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Introduction

Linear regression is used when we have a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s)
with random error terms assumed to be independent and normally distributed with constant variance. The
fitting of linear regression models is very flexible, allowing for fitting curvature and interactions between
factors.

Simple Linear Regression

When there is a single numeric predictor, we refer to the model as Simple Regression. The response
variable is denoted as Y and the predictor variable is denoted as X. The model is:

Y = β0 + β1X + ε ε ∼ N(0, σ2) independent

Here β0 is the intercept (mean of Y when X=0) and β1 is the slope (the change in the mean of Y when
X increases by 1 unit). Of primary concern is whether β1 = 0, which implies the mean of Y is constant (β0),
and thus Y and X are not associated.
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Estimation of Model Parameters

We obtain a sample of pairs (Xi, Yi) i = 1, . . . , n. Our goal is to choose estimators of β0 and β1 that
minimize the error sum of squares: Q =

∑n
i=1 ε2i . The resulting estimators are (from calculus):

β̂1 =
∑n

i=1(Xi −X)(Yi − Y )∑n
i=1(Xi −X)2

β̂0 = Y − β̂1X

Once we have estimates, we obtain fitted values and residuals for each observation. The error sum
of squares (SSE) are obtained as the sum of the squared residuals:

Fitted Values: Ŷi = β̂0 + β̂1Xi Residuals: ei = Yi − Ŷi SSE =
n∑

i=1

(Yi − Ŷi)2

The (unbiased) estimate of the error variance σ2 is s2 = MSE = SSE
n−2 , where MSE is the Mean

Square Error. The subtraction of 2 can be thought of as the fact that we have estimated two parameters:
β0 and β1.

The estimators β̂1 and β̂0 are linear functions of Y1, . . . , Yn and thus using basic rules of mathematical
statistics, their sampling distributions are:

β̂1 ∼ N

(
β1,

σ2∑n
i=1(Xi −X)2

)
β̂0 ∼ N

(
β0, σ

2

[
1
n

+
X

2∑n
i=1(Xi −X)2

])

The standard error is the square root of the variance, and the estimated standard error is the standard
error with the unknown σ2 replaced by MSE.

SE{β̂1} =

√
MSE∑n

i=1(Xi −X)2
SE{β̂0} =

√√√√MSE

[
1
n

+
X

2∑n
i=1(Xi −X)2

]

Inference Regarding β1

Primarily of interest is inferences regarding β1. Note that if β1 = 0, Y and X are not associated. We
can test hypotheses and construct confidence intervals based on the estimate β1 and its estimated standard
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error. The t-test is conducted as follows. Note that the null value β10 is almost always 0, and that software
packages that report these tests always are treating β10 as 0. Here, and in all other tests, TS represents Test
Statistic, and RR represents Rejection Region.

H0 : β1 = β10 HA : β1 6= β10 TS : tobs =
β̂1 − β10

SE{β̂1}
RR : |tobs| ≥ tα/2,n−2 P -value : P (tn−2 ≥ |tobs|)

One-sided tests use the same test statistic, but adjusts the Rejection Region and P -value are changed
to reflect the alternative hypothesis:

H+
A : β1 > β10 RR : tobs ≥ tα,n−2 P -value : P (tn−2 ≥ tobs)

H−
A : β1 < β10 RR : tobs ≤ −tα,n−2 P -value : P (tn−2 ≤ tobs)

A (1− α)100% confidence interval for β1 is obtained as:

β̂1 ± tα/2,n−2SE{β̂1}

Note that the confidence interval represents the values of β10 that the two-sided test: H0 : β1 =
β10 HA : β1 6= β10 fails to reject the null hypothesis.

Inferences regarding β0 are rarely of interest, but can be conducted in analogous manner, using the
estimate β̂0 and its estimated standard error SE{β̂0}.

