Review

5.5.3-5.5.4 Function of Several Random Variables

If U is a function of independent random variables,

EU =

VarU =

Sampling Distribution – distribution of values a sample statistic takes in repeated sampling.

Sample Means

Sampling Distribution of X-bar:
- has the same mean as original population
- has smaller standard deviation than original population
- (CLT) for any shape population, shape of distribution of X-bar goes towards Normal as n increases
- \(\bar{X} \sim N \left(\mu, \frac{\sigma}{\sqrt{n}} \right) \)

When can you use the Normal Table to find probabilities? Which z-score do you use?

<table>
<thead>
<tr>
<th></th>
<th>X is Normal</th>
<th>X is not Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>One individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample mean when n<30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample mean when n>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1-6.4 and 6.6 Introduction to Formal Statistical Inference

- **Statistical Inference (CI and Sig Tests)** – use random and representative sample to draw conclusions about population AND attach measure of reliability to it.

Confidence Intervals

Find Formulas for CI by using the table:

Interpretation –
- CI is a statement about a PARAMETER, not about statistic or individuals.
- “Probability” applies BEFORE we take data. After we use the word “confidence”.
- Interpret Results (CI include zero or #H₀)

Behavior –
- as confidence level increases – CI bigger
- as n increases – CI smaller

Finding n for one sample mean–
- margin of error = \(z^* \frac{\sigma}{\sqrt{n}} \)
- solve for n (always round up)

Finding n for one sample proportion
- \(n = \frac{z^2p^*(1-p^*)}{\Delta^2} \)
- p* equals 0.5 if you have no idea what the true proportion is
- p* can also be last years p-hat or if you are knowledgeable about the subject your guess
Significance Tests for μ:

Ho Ha

$TS =$

$p\text{-value} = \text{"corner" area}$

Conclusions – small $p\text{-value}$ supports Ha
Assumptions the t for one sample mean, paired means and two independent means

Why do we use the t table?

- What do we need (Assumptions)?
 1. Random Samples
 2. Population is Normal

- How do we check?
 1. Read story and THINK.
 2. Plot Data as long as there are NO OUTLIERS proceed.

Assumptions for the CI and Sig. Tests for \(p \) and \(p_1 - p_2 \) using the \(z \)

- Why do we use the \(z \) table?

- What do we need (Assumptions)?
 1. Random Samples-to extend conclusions
 *Data is independent and comes from a stable system.
 2. Check specific assumption for that test
 *Have to have at least 5 successes and 5 failures.

How do we check these?

 1. Think about the story.
 2. Look at the data.
Additional Items

- READ MINITAB OUTPUT.

- What is the correct sampling distribution for the two independent means case?