New Findings from Terrorism Data:
Dirichlet Process Random Effects Models for Latent Groups

Minjung Kyung
Department of Statistics
University of Florida

Jeff Gill
Center for Applied Statistics
Washington University

George Casella
Department of Statistics
University of Florida

Supported by NSF Grants: SES-0958982 & SES-0959054.
Introduction

Terrorism Data

- The analysis of data on terrorists and terrorist attacks is difficult.

- Typical data are
 - Observed public events
 - Not including failed attacks

- Classified government information

- Terrorists seek to strategically hide information
Introduction
Terrorism Data

- Data collection can even be physically dangerous for the researcher

- Terrorism is an important problem
 - It affects personal safety
 - Internal government policies
 - Public perception
 - Relations between nations
Introduction

Overview of the Talk

- **Background about terrorism data sets**
 - Problems with the data

- **Logistic Random Effects Models**
 - An Introduction to Modelling Random Effects

- **Fitting the Models**
 - Markov Chain Monte Carlo

- **Analysis of a Terrorism Data Set**
 - What the Covariates Explain

- **Conclusions**
 - What We Learned
Background On Terrorism Data
Types of Data Available

- Most of the datasets focus on *incidents*
- Data from an observed violent attack and covariates such as
 - Responsible group
 - Target characteristics
 - The extent of casualties and damage.

- Humans in terrorist networks conceal their identities and intentions
- Therefore there is a lack of informative covariates
Background On Terrorism Data

Major Databases

► University of Maryland (START)
► US Homeland Security Agency
► International Terrorism: Attributes of Terrorist Events (ITERATE)
 ▶ Records transnational terrorist incidents
► International Policy Institute for Counter-Terrorism in Herzlia, Israel
 ▶ Detailed online database of terrorist attacks in Israel
► The Global Terrorism Database (GTD)
 ▶ Information on global terrorist events starting from 1970
 ▶ We used this one
Background On Terrorism Data

Previous Findings

- Extremist groups often ↑ terrorist activity after government concessions
 - Anecdotal evidence rather than statistical data analysis

- Statistical models try to forecast the occurrence of terrorists incidents
 - Limited results

- Networks of terrorist and terrorist organizations
 - Tend to be cellular and independent
 - Rather than hierarchical and connected
Background On Terrorism Data

Data Problems

▶ Not much success in building standard regression models
 ▶ The data are, in general, poorly measured
 ▶ Categorical variables with large variability

▶ Huge Problem: The terrorists under study
 ▶ Are deliberately trying to prevent accurate data from being collected

▶ The statistician has a difficult task in creating meaningful models.
Background On Terrorism Data
Data Quality Example: Attacks in Israel

Attacker is Challenged

Target is Military

◮ Y-axis = Number of Casualties
◮ X-axis = Age of Attacker

◮ Consider some details
Background On Terrorism Data

Attacks in Israel – Attacker is Challenged

Attacker is Challenged

差分在两个图例中的致命性分布。

差分在致命性分布中。

- The attack is less deadly if the attacker is challenged.
Background On Terrorism Data

Attacks in Israel – Target is Military

- Much higher level of fatalities for non-military attacks
- These terrorist groups prefer civilian targets.
Attacker is Challenged

Target is Military

There is confounding

Suicide bombers attacking civilian targets are rarely challenged

So there is little to distinguish between these two plots.
Background On Terrorism Data

Challenges from the Data

- Data on terrorist attacks have special challenges
 - Coarse measurements; many categorical and qualitative variables.
 - Important variables missing: intentions and strategies of the terrorists
- Assume: Observed events resemble events that failed or were cancelled
- These difficulties in the data-analytic understanding of terrorism
 - Lead us to a Bayesian nonparametric setup
 - Use a rich error structure with Dirichlet process priors
 - Attempt to capture latent variability
———But First———
Here is the Big Picture

► Usual Random Effects Model

\[\mathbf{Y} | \psi \sim N(X\beta + \psi, \sigma^2 I), \quad \psi_i \sim N(0, \tau^2) \]

► Subject-specific random effect

► Dirichlet Process Random Effects Model

\[\mathbf{Y} | \psi \sim N(X\beta + \psi, \sigma^2 I), \quad \psi_i \sim \text{DP}(m, N(0, \tau^2)) \]

► Results in

► Fewer Assumptions

► Better Estimates

► Shorter Credible Intervals
A Dirichlet Process Random Effects Model
Estimating the Dirichlet Process Parameters

A general random effects Dirichlet Process model can be written
\[
(Y_1, \ldots, Y_n) \sim f(y_1, \ldots, y_n | \theta, \psi_1, \ldots, \psi_n) = \prod_i f(y_i | \theta, \psi_i)
\]

\(\psi_1, \ldots, \psi_n\) iid from \(G \sim \mathcal{DP}\)
\(\mathcal{DP}\) is the Dirichlet Process

- Base measure \(\phi_0\) and precision parameter \(m\)
- The vector \(\theta\) contains all model parameters

Blackwell and MacQueen (1973) proved
\[
\psi_i | \psi_1, \ldots, \psi_{i-1} \sim \frac{m}{i - 1 + m} \phi_0(\psi_i) + \frac{1}{i - 1 + m} \sum_{l=1}^{i-1} \delta(\psi_l = \psi_i)
\]
Where \(\delta\) denotes the Dirac delta function.
Some Distributional Structure

 - Dirichlet process prior for nonparametric G
 - Random probability measure on the space of all measures.

