
1 Simple Linear Regression

Text: RPD, Chapter 1
Problems:

1.1 Statistical Model

In simple linear regression, the model contains a random dependent (or response or outcome or
end point) variable Y , that is hypothesized to be associated with an independent (or predictor
or explanatory) variable X. The simple linear regression model specifies that the mean, or
expected value of Y is a linear function of the level of X. Further, X is presumed to be set by
the experimenter (as in controlled experiments) or known in advance to the activity generating the
response Y . The experiment consists of obtaining a sample of n pairs (Xi, Yi) from a population
of such pairs (or nature). The model with respect to the mean is:

E[Yi] = β0 + β1Xi

where β0 is the mean of when when X = 0 (assuming this is a reasonable level of X), or more
generally the Y –intercept of the regression line; β1 is the change in the mean of Y as X increases
by a single unit, or the slope of the regression line. Note that in practice β0 and β1 are unknown
parameters that will be estimated from sample data.

Individual measurements are assumed to be independent, and normally distributed around the
mean at their corresponding X level, with standard deviation σ. This can be stated as below:

Yi = β0 + β1Xi + εi εi ∼ NID(0, σ2)

where εi is a random error term and NID(0, σ2) means normally and independently distributed
with mean 0, and variance σ2.

1.1.1 Examples

The following two examples are based on applications of regression in pharmacodynamics and
microeconomics.

Example 1 – Pharmacodynamics of LSD

The following data were published by J.G. Wagner, et al, in the 1968 article: “Correlation
of Performance Test Scores with ‘Tissue Concentration’ of Lysergic Acid Diethylamide in Human
Subjects,” (Clinical Pharmacology & Therapeutics, 9:635–638).

Y — Mean score on math test (relative to control) for a group of five male volunteers.

X — Mean tissue concentration of LSD among the volunteers.

A sample of n = 7 points were selected, with Xi and Yi being measured at each point in time.
These 7 observations are treated as a sample from all possible realizations from this experiment.
The parameter β1 represents the systematic change in mean score as tissue concentration increases
by one unit, and β0 represents the true mean score when the concentration is 0. The data are given
in Table 1.1.1.



i Xi Yi

1 1.17 78.93
2 2.97 58.20
3 3.26 67.47
4 4.69 37.47
5 5.83 45.65
6 6.00 32.92
7 6.41 29.97

Table 1: LSD concentrations and math scores – Wagner, et al (1968)
.

Example 2 – Estimating Cost Functions of a Hosiery Mill

The following (approximate) data were published by Joel Dean, in the 1941 article: “Statistical
Cost Functions of a Hosiery Mill,” (Studies in Business Administration, vol. 14, no. 3).

Y — Monthly total production cost (in $1000s).

X — Monthly output (in thousands of dozens produced).

A sample of n = 48 months of data were used, with Xi and Yi being measured for each month.
The parameter β1 represents the change in mean cost per unit increase in output (unit variable
cost), and β0 represents the true mean cost when the output is 0, without shutting plant (fixed
cost). The data are given in Table 1.1.1 (the order is arbitrary as the data are printed in table
form, and were obtained from visual inspection/approximation of plot).

1.1.2 Generating Data from the Model

To generate data from the model using a computer program, use the following steps:

1. Specify the model parameters: β0, β1, σ

2. Specify the levels of Xi, i = 1, . . . , n. This can be done easily with do loops or by brute force.

3. Obtain n standard normal errors Zi ∼ N(0, 1), i = 1, . . . , n. Statistical routines have them
built in, or transformations of uniform random variates can be obtained.

4. Obtain random response Yi = β0 + (β1Xi) + (σZi), i = 1, . . . , n.

5. For the case of random Xi, these steps are first completed for Xi in 2), then continued for Yi.
The Zi used for Xi must be independent of that used for Yi.

1.2 Least Squares Estimation

The parameters β0 and β1 can take on any values in the range (∞,∞), and σ can take on any values
in the range [0,∞) (if it takes on 0, then the model is deterministic, and not probabilistic). The
most common choice of estimated regression equation (line in the case of simple linear regression),
is to choose the line that minimizes the sum of squared vertical distances between the observed



i Xi Yi i Xi Yi i Xi Yi

1 46.75 92.64 17 36.54 91.56 33 32.26 66.71
2 42.18 88.81 18 37.03 84.12 34 30.97 64.37
3 41.86 86.44 19 36.60 81.22 35 28.20 56.09
4 43.29 88.80 20 37.58 83.35 36 24.58 50.25
5 42.12 86.38 21 36.48 82.29 37 20.25 43.65
6 41.78 89.87 22 38.25 80.92 38 17.09 38.01
7 41.47 88.53 23 37.26 76.92 39 14.35 31.40
8 42.21 91.11 24 38.59 78.35 40 13.11 29.45
9 41.03 81.22 25 40.89 74.57 41 9.50 29.02
10 39.84 83.72 26 37.66 71.60 42 9.74 19.05
11 39.15 84.54 27 38.79 65.64 43 9.34 20.36
12 39.20 85.66 28 38.78 62.09 44 7.51 17.68
13 39.52 85.87 29 36.70 61.66 45 8.35 19.23
14 38.05 85.23 30 35.10 77.14 46 6.25 14.92
15 39.16 87.75 31 33.75 75.47 47 5.45 11.44
16 38.59 92.62 32 34.29 70.37 48 3.79 12.69

Table 2: Production costs and Output – Dean (1941)
.

responses (Yi) and the fitted regression line (Ŷi = β̂0 + β̂1Xi), where β̂0 and β̂1 are sample based
estimates of β0 and β1, respectively.

Mathematically, we can label the error sum of squares as the sum of squared distances between
the observed data and their mean values based on the model:

Q =
n∑

i=1

(Yi − E(Yi))2 =
n∑

i=1

(Yi − (β0 + β1Xi))2

The least squares estimates of β0 and β1 that minimize Q, which are obtained by taking derivatives,
setting them equal to 0, and solving for β̂0 and β̂1.

∂Q

∂β0
= 2

n∑

i=1

(Yi − β0 − β1Xi)(−1) = 0

⇒
n∑

i=1

(Yi − β0 − β1Xi) =
n∑

i=1

Yi − nβ0 − β1

n∑

i=1

Xi = 0 (1)

∂Q

∂β1
= 2

n∑

i=1

(Yi − β0 − β1Xi)(−Xi) = 0

⇒
n∑

i=1

(Yi − β0 − β1Xi)Xi =
n∑

i=1

XiYi − β0

n∑

i=1

Xi − β1

n∑

i=1

X2
i = 0 (2)

From equations (1) and (2) we obtain the so–called “normal equations”:

nβ̂0 + β̂1

n∑

i=1

Xi =
n∑

i=1

Yi (3)



β̂0

n∑

i=1

Xi + β̂1

n∑

i=1

X2
i =

n∑

i=1

XiYi (4)

Multipliying equation (3) by
∑n

i=1 Xi and equation (4) by n, we obtain the following two equations:

nβ̂0

n∑

i=1

Xi + β̂1(
n∑

i=1

Xi)2 = (
n∑

i=1

Xi)(
n∑

i=1

Yi) (5)

nβ̂0

n∑

i=1

Xi + nβ̂1

n∑

i=1

X2
i = n

n∑

i=1

XiYi (6)

Subtracting equation (5) from (6), we get:

β̂1(n
n∑

i=1

X2
i − (

n∑

i=1

Xi)2) = n
n∑

i=1

XiYi − (
n∑

i=1

Xi)(
n∑

i=1

Yi)

⇒ β̂1 =
∑n

i=1 XiYi −
(
∑n

i=1
Xi)(

∑n

i=1
Yi)

n
∑n

i=1 X2
i − (

∑n

i=1
Xi)2

n

=
∑n

i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
(7)

Now, from equation (1), we get:

nβ̂0 =
n∑

i=1

Yi − β̂1

n∑

i=1

Xi ⇒ β̂0 = Y − β̂1X (8)

and the estimated (or fitted or prediction) equation (Ŷi):

Ŷi = β̂0 + β̂1Xi i = 1, . . . , n (9)

The residuals are defined as the difference between the observed responses (Yi) and their predicted
values (Ŷi), where the residuals are denoted as ei (they are estimates of εi):

ei = Yi − Ŷi = Yi − (β̂0 + β̂1Xi) i = 1, . . . , n (10)

The residuals sum to 0 for this model:

ei = (Yi − Ŷi) = Yi − (β̂0 + β̂1Xi)

= Yi − {[Y − β̂1X] + β̂1Xi]}

⇒
n∑

i=1

ei =
n∑

i=1

Yi −{nY −nβ̂1X + β̂1

n∑

i=1

Xi} =
n∑

i=1

Yi −{
n∑

i=1

Yi − β̂1

n∑

i=1

Xi + β̂1

n∑

i=1

Xi} = 0

1.2.1 Examples

Numerical results for the two examples desribed before are given below.

Example 1 – Pharmacodynamics of LSD

This dataset has n = 7 observations with a mean LSD tissue content of X = 4.3329, and a
mean math score of Y = 50.0871.



n∑

i=1

Xi = 30.33
n∑

i=1

X2
i = 153.8905

n∑

i=1

Yi = 350.61
n∑

i=1

Y 2
i = 19639.2365

n∑

i=1

XiYi = 1316.6558

β̂1 =
∑n

i=1 XiYi −
(
∑n

i=1
Xi)(

∑n

i=1
Yi)

n
∑n

i=1 X2
i − (

∑n

i=1
Xi)2

n

=
1316.6558 − (30.33)(350.61)

7

153.8905 − (30.33)2

7

=

=
1316.6558 − 1519.1430
153.8905 − 131.4146

=
−202.4872
22.4759

= −9.0091

β̂0 = Y − β̂1X = 50.0871 − (−9.0091)(4.3329) = 89.1226

Ŷi = β̂0 + β̂1Xi = 89.1226 − 9.0091Xi i = 1, . . . , 7

ei = Yi − Ŷi = Yi − (89.1226 − 9.0091Xi) i = 1, . . . , 7

Table 1.2.1 gives the raw data, their fitted values, and residuals.

i Xi Yi Ŷi ei

1 1.17 78.93 78.5820 0.3480
2 2.97 58.20 62.3656 -4.1656
3 3.26 67.47 59.7529 7.7171
4 4.69 37.47 46.8699 -9.3999
5 5.83 45.65 36.5995 9.0505
6 6.00 32.92 35.0680 -2.1480
7 6.41 29.97 31.3743 -1.4043

Table 3: LSD concentrations, math scores, fitted values and residuals – Wagner, et al (1968)
.

A plot of the data and regression line are given in Figure 1.

Example 2 – Estimating Cost Function of a Hosiery Mill

This dataset has n = 48 observations with a mean output (in 1000s of dozens) of X = 31.0673,
and a mean monthly cost (in $1000s) of Y = 65.4329.

n∑

i=1

Xi = 1491.23
n∑

i=1

X2
i = 54067.42

n∑

i=1

Yi = 3140.78
n∑

i=1

Y 2
i = 238424.46

n∑

i=1

XiYi = 113095.80

β̂1 =
∑n

i=1 XiYi −
(
∑n

i=1
Xi)(

∑n

i=1
Yi)

n
∑n

i=1 X2
i − (

∑n

i=1
Xi)2

n

=
113095.80 − (1491.23)(3140.78)

48

54067.42 − (1491.23)2

48

=

=
113095.80 − 97575.53
54067.42 − 46328.48

=
15520.27
7738.94

= 2.0055
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Figure 1: Regression of math score on LSD concentration (Wagner, et al, 1968)



β̂0 = Y − β̂1X = 65.4329 − (2.0055)(31.0673) = 3.1274

Ŷi = β̂0 + β̂1Xi = 3.1274 + 2.0055Xi i = 1, . . . , 48

ei = Yi − Ŷi = Yi − (3.1274 + 2.0055Xi) i = 1, . . . , 48

Table 1.2.1 gives the raw data, their fitted values, and residuals.
A plot of the data and regression line are given in Figure 2.
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Figure 2: Estimated cost function for hosiery mill (Dean, 1941)

1.3 Analysis of Variance

The total variation in the response (Y ) can be partitioned into parts that are attributable to various
sources. The response Yi can be written as follows:

Yi = Ŷi + ei i = 1, . . . , n

We start with the total (uncorrected) sum of squares for Y:

SS(TOTAL UNCORRECTED) =
n∑

i=1

Y 2
i =

n∑

i=1

(Ŷi + ei)2 =
n∑

i=1

Ŷ 2
i +

n∑

i=1

e2
i + 2

n∑

i=1

Ŷiei



i Xi Yi Ŷi ei

1 46.75 92.64 96.88 -4.24
2 42.18 88.81 87.72 1.09
3 41.86 86.44 87.08 -0.64
4 43.29 88.80 89.95 -1.15
5 42.12 86.38 87.60 -1.22
6 41.78 89.87 86.92 2.95
7 41.47 88.53 86.30 2.23
8 42.21 91.11 87.78 3.33
9 41.03 81.22 85.41 -4.19
10 39.84 83.72 83.03 0.69
11 39.15 84.54 81.64 2.90
12 39.20 85.66 81.74 3.92
13 39.52 85.87 82.38 3.49
14 38.05 85.23 79.44 5.79
15 39.16 87.75 81.66 6.09
16 38.59 92.62 80.52 12.10
17 36.54 91.56 76.41 15.15
18 37.03 84.12 77.39 6.73
19 36.60 81.22 76.53 4.69
20 37.58 83.35 78.49 4.86
21 36.48 82.29 76.29 6.00
22 38.25 80.92 79.84 1.08
23 37.26 76.92 77.85 -0.93
24 38.59 78.35 80.52 -2.17
25 40.89 74.57 85.13 -10.56
26 37.66 71.60 78.65 -7.05
27 38.79 65.64 80.92 -15.28
28 38.78 62.09 80.90 -18.81
29 36.70 61.66 76.73 -15.07
30 35.10 77.14 73.52 3.62
31 33.75 75.47 70.81 4.66
32 34.29 70.37 71.90 -1.53
33 32.26 66.71 67.82 -1.11
34 30.97 64.37 65.24 -0.87
35 28.20 56.09 59.68 -3.59
36 24.58 50.25 52.42 -2.17
37 20.25 43.65 43.74 -0.09
38 17.09 38.01 37.40 0.61
39 14.35 31.40 31.91 -0.51
40 13.11 29.45 29.42 0.03
41 9.50 29.02 22.18 6.84
42 9.74 19.05 22.66 -3.61
43 9.34 20.36 21.86 -1.50
44 7.51 17.68 18.19 -0.51
45 8.35 19.23 19.87 -0.64
46 6.25 14.92 15.66 -0.74
47 5.45 11.44 14.06 -2.62
48 3.79 12.69 10.73 1.96

Table 4: Approximated Monthly Outputs, total costs, fitted values and residuals – Dean (1941)
.



Here is a proof that the final term on the right-hand side is 0 (which is very easy in matrix
algebra):

Ŷi = β̂0 + β̂1Xi = (Y −
(∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

)
X) + Xi

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)
(11)

ei = Yi − Ŷi = Yi − (Y −
(∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

)
X) + Xi

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)
(12)

Combining equations (11) and (12), we get:

eiŶi = Yi

[
Y − X

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)]
+ XiYi

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
−

[
Y − X

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)]2
− X2

i

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]2
−

2Xi

[
Y − X

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)][∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]

= Yi

[
Y − X

(∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

)]
+ XiYi

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
− Y

2−

X
2
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
+ 2Y X

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
−

X2
i

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]2
− 2XiX

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]2

=
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
(2XiX − X2

i − X
2
)+

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
(−YiX + XiYi + 2Y X − 2XiY ) + YiY − Y

2

Now summing eiŶi over all observations:

n∑

i=1

eiŶi =
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
(2X

n∑

i=1

Xi −
n∑

i=1

X2
i − nX

2
)+

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
(

n∑

i=1

XiYi − X

n∑

i=1

Yi + 2nXY − 2Y

n∑

i=1

Xi) + Y

n∑

i=1

Yi − nY
2

=
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
(2nX

2 −
n∑

i=1

X2
i − nX

2
)+

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
(

n∑

i=1

XiYi − nXY + 2nXY − 2nXY ) + nY
2 − nY

2



=
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
(nX

2 −
n∑

i=1

X2
i ) +

[∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi − X)2

]
(

n∑

i=1

XiYi − nXY )

Now making use of the following two facts:

n∑

i=1

(Xi − X)2 =
n∑

i=1

X2
i + nX

2 − 2X
n∑

i=1

Xi =
n∑

i=1

X2
i − nX

2

n∑

i=1

(Xi − X)(Yi − Y ) =
n∑

i=1

XiYi + nXY − X

n∑

i=1

Yi − Y

n∑

i=1

Xi =
n∑

i=1

XiYi − nXY

We obtain the desired result:
n∑

i=1

eiŶi =
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]2
(−

n∑

i=1

(Xi−X)2)+
[∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

]
(

n∑

i=1

(Xi−X)(Yi−Y ))

= −
[
(
∑n

i=1(Xi − X)(Yi − Y ))2∑n
i=1(Xi − X)2

]
+
[
(
∑n

i=1(Xi − X)(Yi − Y ))2∑n
i=1(Xi − X)2

]
= 0

Thus we can partition the total (uncorrected) sum of squares into the sum of squares of the
predicted values (the model sum of squares) and the sum of squares of the errors (the residual sum
of squares).

n∑

i=1

Y 2
i =

n∑

i=1

Ŷ 2
i +

n∑

i=1

e2
i

SS(TOTAL UNCORRECTED) = SS(MODEL) + SS(RESIDUAL)

The computational formulas are obtained as follows:

SS(Model) =
n∑

i=1

Ŷ 2
i =

n∑

i=1

(β̂0 + β̂1Xi)2

= nβ̂2
0 + 2β̂0β̂1

n∑

i=1

Xi + β̂2
1

n∑

i=1

X2
i = n(Y − β̂1X)2 + 2(Y − β̂1X)β̂1

n∑

i=1

Xi + β̂2
1

n∑

i=1

X2
i

= nY
2
+ nβ̂2

1X
2 − 2nβ̂1Y X + 2nβ̂1Y X − 2β̂2

1nX
2

+ β̂2
1

n∑

i=1

X2
i

= nY
2 − nβ̂2

1X
2

+ β̂2
1

n∑

i=1

X2
i = nY

2
+ β̂2

1(
n∑

i=1

X2
i − nX

2
)

= nY
2
+ β̂2

1

n∑

i=1

(Xi − X)2

SS(RESIDUAL) =
n∑

i=1

e2
i =

n∑

i=1

(Yi − Ŷi)2 = SS(TOTAL UNCORRECTED) − SS(MODEL)



The total (uncorrected) sum of squares is of little interest by itself, since it depends on the
level of the data, but not the variability (around the mean). The total (corrected) sum of squares
measures the sum of the squared deviations around the mean.

SS(TOTAL CORRECTED) =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2

= (SS(MODEL) − nY
2) + SS(RESIDUAL) = β̂2

1

n∑

i=1

(Xi − X)2 +
n∑

i=1

e2
i

= SS(REGRESSION) + SS(RESIDUAL)

Note that the model sum of squares considers both β0 and β1, while the regression sum of
squares considers only the slope β1.

For a general regression model, with p independent variables, we have the following model:

Yi = β0 + β1Xi1 + · · · βpXip i = 1, . . . , n

which contains p′ = p + 1 model parameters. The Analysis of Variance is given in Table 1.3,
which contains sources of variation, their degrees of freedom, and sums of squares.

Source of Degrees of Sum of
Variation Freedom Squares
Total (Uncorrected) n

∑n
i=1 Y 2

i

Correction Factor 1 nY
2

Total (Corrected) n − 1
∑n

i=1(Yi − Y )2 =
∑n

i=1 Y 2
i − nY

2

Model p′ = p + 1
∑n

i=1 Ŷ 2
i

Correction Factor 1 nY
2

Regression p
∑n

i=1(Ŷi − Y )2 =
∑n

i=1 Ŷ 2
i − nY

2

Residual n-p’
∑n

i=1(Yi − Ŷi)2

Table 5: The Analysis of Variance
.

The mean squares for regression and residuals are the corresponding sums of squares divided
by their respective freedoms:

MS(REGRESSION) =
SS(REGRESSION)

p

MS(RESIDUAL) =
SS(RESIDUAL)

n − p′

The expected value of the mean squares are given below (for the case where there is a single
independent variable), the proof is given later. These are based on the assumption that the model
is fit is the correct model.

E[MS(REGRESSION)] = σ2 + β2
1

n∑

i=1

(Xi − X)2



E[MS(RESIDUAL)] = σ2

The Coefficient of Determination (R2) is the ratio of the regression sum of squares to the
total (corrected) sum of squares, and represents the fraction of the variation in Y that is “explained”
by the set of independent variables X1, . . . ,Xp.

R2 =
SS(REGRESSION)

SS(TOTAL CORRECTED)
= 1 − SS(RESIDUAL)

SS(TOTAL CORRECTED)

1.3.1 Examples

Numerical results for the two examples desribed before are given below.

Example 1 – Pharmacodynamics of LSD

The Analysis of Variance for the LSD/math score data are given in Table 1.3.1. Here, n = 7,
p = 1, and p′ = 2. All relevant sums are obtained from previous examples.

Source of Degrees of Sum of
Variation Freedom Squares
Total (Uncorrected) n = 7

∑n
i=1 Y 2

i = 19639.24
Correction Factor 1 nY

2 = 17561.02
Total (Corrected) n − 1 = 6

∑n
i=1(Yi − Y )2 =

∑n
i=1 Y 2

i − nY
2 = 2078.22

Model p′ = p + 1 = 2
∑n

i=1 Ŷ 2
i = 19385.32

Correction Factor 1 nY
2 = 17561.02

Regression p=1
∑n

i=1(Ŷi − Y )2 =
∑n

i=1 Ŷ 2
i − nY

2 = 1824.30
Residual n-p’=5

∑n
i=1(Yi − Ŷi)2 = 253.92

Table 6: The Analysis of Variance for the LSD/math score data
.

The mean squares for regression and residuals are as follow:

MS(REGRESSION) =
SS(REGRESSION)

p
=

1824.30
1

= 1824.30

MS(RESIDUAL) =
SS(RESIDUAL)

n − p′
=

253.92
5

= 50.78

The coefficient of determination for this data is:

R2 =
SS(REGRESSION)

SS(TOTAL CORRECTED)
=

1824.30
2078.22

= 0.8778

Approximately 88% of the variation in math scores is “explained” by the linear relation between
math scores and LSD concentration.



Example 2 – Estimating Cost Function of a Hosiery Mill

The Analysis of Variance for the output/cost data are given in Table 1.3.1. Here, n = 48, p = 1,
and p′ = 2. All relevant sums are obtained from previous examples and computer output.

Source of Degrees of Sum of
Variation Freedom Squares
Total (Uncorrected) n = 48

∑n
i=1 Y 2

i = 238424.46
Correction Factor 1 nY

2 = 205510.29
Total (Corrected) n − 1 = 47

∑n
i=1(Yi − Y )2 =

∑n
i=1 Y 2

i − nY
2 = 32914.17

Model p′ = p + 1 = 2
∑n

i=1 Ŷ 2
i = 236636.27

Correction Factor 1 nY
2 = 205510.29

Regression p=1
∑n

i=1(Ŷi − Y )2 =
∑n

i=1 Ŷ 2
i − nY

2 = 31125.98
Residual n-p’=46

∑n
i=1(Yi − Ŷi)2 = 1788.19

Table 7: The Analysis of Variance for the hosiery mill cost function data
.

