LECTURE-28

Agenda:
1. Recap: Power of a test
2. Simple and Composite Hypotheses
3. Neyman-Pearson Lemma and the Most Powerful Test

Recall that for testing H_0 v.s. H_A, which are two hypotheses concerning an unknown parameter θ, we had defined the "power" of a testing procedure at a specific alternative θ_A as:

$$\text{Power} \left(\theta_A \right) = 1 - \beta(\theta_A)$$

Type II Error probability at θ_A

$$= 1 - P(\text{H}_A \text{ is rejected} | \theta = \theta_A)$$

$$= P(\text{H}_A \text{ is accepted} | \theta = \theta_A)$$

Here, the power at the alternative θ_A is the probability of correctly accepting H_A when the true value of θ is θ_A.

So, we would like the power to be as large as possible.
GENERAL QUESTION: For a general testing problem, can we find a testing procedure which has the highest power (assuming the level is fixed at, say, \(\alpha \))?

ANSWER: In various situations, we can.

Before we proceed, let us define the concepts of **SIMPLE** and **COMPOSITE** hypothesis.

DEFINITION: Suppose we have data from a population with unknown parameter \(\theta \). A hypothesis is said to be **SIMPLE** if it uniquely specifies the distribution of the population from which the sample is taken. [In most cases, this is same as saying, that the hypotheses uniquely identifies the value of \(\theta \).] (But not always)

Any hypothesis that is not a SIMPLE hypothesis is called a **COMPOSITE** hypothesis.

The Neyman-Pearson Lemma provides a method to obtain the **MOST POWERFUL** test among all tests with level-\(\alpha \), if both \(H_0 \) and \(H_a \) are **SIMPLE** hypotheses.
THE NETMAN-PEARSON LEMMA: Suppose that we wish to test the simple null hypothesis $H_0: \theta = \theta_0$ versus the simple alternative hypothesis $H_A: \theta = \theta_1$, based on a random sample Y_1, Y_2, \ldots, Y_n from a distribution with parameter θ. Recall that $L(\theta)$ denotes the likelihood of the sample when the value of the parameter is θ. Then, the test that maximizes the power at θ_1 has a rejection region determined by
\[
\frac{L(\theta_0)}{L(\theta_1)} < k.
\]

The value of k is chosen so that the level is equal to α. Such a test is called the MOST POWERFUL LEVEL-α TEST for H_0 vs. H_A.

Example: Suppose Y is a sample of size 1 from a population with density
\[
f_Y(y|\theta) = \begin{cases} \theta y^{\theta-1} & \text{if } 0 < y < 1, \\ 0 & \text{otherwise.} \end{cases}
\]

Find the most powerful test with level $\alpha = 0.05$ for testing $H_0: \theta = 2$ vs. $H_A: \theta = 1$.
Note that both H_0 and H_1 are simply specifying the value of θ; completely specifies the density of the population. Hence, by the Neyman-Pearson lemma, the most powerful test for H_0 vs. H_1 has a rejection region of the form

$$\frac{L(\theta_0)}{L(\theta_1)} > k,$$

where k is chosen so that level $= 0.05$.

Note that $L(\theta_0) = f(y|\theta = 2) = 2y$, and $L(\theta_1) = f(y|\theta = 1) = 1$, for $0 < y < 1$. Hence, the rejection region is of the form

$$2y > k \quad \text{or} \quad y < \frac{k}{2}.$$

Let us calculate the value of k.

level $= 0.05 \Rightarrow P\left(y < \frac{k}{2} \left| \theta = 2 \right. \right) = 0.05$

$$\Rightarrow \int_0^{k/2} 2y \, dy = 0.05$$

$$\Rightarrow \left[y^2 \right]_0^{k/2} = 0.05$$

$$\Rightarrow \left(\frac{k}{2} \right)^2 = 0.05$$

$$\Rightarrow \frac{k^2}{4} = 0.05$$

$$\Rightarrow k^2 = 0.2$$

$$\Rightarrow k = \sqrt{0.2236}.$$

Hence the rejection region is given by $\{ y < 0.2236 \}$.