- Notation
 - G_0, a base distribution (finite non-null measure)
 - $m > 0$, a precision parameter (finite and non-negative scalar)
 - Gives spread of distributions around G_0,
 - Prior specification $G \sim \mathcal{DP}(m, G_0) \in \mathcal{P}$.

- For any finite partition of the parameter space, $\{B_1, \ldots, B_K\}$,
 $$(G(B_1), \ldots, G(B_K)) \sim \mathcal{D}(mG_0(B_1), \ldots, mG_0(B_K)),$$
A Mixed Dirichlet Process Random Effects Model

Likelihood Function

The likelihood function is integrated over the random effects

\[L(\theta \mid y) = \int f(y_1, \ldots, y_n \mid \theta, \psi_1, \ldots, \psi_n) \pi(\psi_1, \ldots, \psi_n) \, d\psi_1 \cdots d\psi_n \]

\[L(\theta \mid y) = \frac{\Gamma(m)}{\Gamma(m+n)} \sum_{k=1}^{n} m^{k} \left[\sum_{C : |C| = k} \prod_{j=1}^{k} \Gamma(n_j) \int f(y_{(j)} \mid \theta, \psi_j) \phi_0(\psi_j) \, d\psi_j \right] , \]

The partition \(C \) defines the subclusters

\(y_{(j)} \) is the vector of \(y_i \)s in subcluster \(j \)

\(\psi_j \) is the common parameter for that subcluster
How Is This Nonparametric?

► These models stipulate uncertainty at the level of distribution functions
 ▶ Allows for infinite dimensional alternatives
 ▶ Thus a nonparametric approach

► If \(\{f(y|\psi): \psi \in (\Psi \subset \mathbb{R}^d)\} \) is a parametric family of distributions
 ▶ Construct the family of distributions \(\mathcal{F} = \{F_G: G \in \mathcal{P}\} \):

\[
f(y|G) = \int f(y|\psi) dG(\psi).
\]

► Now \(\mathcal{F} \) becomes a nonparametric family of mixtures.

► \(G \) remains random because it comes from a definable measure
 ▶ Dirichlet process
Logistic Regression with Random Effects

Setup

We begin with the model

\[Y_i \sim \text{Bernoulli}(p(X_i)), \quad i = 1, \ldots, n \]

where

\[y_i = \begin{cases}
1 & \text{if the attack is a suicide attack} \\
0 & \text{if the attack is not a suicide attack}
\end{cases} \]

\[p(X_i) = \text{E}(Y_i|X_i) \text{ is the probability of a success} \]

\[X_i = \text{covariates associated with the } i^{th} \text{ observation} \]

Extra variation is modeled with a random effect

\[\text{logit}(p(X_i)) = \frac{\log(p(X_i))}{1 - \log(p(X_i))} = X_i \beta + \phi_i, \]

where \(\phi_i \) is a random variable to model extra unexplained variation.
Logistic Regression with Random Effects
Choices for Random Effect Models

- The typical random effect model

\[
\text{logit}(p(X_i)) = X_i \beta + \phi_i,
\]

- Will often model \(\phi_i \) with a normal distribution
- We use the alternative \(\psi_i \) from a Dirichlet process

- Notice the clustering
- Models extra variability
Logistic Regression with Random Effects

The Full Hierarchical Model

- Observe $Y_i = 0$ or 1 depending on whether the attack was a suicide attack

$$Y_i \sim \text{Bernoulli}(p(X_i)), \quad i = 1, \ldots, n$$

$$\text{logit}(p(X_i)) = X_i \beta + \psi_i,$$

- $\beta \sim N \left(\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \sigma^2 I \right)$
 - $\mu \propto 1$ a flat prior
 - σ^2 is fixed

- $\psi_i \sim G, \quad G \sim \text{DP}(m G_0)$,
 - $G_0 = \text{Normal}(0, \tau^2)$
 - $\tau^2 \sim \text{Inverted Gamma}$
 - $m \sim \text{Gamma}$

