1. Problem 6 of Chapter 12

2. Problem 2 of Chapter 13

3. Problem 10 of Chapter 14

4. Problem 11 of Chapter 14 (May assume that \(A \) is symmetric).

5. Let \(A \) be an \(n \times n \) matrix and \(x \) be a \(n \times 1 \) vector. Show that

 (a) If \(Ax = 0 \) for all \(x \), then \(A = 0 \).

 (b) If \(A \) is symmetric and \(x'Ax = 0 \) for all \(x \), then \(A = 0 \).

 (c) If \(A \) is not be symmetric, then \(x'Ax = 0 \) for all \(x \) implies \(A = -A' \).

6. If \(A \) is skew symmetric, i.e. \(A' = -A \), prove that

 (a) \(a_{ii} = 0 \) and \(a_{ij} = -a_{ji} \)

 (b) \(I + A \) is positive definite.

7. (a) If \(A \) is idempotent and symmetric, prove that it is n.n.d.

 (b) When \(X \) and \(Y \) are idempotent, prove that \(XY \) is idempotent given that \(X \) and \(Y \) commute in multiplication, i.e. \(XY = YX \).

 (c) Prove that \(I + KK' \) is p.d., for real \(K \).

R Exercises:

1. Using importance sampling estimate

 \[
 \int_0^\infty 2\sin \left(\frac{\pi}{1.5}x \right) \frac{x^{1.65-1}}{p(x)} e^{-\frac{x^2}{2}} dx,
 \]

 where \(p(x) \) is the kernel of a distribution that is somewhat similar to \(\chi^2 \) distribution. Show your steps, the sampling distribution you will use and the reasons for it, etc.

 Hints:

 - Note \(p(x) \) is missing a normalizing constant.

 - Choose a sampling distribution that bounds the variance. Pay special attention to the ratio component of the variance.

 - Although \(x \geq 0 \), you may choose a sampling distribution that includes \(x < 0 \) values, but you must “truncate” it (and re-normalize the normalizing constant).