The mean squares for regression and residuals are as follow:

MS(REGRESSION) =
SS(REGRESSION)

p
=

31125.98
1

= 31125.98

MS(RESIDUAL) =
SS(RESIDUAL)

n − p′
=

1788.19
46

= 38.87

The coefficient of determination for this data is:

R2 =
SS(REGRESSION)

SS(TOTAL CORRECTED)
=

31125.98
32914.17

= 0.9457

Approximately 95% of the variation in math scores is “explained” by the linear relation between
math scores and LSD concentration.

1.4 Precision and Distribution of Estimates

Important results from mathematical statistics regarding linear functions of random variables. Let
U =

∑n
i=1 aiYi, where a1, . . . , an are fixed constants and Yi are random variables with E(Yi) = µi,

V ar(Yi) = σ2, and Cov(Yi, Yj) = 0, i 6= j:

E[U ] = E[
n∑

i=1

aiYi] =
n∑

i=1

aiE[Yi] =
n∑

i=1

aiµi (13)

V ar[U ] = V ar[
n∑

i=1

aiYi] =
n∑

i=1

a2
i V ar[Yi] =

n∑

i=1

aiσ
2
i (14)

E[etU ] = E[et
∑n

i=1
aiYi ] = E

[
[eta1Y1 · · · etanYn

]
=

n∏

i=1

E
[
et∗i Yi

]
t∗i = ait (15)



1.4.1 Distribution of β̂1

Consider β̂1 as a linear function of Y1, . . . , Yn:

β̂1 =
∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)2

=
∑n

i=1(Xi − X)Yi − Y
∑n

i=1(Xi − X)∑n
i=1(Xi − X)2

=
n∑

i=1

Xi − X∑n
i=1(Xi − X)2

Yi =
n∑

i=1

aiYi

Under the simple linear regression model:

E[Yi] = µi = β0 + β1Xi V ar[Yi] = σ2
i = σ2

From equation (13):

E[β̂1] =
n∑

i=1

aiE[Yi] =
n∑

i=1

Xi − X∑n
i=1(Xi − X)2

(β0 + β1Xi)

=
β0∑n

i=1(Xi − X)2

n∑

i=1

(Xi −X) +
β1∑n

i=1(Xi − X)2

n∑

i=1

(Xi −X)Xi =
β1∑n

i=1(Xi − X)2

n∑

i=1

(Xi −X)Xi

=
β1∑n

i=1(Xi − X)2

[
n∑

i=1

X2
i − X

n∑

i=1

Xi

]
=

β1∑n
i=1(Xi − X)2

[
n∑

i=1

X2
i − nX

2

]

=
β1∑n

i=1(Xi − X)2

n∑

i=1

(Xi − X)2 = β1

From Equation (14):

V ar[β̂1] =
n∑

i=1

a2
i V ar[Yi] =

n∑

i=1

a2
i σ

2 = σ2
n∑

i=1

(
Xi − X∑n

i=1(Xi − X)2

)2

=
[

1∑n
i=1(Xi − X)2

]2
σ2

n∑

i=1

(Xi − X)2 =
σ2

∑n
i=1(Xi − X)2

With the further assumption that Yi (and, more specifically, εi) being normally distributed, we
can obtain the specific distribution of β̂1.

E
[
etβ̂1

]
= E


e

t
∑n

i=1

∑n

i=1

Xi−X∑
n

i=1
(Xi−X)2

Yi


 = E

[
e
∑

n

i=1
t∗i Yi

]

where t∗i = t Xi−X∑n

i=1
(Xi−X)2

. If Y ∼ N(µ, σ2), then the moment generating function for Y is:

mY (t) = E
[
etY
]

= eµt+ σ2t2
2

⇒ E
[
et∗i Yi

]
= exp

{
(β0 + β1Xi)

(
Xi − X∑n

i=1(Xi − X)2

)
t +
(

Xi − X∑n
i=1(Xi − X)2

)2
σ2t2

2

}

By independence of the Yi, we get:

E
[
etβ̂1

]
= E


e

t
∑n

i=1

Xi−X∑
n

i=1
(Xi−X)2

Yi


 =

n∏

i=1

E
[
et∗i Yi

]



n∏

i=1

exp{(β0 + β1Xi)
(

Xi − X∑n
i=1(Xi − X)2

)
t +
(

Xi − X∑n
i=1(Xi − X)2

)2
σ2t2

2
}

= exp

{
n∑

i=1

(β0 + β1Xi)
(

Xi − X∑n
i=1(Xi − X)2

)
t +

n∑

i=1

(
Xi − X∑n

i=1(Xi − X)2

)2
σ2t2

2

}
(16)

Expanding the first term in the exponent in equation (16), we get:

n∑

i=1

(β0 + β1Xi)
(

Xi − X∑n
i=1(Xi − X)2

)
t =

t∑n
i=1(Xi − X)2

{β0

n∑

i=1

(Xi − X) + β1

n∑

i=1

Xi(Xi − X)}

=
t∑n

i=1(Xi − X)2
{0 + β1

n∑

i=1

(Xi − X)2} = β1t (17)

Expanding the second term in the exponent in equation (16), we get:

n∑

i=1

(
Xi − X∑n

i=1(Xi − X)2

)2
σ2t2

2
=

σ2t2

2(
∑n

i=1(Xi − X)2)2

n∑

i=1

(Xi − X)2 =
σ2t2

2
∑n

i=1(Xi − X)2
(18)

Putting equations (17) and (18) back into equation 1(16), we get:

mβ̂1
(t) = E

[
etβ̂1

]
= exp{β1t +

σ2t2

2
∑n

i=1(Xi − X)2

which is the moment generating function of a normally distributed random variable with mean
β1 and variance σ2/

∑n
i=1(Xi −X)2. Thus, we have the complete sampling distribution of β̂1 under

the model’s assumptions.

1.4.2 Distribution of β̂0

Consider the following results from mathematical statistics:

U =
n∑

i=1

aiYi W =
n∑

i=1

diYi

where {ai} and {di} are constants and {Yi} are random variables. Then:

Cov[U, W ] =
n∑

i=1

aidiV (Yi) +
n∑

i=1

∑

j 6=i

aidjCov[Yi, Yj ]

Then, we can write β̂0 as two linear functions of the {Yi}:

β̂0 = Y − β̂1X =
n∑

i=1

1
n

Yi −
n∑

i=1

X(Xi − X)∑n
i=1(Xi − X)2

Yi = U − W (19)

The expected values of the the two linear functions of the Yi in equation (19) are as follow:

E[U ] =
n∑

i=1

1
n

(β0 + β1Xi) =
1
n

(nβ0) +
1
n

β1

n∑

i=1

Xi = β0 + β1X



E[W ] =
n∑

i=1

X(Xi − X)∑n
i=1(Xi − X)2

(β0 + β1Xi)

=
X∑n

i=1(Xi − X)2

n∑

i=1

[β0Xi + β1X
2
i − β0X − β1XXi]

=
X∑n

i=1(Xi − X)2
[β0

n∑

i=1

(Xi − X) + β1(
n∑

i=1

X2
i − nX

2
)]

X∑n
i=1(Xi − X)2

[0 + β1

n∑

i=1

(Xi − X)2] = β1X

Putting these together in equation (19):

E[β̂0] = E[U − W ] = E[U ] − E[W ] = β0 + β1X − β1X = β0

Now to get the variance of β̂0 (again assuming that Cov[Yi, Yj ] = 0fori 6= j) :

V ar[U − W ] = V ar[U ] + V ar[W ] − 2Cov[U, W ]

V ar[U ] = V ar[
n∑

i=1

1
n

Yi] =
n∑

i=1

(
1
n

)2

V ar[Yi] = n

(
1
n

)2

σ2 =
σ2

n

V ar[W ] = V ar[β̂1X] = X
2
V ar[β̂1] = X

2 σ2

∑n
i=1(Xi − X)2

Cov[U, W ] =
n∑

i=1

1
n

(
X(Xi − X)∑n
i=1(Xi − X)2

)
V ar[Yi] =

σ2X

n
∑n

i=1(Xi − X)2

n∑

i=1

(Xi − X) = 0

⇒ V ar[β̂0] = V ar[U ]+V ar[W ]−2Cov[U, W ] =
σ2

n
+

X
2
σ2

∑n
i=1(Xi − X)2

= σ2

[
1
n

+
X

2

∑n
i=1(Xi − X)2

]

Note that Cov[U,W ] = Cov[Y , β̂1X ] = 0, then Y and β̂1 are independent. We can also write
β̂0 as a single linear function of Yi, allowing use of the moment generating function method to
determine it’s normal sampling distribution:

β̂0 =
n∑

i=1

[
1
n
− X

2
(Xi − X)∑n

i=1(Xi − X)2

]
Yi =

n∑

i=1

aiYi



1.4.3 Distribution of Ŷi

The distibution of Ŷi, which is an estimate of the population mean of Yi at the level Xi of the
independent variable is obtained as follows:

Ŷi = β̂0 + β̂1Xi = (Y − β̂1X) + β̂1Xi = Y + β̂1(Xi − X)

E[Ŷi] = E[Y ] + (Xi − X)E[β̂1] = β0 + β1X + β1(Xi − X) = β0 + β1Xi

V ar[Ŷi] = V ar[Y ] + (Xi − X)2V ar[β̂1] + 2(Xi − X)Cov[Y , β̂1] =
σ2

n
+

(Xi − X)2σ2

∑n
i=1(Xi − X)2

+ 0

= σ2

[
1
n

+
(Xi − X)2∑n
i=1(Xi − X)2

]

Further, since Ŷi is a linear function of the Yi, then Ŷi has a normal sampling distribution.

