})$.

3. Suppose that the random variables Y_1 and Y_2 have joint density given by

 $f(y_1, y_2) = \begin{cases} \frac{1}{2} + 2y_1y_2, & 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1, \\ 0, & \text{elsewhere}. \end{cases}$

 Note that $f(y_1, y_2)$ is symmetric in y_1 and y_2, so that Y_1 and Y_2 have the same marginal distributions, and hence the same mean and variance.

 (a) Find $E(Y_1)$.

 (b) Find $V(Y_1)$.

 (c) Find Cov(Y_1, Y_2).

 (d) Find $E(2Y_1 + 2Y_2 + 5)$.

 (e) Find $V(2Y_1 + 2Y_2 + 5)$.

 (f) Find Cov($2Y_1 - Y_2, Y_1 + Y_2$).
4. Suppose that \(V(Y_1) = V(Y_2) = \sigma^2 \) and \(\text{Cov}(Y_1, Y_2) = \gamma \). Find
 (a) \(V(Y_1 + Y_2) \)
 (b) \(V(Y_1 - Y_2) \)
 (c) \(\text{Cov}(Y_1 + Y_2, Y_1 - Y_2) \)

5. Suppose that \(Z \sim N(0, 1) \) and \(X \sim \chi^2_\nu \) are independent, and let
 \[T = \frac{Z}{\sqrt{X/\nu}}. \]
 Find \(E(T) \) and \(V(T) \). What must you assume about \(\nu \)?

6. Suppose that \(X_1 \sim \chi^2_{\nu_1} \) and \(X_2 \sim \chi^2_{\nu_2} \) are independent, and let
 \[F = \frac{X_1/\nu_1}{X_2/\nu_2}. \]
 Find \(E(F) \) and \(V(F) \). What must you assume about \(\nu_1 \) or \(\nu_2 \)?

7. Let the random variable \(Y \) have density
 \[f(y) = \begin{cases} \frac{1}{2}(1 + y), & -1 \leq y \leq 1, \\ 0, & \text{elsewhere.} \end{cases} \]
 Find the density of \(W = Y^2 \).

8. Let \(Y_1 \) and \(Y_2 \) have joint density
 \[f(y_1, y_2) = \begin{cases} 3y_1, & 0 \leq y_2 \leq y_1 \leq 1, \\ 0, & \text{elsewhere,} \end{cases} \]
 and let \(W = Y_1 - Y_2 \). Find the density of \(W \).

9. The Romulans have trapped the starship Enterprise in a spherical energy bubble. Spock has determined that at any given time, the radius of the bubble, \(Y \), is a random variable with probability density function
 \[f_Y(y) = \begin{cases} \frac{72y^2}{(9 + 16\pi^2y^6)}, & y > 0, \\ 0, & \text{elsewhere.} \end{cases} \]
 In order to plan an escape, Captain Kirk desperately needs to know the probability density function of the volume, \(V \), of the bubble. Knowing that the volume of a sphere of radius \(Y \) is given by the formula
 \[V = \frac{4}{3}\pi Y^3, \]
 Spock uses the method of transformations to find the probability density function of \(V \). Since Captain Kirk's algebra is not very good, Spock also simplifies his result. What is Spock's answer?

10. Suppose that \(Y_1, \ldots, Y_5 \) are independent, exponentially distributed random variables, each with mean \(\beta = 10 \). Use the method of moment generating functions, or results derived in class, to find the density of
 \[\overline{Y} = \frac{1}{5}(Y_1 + Y_2 + Y_3 + Y_4 + Y_5). \]
11. Let \(Y_1 \) and \(Y_2 \) be independent Poisson random variables with means \(\lambda_1 \) and \(\lambda_2 \), respectively.

 (a) Use the method of moment generating functions to show that the distribution of \(W = Y_1 + Y_2 \) is Poisson with mean \(\lambda_1 + \lambda_2 \).

 (b) Use the result of part (a) to show that the conditional probability function of \(Y_1 \) given \(W = w \) is binomial with \(n = w \) and \(p = \lambda_1 / (\lambda_1 + \lambda_2) \). *Hint:* \(\Pr(Y_1 = y_1, W = w) = \Pr(Y_1 = y_1, Y_2 = w - y_1) \).

12. Let \(Y_1, \ldots, Y_{10} \) be a random sample from the distribution with density function

 \[f(y) = \begin{cases}
 \frac{2y}{\theta^2}, & 0 \leq y \leq \theta, \\
 0, & \text{elsewhere},
 \end{cases} \]

 where \(\theta > 0 \).

 (a) Find the density of \(X = \max(Y_1, \ldots, Y_{10}) \).

 (b) Find \(E(X) \) and \(\text{Var}(X) \).

13. Consider the probability density function

 \[f(y) = \begin{cases}
 0, & y < 0, \\
 (1 + y)^{-2}, & y \geq 0.
 \end{cases} \]

 Suppose that \(U \sim U(0, 1) \). Find a transformation \(h(U) \) so that \(Y = h(U) \) has density \(f \).

14. Short answer. You are not required to show any work.

 (a) Suppose that \(Y_1, Y_2, \) and \(Y_3 \) are independent exponential random variables, each having mean 10, and let \(X = Y_1 + Y_2 + Y_3 \). Name the distribution of \(X \) and give the values of any parameters.

 (b) Refer to part (b). For what value of \(c \) does \(W = cX \) have a chi-square distribution? With how many degrees of freedom?

15. Short answer. You are not required to show any work.

 Suppose that \(Y_1 \) and \(Y_2 \) are independent normal random variables each with mean \(\mu \) and variance \(\sigma^2 \). Name the distribution of each of the following random variables and give the values of any parameters.

 (a) \(X = Y_1 + Y_2 \)

 (b) \(W = \left(\frac{Y_1 - \mu}{\sigma} \right)^2 + \left(\frac{Y_2 - \mu}{\sigma} \right)^2 \)

 (c) \(V = \left(\frac{Y_1 + Y_2 - 2\mu}{\sqrt{2\sigma^2}} \right)^2 \) *Hint:* Refer to part (a).

16. Let \(Y \sim \text{Beta}(1, \theta) \), so that \(Y \) has probability density function

 \[f(y) = \theta(1 - y)^{\theta - 1}, \quad 0 < y < 1. \]

 (a) Show that \(X = -\ln(1 - Y) \sim \text{Exp}(\beta = 1/\theta) \).

 (b) Now suppose that \(Y_1, \ldots, Y_n \) are independent random variables, each having a \(\text{Beta}(1, \theta) \) distribution. Name the distribution of \(U = \sum_{i=1}^{n}[-\ln(1 - Y_i)] \) and give the values of any parameters.

 (c) In the situation of part (b), find \(E(1/U) \).