- Model Parameters

- Dirichlet Parameters
Fitting the Model
Markov Chain Monte Carlo

- Use a Gibbs Sampler, a Markov Chain Monte Carlo Algorithm.
 - Estimates the posterior distribution of the parameters
 - Gives point estimates and confidence intervals

- Iterates between Model Parameters and Dirichlet Parameters.
Fitting the Logistic Parameters
Mixture Representation

▶ Logistic is a Mixture of Normals

▶ Kolmogorov-Smirnov density:

\[
f_{KS}(x) = 8 \sum_{\alpha=1}^{\infty} (-1)^{\alpha+1} \alpha^2 x e^{-2\alpha^2 x^2} \quad x \geq 0
\]

▶ Mixture of normals is logistic (Andrews and Mallows 1974)

\[
\int_{0}^{\infty} \frac{1}{2x\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{y}{2x} \right)^2 \right\} f_{KS}(x) \, dx = \frac{e^{-y}}{(1 + e^{-y})^2}
\]

▶ Easy to simulate (Devroye’s (1986) Accept-Reject Algorithm)

▶ Outperforms Slice Sampler
Fitting the Dirichlet Parameters
Matrix Representation of Partitions

- $\psi \sim \mathcal{DP}$
 - $\psi = A\eta$, $\eta \sim N_k(0, \sigma^2 I)$
- $A_{n \times k}$ random with
 - Rows: a_i is a $1 \times k$ vector of all zeros except for a 1 in its subcluster
 - Columns: Column sums are the number of observations in the groups

To Generate A

- $q_{n \times 1} \sim \text{Dirichlet Distribution}$
- $a_i \sim \text{Multinomial}, \ i = 1, \ldots, n$
- $A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$

- Eliminate columns with all zeros (Kyung et al. 2010)
Analysis of the Terrorism Data

Background

- The data come from the Global Terrorism Database II
 - Events in the Middle East and Northern Africa from 1998 to 2004
 - Incredibly destructive simultaneous bombings of the U.S. Embassies in Nairobi, Kenya (291 killed, roughly 5000 injured), and Dar es Salaam, Tanzania (10 killed, 77 injured) in August.

- Categorization of Attack Types

<table>
<thead>
<tr>
<th></th>
<th>Not Bomb</th>
<th>Bomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Suicide</td>
<td>720</td>
<td>661</td>
</tr>
<tr>
<td>Suicide</td>
<td>5</td>
<td>224</td>
</tr>
</tbody>
</table>

- Outcome variable: Suicide attack/Not. ← Case-Control

- Suicide attacks pose a substantially higher challenge for governments
 - The assailant has great control over placement and timing
 - Does not need to plan his or her escape (Pape 2006).
Analysis of the Terrorism Data
Some Covariates Used in the Analysis

MULT.INCIDENT
Indicates if the attack is part of a coordinated multi-site event

SUCCESSFUL
The perceived success rated by the party attacked

WEAPON.TYPE
Type of Weapon: Bomb or Other Weapon
Analysis of the Terrorism Data
Other Covariates Used in the Analysis

- **NUM. INJUR**: Extent of human damage from the terrorist attack.
- **PROPERTY. DAMAGE**: Amount of property damage.
- **PSYCHOSOCIAL**: The negative psychological/social impact; ascending levels: none, minor, moderate, and major.
But First, We Are Statisticians After All
Model Results, Suicide Attacks

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Bayes Model</th>
<th>GLMDM Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COEF SE</td>
<td>95% HPD</td>
</tr>
<tr>
<td>YEAR - 1998</td>
<td>0.303 0.228</td>
<td>0.135 1.137</td>
</tr>
<tr>
<td>MULT. INCIDENT</td>
<td>-0.802 0.488</td>
<td>-2.222 -0.142</td>
</tr>
<tr>
<td>MULTI. PARTY</td>
<td>-0.945 0.690</td>
<td>-3.289 -0.225</td>
</tr>
<tr>
<td>SUSP. UNCONFIRM</td>
<td>-0.109 0.344</td>
<td>-0.928 0.472</td>
</tr>
<tr>
<td>SUCCESSFUL</td>
<td>-1.035 0.705</td>
<td>-3.308 -0.262</td>
</tr>
<tr>
<td>ATTACK. TYPE</td>
<td>0.122 0.135</td>
<td>-0.122 0.466</td>
</tr>
<tr>
<td>WEAPON. TYPE</td>
<td>2.714 1.673</td>
<td>1.346 7.769</td>
</tr>
<tr>
<td>TARGET. TYPE</td>
<td>-0.073 0.330</td>
<td>-0.749 0.527</td>
</tr>
<tr>
<td>NUM. FATAL</td>
<td>-0.019 0.025</td>
<td>-0.085 0.017</td>
</tr>
<tr>
<td>NUM. INJUR</td>
<td>0.030 0.030</td>
<td>0.010 0.126</td>
</tr>
<tr>
<td>PROPERTY. DAMAGE</td>
<td>0.439 0.305</td>
<td>0.122 1.406</td>
</tr>
<tr>
<td>PSYCHOSOCIAL</td>
<td>0.824 0.633</td>
<td>0.216 3.044</td>
</tr>
</tbody>
</table>