Estimating a Mean and Predicting a New Observation @ X = X∗

We may want to estimate the mean response at a specific level X∗. The parameter of interest is µ∗ =
β0 + β1X

∗. The point estimate, standard error, and (1− α)100% Confidence Interval are given below:

Ŷ ∗ = β̂0+β̂1X
∗ SE

{
Ŷ ∗
}

=

√√√√MSE

[
1
n

+

(
X∗ −X

)2∑n
i=1(Xi −X)2

]
(1−α)100% CI : Ŷ ∗±tα/2,n−2SE

{
Ŷ ∗
}

To obtain a (1 − α)100% Confidence Interval for the entire regression line (not just a single point), we
use the Working-Hotelling method:
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Ŷ ∗ ±
√

2Fα/2,2,n−2SE
{

Ŷ ∗
}

If we are interested in predicting a new observation when X = X∗, we have uncertainty with respect
to estimating the mean (as seen by the Confidence Interval above), and the random error for the new case
(with standard deviation σ). The point prediction is the same as for the mean. The estimate, standard error
of prediction, and (1− α)100% Prediction Interval are given below:

Ŷ ∗
New = β̂0+β̂1X

∗ SE
{

Ŷ ∗
}

=

√√√√MSE

[
1 +

1
n

+

(
X∗ −X

)2∑n
i=1(Xi −X)2

]
(1−α)100% PI : Ŷ ∗

New±tα/2,n−2SE
{

Ŷ ∗
}

Note that the Prediction Interval will tend to be much wider than the Confidence Interval for the mean.

Analysis of Variance

When there is no association between Y and X (β1 = 0), the best predictor of each observation is Y = β̂0

(in terms of minimizing sum of squares of prediction errors). In this case, the total variation can be denoted
as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares.

When there is an association between Y and X (β1 6= 0), the best predictor of each observation is
Ŷi = β̂0 + β̂1Xi (in terms of minimizing sum of squares of prediction errors). In this case, the error variation
can be denoted as SSE =

∑n
i=1(Yi − Ŷi)2, the Error Sum of Squares.

The difference between TSS and SSE is the variation ”explained” by the regression of Y on X (as
opposed to having ignored X). It represents the difference between the fitted values and the mean: SSR =∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n∑
i=1

(Yi − Y )2 =
n∑

i=1

(Yi − Ŷi)2 +
n∑

i=1

(Ŷi − Y )2

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − 2 (for simple regression). The
Regression Degrees of Freedom is dfRegression = 1 (for simple regression).

dfTotal = dfError + dfRegression n− 1 = n− 2 + 1
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Source df SS MS Fobs P -value
Regression (Model) 1 SSR =

∑n
i=1(Ŷi − Y )2 MSR = SSR

1 Fobs = MSR
MSE P (F1,n−2 ≥ Fobs)

Error (Residual) n− 2 SSE =
∑n

i=1(Yi − Ŷi)2 MSE = SSE
n−2

Total (Corrected) n− 1 TSS =
∑n

i=1(Yi − Y )2

Table 1: Analysis of Variance Table for Simple Linear Regression

Error and Regression sums of squares have a Mean Square, which is the sum of squares divided by
its corresponding degrees of freedom: MSE = SSE/(n − 2) and MSR = SSR/1. It can be shown that
these mean squares have the following Expected Values, average values in repeated sampling at the same
observed X levels:

E{MSE} = σ2 E{MSR} = σ2 + β2
1

n∑
i=1

(Xi −X)2

Note that when β1 = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A second way
of testing whether β1 = 0 is by the F -test:

H0 : β1 = 0 HA : β1 6= 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,1,n−2 P -value : P (F1,n−2 ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 2.

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y ”explained” by X, divided by the total variation in Y .

r2 =
∑n

i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1− SSE

TSS
0 ≤ r2 ≤ 1

The interpretation of r2 is the proportion of variation in Y that is ”explained” by X, and is often
reported as a percentage (100r2).

Correlation

The regression coefficient β1 depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson

5



Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and X, and
does not distinguish which is the dependent and which is the independent variables. This makes it a widely
reported measure when researchers are interested in how 2 random variables vary together in a population.
The population correlation coefficient is labeled ρ, and the sample correlation is labeled r, and is computed
as:

r =
∑n

i=1(Xi −X)(Yi − Y )√∑n
i=1(Xi −X)2

∑n
i=1(Yi − Y )2

=
(

sX

sY

)
β̂1

where sX and sY are the standard deviations of X and Y , respectively. While β̂1 can take on any value,
r lies between -1 and +1, taking on the extreme values if all of the points fall on a straight line. The test of
whether ρ = 0 is mathematically equivalent to the t-test for testig thether β1 = 0. The 2-sided test is given
below:

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
r√
1−r2

n−2

RR : |tobs| ≥ tα/2,n−2 P − value : P (tn−2 ≥ |tobs|)

To construct a large-sample confidence interval, we use Fisher’s z transform to make r approximately
normal. We then construct a confidence interval on the transformed correlation, then ”back transform” the
end points:

z′ =
1
2
ln

(
1 + r

1− r

)
(1− α)100% CI for

1
2
ln

(
1 + ρ

1− ρ

)
: z′ ± zα/2

√
1

n− 3

Labeling the endpoints of the Confidence Interval as (a, b), we obtain:

(1− α)100% Confidence Interval for ρ :
(

e2a − 1
e2a + 1

,
e2b − 1
e2b + 1

)

Model Diagnostics

The inferences regarding the simple linear regression model (tests and confidence intervals) are based on the
following assumptions:

• Relation between Y and X is linear
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• Errors are normally distributed

• Errors have constant variance

• Errors are independent

These assumptions can be checked graphically, as well as by statistical tests.

Checking Linearity

A plot of the residuals versus X should be a random cloud of points centered at 0 (they sum to 0). A
”U-shaped” or ”inverted U-shaped” pattern is inconsistent with linearity.

A test for linearity can be conducted when there are repeat observations at certain X-levels (methods
have also been developed to ”group X values). Suppose we have c distinct X-levels, with nj observations
at the jth level. The data need to be re-labeled as Yij where j represents the X group, and i represents the
individual case within the group (i = 1, . . . , nj). We compute the following quantities:

Y j =
∑nj

i=1 Yij

nj
Ŷj = β̂0 + β̂1Xj

We then decompose the Error Sum of Squares into Pure Error and Lack of Fit:

n∑
i=1

(Yi − Ŷi)2 =
nj∑
i=1

c∑
j=1

(
Yij − Y j

)2
+

c∑
j=1

nj

(
Y j − Ŷj

)
SSE = SSPE + SSLF

We then partition the error degrees of freedom (n− 2) into Pure Error (n− c) and Lack of Fit (c− 2).
This leads to an F -test for testing H0: Relation is Linear versus HA: Relation is not Linear:

TS : Fobs =
[SSLF/(c− 2)]
[SSPE/(n− c)]

=
MSLF

MSPE
RR : Fobs ≥ Fα,c−2,n−c P -Value : P (Fc−2,n−c ≥ Fobs)

If the relationship is not linear, we can add polynomial terms to allow for ”bends” in the relationship
between Y and X using multiple regression.
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Checking Normality

A normal probability plot of the ordered residuals versus their predicted values should fall approximately
on a straight line. A histogram should be mound-shaped. Neither of these methods work well with small
samples (even data generated from a normal distribution will not necessarily look like it is normal).

Various tests are computed directly by statistical computing packages. The Shapiro-Wilk and Kolmogorov-
Smirnov tests are commonly reported, reporting P -values for testing H0: Errors are normally distributed.

