Instructor:
J. P. Hobert
221 Griffin Floyd Hall
392-1941

Class: MWF 7:25 - 8:15am, Engineering Building 100

Office Hours: MW 9:30 - 10:30am or by appointment

Course Web Page: http://web.stat.ufl.edu/~jhobert/sta4321.html

Text:
6th edition of Mathematical Statistics with Applications by Wackerly, Mendenhall, and Scheaffer

Objective:
The sequence of courses STA 4321-4322 is designed to give the undergraduate student a firm foundation in the basic theory of statistical inference. Three semesters of calculus are required in order to understand the course material. Since probability theory is the primary mathematical tool used in statistical inference, the first course, STA 4321, is devoted almost entirely to concepts of probability. STA 4322 deals primarily with the classical theory of estimation and hypothesis testing.

Exams and Quizzes:
Four in-class quizzes (1/24, 2/14, 3/21, and 4/11) will count for a total of 30%. The midterm exam (6-8pm on Thursday, February 27) will count 30%. The final exam (3:00-5:00pm in Engineering Building 100 on April 29) will count 40%. No make-up exams or quizzes will be given.

Grading:
The usual 10 point scale (90% for an A, 80% for a B, . . . ) is tentatively adopted, but will most likely be loosened.

Help Sessions:
The Teaching Assistant (TA) for the course is Victor Mergel (B117 Turlington). Victor will hold a help session in Turlington L011 from 5:15-6:30pm on the following five dates: 1/22, 2/12, 2/26, 3/19, 4/9. Note that these are all Wednesdays during weeks in which there is a quiz or an exam.

Policies:
Students are responsible for all material covered in class. If you are absent, make arrangements with a classmate to borrow the notes and any handouts from them. Handouts will be distributed once and only once.
Homework:
Mastery of the material presented in this course requires a great deal of practice. Thus, although homework is not collected, it is imperative that you solve the problems in the following list. As an added incentive, one question on every exam will be a problem from this list.

Chapter 1: 3, 9, 12, 15, 18, 22, 25

Chapter 2: 1, 4, 5, 9, 13, 14, 15, 17, 18, 20, 23, 25, 28, 32, 33, 35, 39, 43, 50, 51, 54, 57, 61, 64, 67, 71, 73, 74, 80, 86, 90, 95, 99, 102, 114, 116, 120, 126, 136, 138, 139

Chapter 3: 1, 4, 6, 10, 17, 23, 26, 28, 29, 37, 42, 51, 55, 62, 84, 91, 92, 95, 101, 102, 111, 116, 121, 125, 131, 133 (a,b), 137, 150, 164, 171, 173

Chapter 4: 1, 4, 6, 9, 13, 20, 21, 24, 29, 30, 32, 45, 54, 60, 61, 72, 76, 77, 89, 92, 94, 97, 104, 112, 118, 121, 133, 135, 142, 143, 150

Chapter 5: 3, 7, 8, 14, 15, 19, 23, 29, 31, 34, 39, 45, 48, 52, 59, 62, 65, 68, 71, 75, 78, 81, 90, 92, 94, 100, 113, 116, 122, 123, 128, 129

Chapter 6: 2, 4, 8, 9, 11, 13, 34, 40, 43, 44, 49, 58, 59, 60, 64, 68, 75, 83, 87

A Schedule of Topics:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Main Topic</th>
<th>Approximate Number of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Probability</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Discrete Random Variables</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Continuous Random Variables</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Multivariate Probability Distributions</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Functions of Random Variables</td>
<td>8</td>
</tr>
</tbody>
</table>

We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity.