A WEAK LAW WITH RANDOM INDICES FOR
RANDOMLY WEIGHTED SUMS OF ROWWISE
INDEPENDENT RANDOM ELEMENTS IN
RADEMACHER TYPE p BANACH SPACES

ANDREW ROSALSKY
University of Florida, Gainesville, U.S.A.

M. SREEHARI
Maharaja Sayajirao University of Baroda, India

and

ANDREI I. VOLODIN
University of Regina, Canada

September 17, 2002

ABSTRACT: For randomly weighted and randomly indexed sums of the form
\[\sum_{j=1}^{T_n} A_{nj} \left(V_{nj} - E(V_{nj}I(||V_{nj}|| \leq c_n)) \right) \]
where \(\{A_{nj}, j \geq 1, n \geq 1\} \) is an array of rowwise independent random variables, \(\{V_{nj}, j \geq 1, n \geq 1\} \) is an array of rowwise independent random elements in a separable real Rademacher type p Banach space, \(\{c_n, n \geq 1\} \) is a sequence of positive constants, and \(\{T_n, n \geq 1\} \) is a sequence of positive integer-valued random variables, we present conditions under which the general weak law of large numbers \(\sum_{j=1}^{T_n} A_{nj} \left(V_{nj} - E(V_{nj}I(||V_{nj}|| \leq c_n)) \right) \overset{P}{\rightarrow} 0 \) holds. It is not assumed that the \(\{V_{nj}, j \geq 1, n \geq 1\} \) have expected values or absolute moments. The sequences \(\{A_{nj}, j \geq 1\} \) and \(\{V_{nj}, j \geq 1\} \) are assumed to be independent for all \(n \geq 1 \). However, no conditions are imposed on the joint distributions of the random indices \(\{T_n, n \geq 1\} \) and no independence conditions are imposed between \(\{T_n, n \geq 1\} \) and \(\{A_{nj}, V_{nj}, j \geq 1, n \geq 1\} \). The sharpness of the weak law is illustrated by examples.

Key words and phrases: Separable real Rademacher type p Banach space; array of rowwise independent random elements; weighted sums; random weights; random indices; weak law of large numbers; convergence in probability.

AMS (1991) Subject Classification: Primary 60B12, 60F05; Secondary 60B11.