When data are not normally distributed, the Box-Cox transformation is often applied to the data.
This involves fitting regression models for various power transformations of Y on X, where:

Y
(λ)
i =


Y λ

i −1

λ(Ẏ )(λ−1) λ 6= 0

Ẏ ln(Yi) λ = 0

Here Ẏ is the geometric mean of Y1, . . . , Yn are all strictly positive (a constant can be added to all
observations to assure this).

Ẏ =

(
n∏

i=1

Yi

)1/n

= exp

{∑n
i=1 ln(Yi)

n

}

Values of λ between -2 and 2 by 0.1 are run, and the value of λ that has the smallest Error Sum of Squares
(equivalently Maximum Likelihood) is identified. Software packages will present a confidence interval for λ.

Checking Equal Variance

Aplot of the residuals versus the fitted values should be a random cloud of points centered at 0. When the
variances are unequal, the variance tends to increase with the mean, and we observe a funnel-type shape.

Two tests for equal variance are the Brown-Forsyth test and the Breusch-Pagan test.

Brown-Forsyth Test - Splits data into two groups of approximately equal sample sizes based on
their fitted values (any cases with the same fitted values should be in the same group). Then labeling the
residuals e11, . . . , e1n1 and e21, . . . , e2n2 , obtain the median residual for each group: ẽ1 and ẽ2, respectively.
Then compute the following:
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dij = |eij−ẽi| i = 1, 2; j = 1, . . . , ni di =
∑ni

i=1 dij

ni
s2

i =
∑ni

i=1

(
dij − di

)2
ni − 1

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

Then, a 2-sample t-test is conducted to test H0: Equal Variances in the 2 groups:

TS : tobs =
d1 − d2√

s2
p

(
1

n1
+ 1

n2

) RR : |tobs| ≥ tα/2,n−2 P -value = P (tn−2 ≥ |tobs|)

Breusch-Pagan Test - Fits a regression of the squared residuals on X and tests whether the (natural)
log of the variance is linearly related to X. When the regression of the squared residuals is fit, we obtain
SSRe2 , the regression sum of squares. The test is conducted as follows, where SSE is the Error Sum of
Squares for the regression of Y on X:

TS : X2
obs =

(SSRe2/2)
(SSE/n)2

RR : X2
obs ≥ χ2

α,1 P -value: P
(
χ2

1 ≥ X2
obs

)

When the variance is not constant, we can transform Y (often can use the Box-Cox transformation to
obtain constant variance).

We can also use Estimated Weighted Least Squares by relating the standard deviation (or variance)
of the errors to the mean. This is an iterative process, where the weights are re-weighted each iteration. The
weights are the reciprocal of the estimated variance (as a function of the mean). Iteration continues until
the regression coefficient estimates stabilize.

When the distribution of Y is a from a known family (e.g. Binomial, Poisson, Gamma), we can fit a
Generalized Linear Model.

Checking Independence

When the data are a time (or spatial) series, the errors can be correlated over time (or space), referred to
as autocorrelated. A plot of residuals versus time should be random, not displaying a trending pattern
(linear or cyclical). If it does show these patterns, autocorrelation may be present.

The Durbin-Watson test is used to test for serial autocorrelation in the errors, where the null hypothesis
is that the errors are uncorrelated. Unfortunately, the formal test can end in one of 3 possible outcomes:
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reject H0, accept H0, or inconclusive. Statistical software packages can report an approximate P -value. The
test is obtained as follows:

TS : DW =
∑n

t=2 (et − et−1)
2∑n

t=1 e2
t

Decision Rule: DW < dLReject H0 DW > dUAccept H0 Otherwise Inconclusive

where tables of dL and dU are in standard regression texts and posted on the internet. These values are
indexed by the number of predictor variables (1, in the case of simple regression) and the sample size (n).

When errors are not independent, estimated standard errors of estimates tend to be too small, making
t-statistics artificially large and confidence intervals artificially narrow.

The Cochrane-Orcutt method transforms the Y and X variables, and fits the model based on the
transformed responses. Another approach is to use Estimated Generalized Least Squares (EGLS). This
uses the estimated covariance structure of the observations to obtain estimates of the regression coefficients
and their estimated standard errors.