Standard errors are smaller with \(\text{DP} \) random effects
And the credible intervals tend to be shorter
Analysis of the Terrorism Data
Estimates and Confidence Intervals

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULT. INCIDENT</td>
<td>-0.585</td>
<td>0.221</td>
<td>-1.028 -0.162</td>
</tr>
<tr>
<td>SUCCESSFUL</td>
<td>-0.695</td>
<td>0.245</td>
<td>-1.172 -0.210</td>
</tr>
<tr>
<td>WEAPON.TYPE</td>
<td>1.725</td>
<td>0.320</td>
<td>1.162 2.422</td>
</tr>
<tr>
<td>NUM.INJUR</td>
<td>0.017</td>
<td>0.004</td>
<td>0.008 0.025</td>
</tr>
<tr>
<td>PROPERTY.DAMAGE</td>
<td>0.297</td>
<td>0.094</td>
<td>0.114 0.483</td>
</tr>
<tr>
<td>PSYCHOSOCIAL</td>
<td>0.555</td>
<td>0.192</td>
<td>0.188 0.944</td>
</tr>
</tbody>
</table>

► Significant Coefficients
Analysis of the Terrorism Data

Results

<table>
<thead>
<tr>
<th>MULT.INCIDENT</th>
<th>Multiple coordinated incidents are less associated with suicide attacks (9/11/2001 an exception)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.585*</td>
<td></td>
</tr>
</tbody>
</table>

▶ Planners of simultaneous terrorist events find it difficult to arrange multiple suicidal terrorists.

<table>
<thead>
<tr>
<th>SUCCESSFUL</th>
<th>Successful attacks are less likely to be from suicides</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.695</td>
<td></td>
</tr>
</tbody>
</table>

▶ With suicide attacks, variables such as fervent nationalism and religious extremism, experience, age, intelligence, are important

<table>
<thead>
<tr>
<th>WEAPON.TYPE</th>
<th>Bomb attacks are more likely to be from suicide terrorists.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.725</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of the Terrorism Data
Results – Continued

NUM. INJUR

0.017

More injuries at the event site suggest a greater probability of a suicide attack.

PROPERTY. DAMAGE

0.297

Increased property damage is positively associated with a suicide attack.

▶ This shows the terrorists preference for civilian targets, which will have more damage than better protected military targets.

PSYCHOSOCIAL

0.555

A goal of suicide attacks are consequences such as the psychological/social effect.

▶ A fundamental goal of terrorism is to reduce the people’s confidence in the ability of their government to defend them.
Conclusions

What Did We Learn From the Model?

- Multiple groups working together do not typically use suicide attackers.
- They work in a more military manner with standard weapons.

- Increased property damage from suicide attacks.
- Increased human injuries from suicide attacks.
- Suicide attackers prefer civilian targets.
- Fewer fatalities from suicide attacks.
Conclusions

From This Model to the Next Step in the Statistical Analysis

▸ Advantages of the Dirichlet model

▸ Usual Model
 ▷ Cannot remove enough error variability
 ▷ Over-estimates effects of the covariates

▸ Dirichlet Model
 ▷ Removes additional error variability
 ▷ Does not over-estimate covariate effects

▸ We need more explanatory power
 ▷ More covariates
 ▷ More government data
 ▷ Meta-analysis

▸ These findings may help governments reduce effectiveness of terrorist events.
Conclusions

What Actions are Suggested from the Data Analysis?

▶ Information on
 ▶ Target/Weapon preferences
 ▶ Multiple/Single attacks

Help focus intelligence gathering

▶ Plotters of suicide attacks want
 ▶ negative psychological/social impact

• Better education of the population
• Increase availability of counseling
Conclusions
What Actions are Can We Hope For?

▷ A challenge to the terrorist
 ▷ Reduces success

- Increase Police/Military Presence
- Increase Population Awareness

Passengers thwart terrorist attack on Detroit-bound plane
By The Associated Press December 26, 2009, 12:00PM

▷ We hope for more stories like this
Thank You for Your Attention

George Casella

casella@ufl.edu
Findings So Far for Dirichlet Process Random Effects in GLMs

 DPP on RE can uncover latent clustering.

 DPP on RE can produce lower SE for regression parameters on average.

 Estimation of the precision parameter; improved Gibbs sampler.

 Slice sampling worse than KS mixture representation or MH algorithm.

 Logistic model, uncovering latent information with difficult data.