Detecting Outliers and Influential Observations

These measures are widely used in multiple regression, as well, when there are p predictors, and p′ = p + 1
parameters (including intercept, β0). Many of the ”rules of thumb” are based on p′, which is 1+1=2 for
simple regression. Most of these methods involve matrix algebra, but are obtained from statistical software
packages. Their matrix forms are not given here (see references).

Also, many of these methods make use of the estimated variance when the ith case was removed (to
remove its effect if it is an outlier):

MSE(i) =
SSE(i)

n− p′ − 1
=

SSE − e2
i

n− p′ − 1
for simple regression p′ = 2

Studentized Residuals - Residuals divided by their estimated standard error, with their contribution
to SSE having been removed (see above). Since residuals have mean 0, the studentized residuals are like
t-statistics. Since we are simultaneously checking whether n of these are outliers, we conclude any cases are
outliers if the absolute value of their studentized residuals exceed tα/2n,n−p′−1, where p′ is the number of
independent variables plus one (for simple regression, p′=2).

Leverage Values (Hat Values) - These measure each case’s potential to influence the regression due
to its X levels. Cases with high leverage values (often denoted vii or hii) have X levels ”away” from the
center of the distribution. The leverage values sum to p′ (2 for simple regression), and cases with leverage
values greater than 2p′/n (twice the average) are considered to be potentially influential due to their X-levels.
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DFFITS - These measure how much an individual case’s fitted value shifts when it is included in the
regression fit, and when it is excluded. The shift is divided by its standard error, so we are measuring how
many standard errors a fitted value shifts, due to its being included in the regression model. Cases with the
DFFITS values greater than 2

√
p′/n in absolute value are considered influential on their own fitted values.

DFBETAS - One of these is computed for each case, for each regression coefficient (including the
intercept). DFBETAS measures how much the estimated regression coefficient shifts when that case is
included and excluded from the model, in units of standard errors. Cases with DFBETAS values larger than
2/sqrt(n) in absolute value are considered to be influential on the estimated regression coefficient.

Cook’s D - Is a measure that represents each case’s aggregate influence on all regression coefficients,
and all cases’ fitted values. Cases with Cook’s D larger than F.50,p′,n−p′ are considered influential.

COVRATIO - This measures each case’s influence on the estimated standard errors of the regres-
sion coefficients (inflating or deflating them). Cases with COVRATIO outside of 1 ± 3p′/n are considered
influential.

Multiple Linear Regression

When there are more than one predictor variables, the model generalizes to multiple linear regression. The
calculations become more complex, but conceptually, the ideas remain the same. We will use the notation
of p as the number of predictors, and p′ = p + 1 as the number of parameters in the model (including the
intercept). The model can be written as:

Y = β0 + β1X1 + · · ·+ βpXp + ε ε ∼ N(0, σ2) independent

We then obtain least squares (and maximum likelihood) estimates β̂0, β̂1, . . . , β̂p that minimize the error
sum of squares. The fitted values, residuals, and error sum of squares are obtained as:

Ŷi = β̂0 + β̂1Xi1 + · · · β̂pXip ei = Yi − Ŷi SSE =
n∑

i=1

e2
i

The degrees of freedom for error are now n − p′ = n − (p + 1), as we have now estimated p′ = p + 1
parameters.

In the multiple linear regression model, βj represents the change in E{Y } when Xj increases by 1 unit,
with all other predictor variables being held constant. It is thus often referred to as the partial regression
coefficient.
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Testing and Estimation for Partial Regression Coefficients

Once we fit the model, obtaining the estimated regression coefficients, we also obtain standard errors for
each coefficient (actually, we obtain an estimated variance-covariance matrix for the coefficients).

If we wish to test whether Y is associated with Xj , after controlling for the remaining p− 1 predictors,
we are testing whether βj = 0. This is equivalent to the t-test from simple regression (in general, we can
test whether a regression coefficient is any specific number, although software packages are testing whether
it is 0):

H0 : βj = βj0 HA : βj 6= βj0 TS : tobs =
β̂j − βj0

SE{β̂j}
RR : |tobs| ≥ tα/2,n−p′ P -value : P (tn−p′ ≥ |tobs|)

One-sided tests make the same adjustments as in simple linear regression:

H+
A : βj > βj0 RR : tobs ≥ tα,n−p′ P -value : P (tn−p′ ≥ tobs)

H−
A : βj < βj0 RR : tobs ≤ −tα,n−p′ P -value : P (tn−p′ ≤ tobs)

A (1− α)100% confidence interval for βj is obtained as:

β̂j ± tα/2,n−p′SE{β̂j}

Note that the confidence interval represents the values of βj0 that the two-sided test: H0 : βj = βj0 HA :
βj 6= βj0 fails to reject the null hypothesis.

Analysis of Variance

When there is no association between Y and X1, . . . , Xp (β1 = · · · = βp = 0), the best predictor of each
observation is Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this case, the total
variation can be denoted as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares, just as with simple

regression.

When there is an association between Y and at least one of X1, . . . , Xp (not all βi = 0), the best predictor
of each observation is Ŷi = β̂0 + β̂1Xi1 + · · · + β̂pXip (in terms of minimizing sum of squares of prediction
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errors). In this case, the error variation can be denoted as SSE =
∑n

i=1(Yi − Ŷi)2, the Error Sum of
Squares.

The difference between TSS and SSE is the variation ”explained” by the regression of Y on X1, . . . , Xp

(as opposed to having ignored X1, . . . , Xp). It represents the difference between the fitted values and the
mean: SSR =

∑n
i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n∑
i=1

(Yi − Y )2 =
n∑

i=1

(Yi − Ŷi)2 +
n∑

i=1

(Ŷi − Y )2

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − p′. The Regression Degrees of
Freedom is dfRegression = p. Note that when we have p = 1 predictor, this generalizes to simple regression.

dfTotal = dfError + dfRegression n− 1 = n− p′ + p

Error and Regression sums of squares have a Mean Square, which is the sum of squares divided by
its corresponding degrees of freedom: MSE = SSE/(n − p′) and MSR = SSR/p. It can be shown that
these mean squares have the following Expected Values, average values in repeated sampling at the same
observed X levels:

E{MSE} = σ2 E{MSR} ≥ σ2

Note that when β1 = · · ·βp = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way
of testing whether β1 = · · ·βp = 0 is by the F -test:

H0 : β1 = · · ·βp = 0 HA : Not all βj = 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,p,n−p′ P -value : P (Fp,n−p′ ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 2.

A measure often reported from a regression analysis is the Coefficient of Determination or R2. This
represents the variation in Y ”explained” by X1, . . . , Xp, divided by the total variation in Y .

r2 =
∑n

i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1− SSE

TSS
0 ≤ R2 ≤ 1
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Source df SS MS Fobs P -value
Regression (Model) p SSR =

∑n
i=1(Ŷi − Y )2 MSR = SSR

p Fobs = MSR
MSE P (Fp,n−p′ ≥ Fobs)

Error (Residual) n− p′ SSE =
∑n

i=1(Yi − Ŷi)2 MSE = SSE
n−p′

Total (Corrected) n− 1 TSS =
∑n

i=1(Yi − Y )2

Table 2: Analysis of Variance Table for Multiple Linear Regression

The interpretation of R2 is the proportion of variation in Y that is ”explained” by X1, . . . , Xp, and is
often reported as a percentage (100R2).

Testing a Subset of βs = 0

The F -test from the Analysis of Variance and the t-tests represent extremes as far as model testing (all
variables simultaneously versus one-at-a-time). Often we wish to test whether a group of predictors do not
improve prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, we wish to test whether the remaining p − g predictors
are associated with Y . That is, we wish to test:

H0 : βg+1 = · · ·βp = 0 HA : Not all of βg+1, . . . , βp = 0

Note that, the t-tests control for all other predictors, while here, we want to control for only X1, . . . , Xg.
To do this, we fit two models: the Complete or Full Model with all p predictors, and the Reduced
Model with only the g ”control” variables. For each model, we obtain the Regression and Error sums of
squares, as well as R2. This leads to the test statistic and rejection region:

TS : Fobs =

[
SSE(R)−SSE(F )
(n−g′)−(n−p′)

]
[

SSE(F )
n−p′

] =

[
SSR(F )−SSE(R)

p−g

]
[

SSE(F )
n−p′

] =

[
R2

F−R2
R

p−g

]
[

1−R2
F

n−p′

]
RR : Fobs ≥ Fα,p−g,n−p′ P -value : P (Fp−g,n−p′ ≥ Fobs)

Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If we have a categorical variable with m
levels, we will need to create m− 1 dummy or indicator variables. The variable will take on 1 if the ith

observation is in that level of the variable, 0 otherwise. Note that one level of the variable will have 0s for all
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m−1 dummy variables, making it the reference group. The βs for the other groups (levels of the qualitative
variable) reflect the difference in the mean for that group with the reference group, controlling for all other
predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and we can test
for differences in the effects of the 2 levels with a t-test, controlling for all other predictors. If there are
m−1 ¿ 2 dummy variables, we can use the F -test to test whether all m−1 βs are 0, controlling for all other
predictors.

Models With Interaction Terms

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way we can model interaction(s) is to create a new variable that is the product
of the 2 predictors. Suppose we have Y , and 2 numeric predictors: X1 and X2. We create a new predictor
X3 = X1X2. Now, consider the model:

E{Y } = β0 + β1X1 + β2X2 + β3X3 = β0 + β1X1 + β2X2 + β3X1X2 = β0 + β2X2 + +(β1 + β3X2) X1

Thus, the slope with respect to X1 depends on the level of X2, unless β3 = 0, which we can test with a
t-test. This logic extends to qualitative variables as well. We create cross-product terms between numeric (or
other categorical) predictors with the m − 1 dummy variables representing the qualitative predictor. Then
t-test (m− 1 = 1) or F -test (m− 1 > 2) can be conducted to test for interactions among predictors.

Models With Curvature

When a plot of Y versus one or more of the predictors displays curvature, we can include polynomial terms
to ”bend” the regression line. Often, to avoid multicollinearity, we work with centered predictor(s), by
subtracting off their mean(s). If the data show k bends, we will include k + 1 polynomial terms. Suppose
we have a single predictor variable, with 2 ”bends” appearing in a scatterplot. Then, we will include terms
up to the a third order term. Note that even if lower order terms are not significant, when a higher order
term is significant, we keep the lower order terms (unless there is some physical reason not to). We can now
fit the model:

E{Y } = β0 + β1X + β2X
2 + β3X

3

If we wish to test whether the fit is linear, as opposed to ”not linear,” we could test H0 : β2 = β3 = 0.
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Response surfaces are often fit when we have 2 or more predictors, and include ”linear effects,” ”quadratic
effects,” and ”interaction effects”. In the case of 3 predictors, a full model would be of the form:

E{Y } = β0 + β1X1 + β2X2 + β3X3 + β11X
2
1 + β22X

2
2 + β33X

2
3 + β12X1X2 + β13X1X3 + β23X2X3

We typically wish to simplify the model, to make it more parsimonious, when possible.

Model Building

When we have many predictors, we may wish to use an algorithm to determine which variables to include
in the model. These variables can be main effects, interactions, and polynomial terms. Note that there are
two common approaches. One method involves testing variables based on t-tests, or equivalently F -tests
for partial regression coefficients. An alternative method involves comparing models based on model based
measures, such as Akaike Information Criterion (AIC), or Schwartz Bayesian Information criterion (BIC
or SBC). These measures can be written as follows (note that different software packages print different
versions, as some parts are constant for all potential models). The goal is to minimize the measures.

AIC(Model) = nln(SSE(Model))+2p′−nln(n) BIC(Model) = nln(SSE(Model))+[ln(n)]p′−nln(n)

Note that SSE(Model) depends on the variables included in the current model. The measures put a
penalty on excess predictor variables, with BIC placing a higher penalty when ln(n) > 2. Note that p′ is the
number of parameters in the model (including the intercept), and n is the sample size.

Backward Elimination

This is a ”top-down” method, which begins with a ”Complete” Model, with all potential predictors. The
analyst then chooses a significance level to stay in the model (SLS). The model is fit, and the predictor
with the lowest t-statistic in absolute value (largest P -value) is identified. If the P -value is larger than SLS,
the variable is dropped from the model. Then the model is re-fit with all other predictors (this will change
all regression coefficients, standard errors, and P -values). The process continues until all variables have
P -values below SLS.

The model based approach fits the full model, with all predictors and computes AIC (or BIC). Then,
each variable is dropped one-at-a-time, and AIC (or BIC) is obtained for each model. If none of the models
with one dropped variable has AIC (or BIC) below that for the full model, the full model is kept, otherwise
the model with the lowest AIC (or BIC) is kept as the new full model. The process continues until no
variables should be dropped (none of the ”drop one variable models” has a lower AIC (or BIC) than the
”full model.”
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Forward Selection

This is a ”bottom-up, which begins with all ”Simple” Models, each with one predictor. The analyst then
chooses a significance level to enter into the model (SLE). Each model is fit, and the predictor with the
highest t-statistic in absolute value (smallest P -value) is identified. If the P -value is smaller than SLE, the
variable is entered into the model. Then all two variable models including the best predictor in the first
round, with each of the other predictors. The best second variable is identified, and its P -value is compared
with SLE. If its P -value is below SLE, the variable is added to the model. The process continues until no
potential added variables have P -values below SLE.

The model based approach fits each simple model, with one predictor and computes AIC (or BIC).
The best variable is identified (assuming its AIC (or BIC) is smaller than that for the null model, with no
predictors). Then, each potential variable is added one-at-a-time, and AIC (or BIC) is obtained for each
model. If none of the models with one added variable has AIC (or BIC) below that for the best simple
model, the simple model is kept, otherwise the model with the lowest AIC (or BIC) is kept as the new full
model. The process continues until no variables should be added (none of the ”add one variable models” has
a lower AIC (or BIC) than the ”reduced model.”

Stepwise Regression

This approach is a hybrid of forward selection and backward elimination. It begins like forward selection,
but then applies backward elimination at each step. In forward selection, once a variable is entered, it stays
in the model. In stepwise regression, once a new variable is entered, all previously entered variables are
tested, to confirm they should stay in the model, after controlling for the new entrant, as well as the other
previous entrant.

All Possible Regressions

We can fit all possible regression models, and use model based measures to choose the ”best” model. Com-
monly used measures are: Adjusted-R2 (equivalently MSE), Mallow’s Cp statistic, AIC, and BIC. The
formulas, and decision criteria are given below (where p′ is the number of parameters in the ”current” model
being fit:

Adjusted-R2 - 1−
(

n−1
n−p′

)
SSE
TSS - Goal is to maximize

Mallow’s Cp - Cp = SSE(Model)
MSE(Complete)

+ 2p′ − n - Goal is to have Cp ≤ p′

AIC - AIC(Model) = nln(SSE(Model)) + 2p′ − nln(n) - Goal is to minimize

BIC - BIC(Model) = nln(SSE(Model)) + [ln(n)]p′ − nln(n) - Goal is to minimize
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