1.4.4 Prediction of future observation Y0 when X = X0

The predicted value of a future observation Y0 is Ŷpred0 = β̂0+β̂1X0. The prediction error is Y0−Ŷ0,
and the quantity E[(Ŷ0 − Y0)2] is referred to as the mean square error of prediction. Assuming the
model is correct:

E[Ŷ0 − Y0] = 0

V ar[Ŷpred0] = V ar[Ŷ0−Y0] = σ2

[
1
n

+
(X0 − X)2∑n
i=1(Xi − X)2

]
+σ2 = σ2

[
1 +

1
n

+
(X0 − X)2∑n
i=1(Xi − X)2

]

1.4.5 Estimated Variances

For all of the sampling distributions derived above, the unknown observation variance σ2 appears
in the estimators’ variances. To obtain the estimated variance for each of the estimators, we replace
σ2 with s2 = MS(RESIDUAL). It’s important to keep in mind that this estimator is unbiased for
σ2 only if the model is correctly specified. The estimated variances for each estimator and predictor
are given below:

• s2(β̂1) = s2∑n

i=1
(Xi−X)2

Estimated variance of β̂1

• s2(β̂0) = s2

[
1
n + X

2∑n

i=1
(Xi−X)2

]
Estimated variance of β̂0

• s2(Ŷi) = s2

[
1
n + (Xi−X)2∑n

i=1
(Xi−X)2

]
Estimated variance of estimated mean at Xi

• s2(Ŷpred0) = s2

[
1 + 1

n + (X0−X)2∑n

i=1
(Xi−X)2

]
Estimated variance of prediction at X0



1.4.6 Examples

Estimated variances are computed for both of the previous examples.

Example 1 – Pharmacodynamics of LSD

Here we obtain estimated variances for β̂1, β̂0, the true mean, and a future score when the tissue
concentration is 5.0:

s2(β̂1) =
s2

∑n
i=1(Xi − X)2

=
50.78
22.48

= 2.26

s2(β̂0) = s2

[
1
n

+
X

2

∑n
i=1(Xi − X)2

]
= 50.78

[
1
7

+
4.33292

22.48

]
= 49.66

s2(Ŷ5) = s2

[
1
n

+
(Xi − X)2∑n
i=1(Xi − X)2

]
= 50.78

[
1
7

+
(5 − 4.3329)2

22.48

]
= 8.26

s2(Ŷpred0) = s2

[
1 +

1
n

+
(X0 − X)2∑n
i=1(Xi − X)2

]
= 50.78

[
1 +

1
7

+
(5 − 4.3329)2

22.48

]
= 59.04

Example 2 – Estimating Cost Function of a Hosiery Mill

Here we obtain estimated variances for β̂1, β̂0, the true mean, and a future cost when the
production output is 30.0:

s2(β̂1) =
s2

∑n
i=1(Xi − X)2

=
38.87

7738.94
= 0.0050

s2(β̂0) = s2

[
1
n

+
X

2

∑n
i=1(Xi − X)2

]
= 38.87

[
1
48

+
31.06732

7738.94

]
= 5.66

s2(Ŷ30) = s2

[
1
n

+
(Xi − X)2∑n
i=1(Xi − X)2

]
= 38.87

[
1
48

+
(30 − 31.0673)2

7738.94

]
= 0.82

s2(Ŷpred0) = s2

[
1 +

1
n

+
(X0 − X)2∑n
i=1(Xi − X)2

]
= 38.87

[
1 +

1
48

+
(30 − 31.0673)2

7738.94

]
= 39.69

1.5 Tests of Significance and Confidence Intervals

Under the model assumptions of independence, normality and constant error variance; we can make
inferences concerning model parameters. We can conduct t–tests, F–tests, and obtain confidence
intervals regarding the unknown parameters.



1.5.1 Tests of Significance

The t-test can be used to test hypotheses regarding β0 or β1, and can be used for 1–sided or 2–sided
alternative hypotheses. The form of the test is as follows, and can be conducted regarding any of
the regression coefficients:

• H0 : βi = m (m specified, usually 0 when testing β1)

• (1) Ha : βi 6= m

(2) Ha : β1 > m

(3) Ha : β1 < m

• TS : t0 = β̂i−m

s(β̂i)

• (1) RR : |t0| ≥ t(α/2,n−p′) (p′ = 2 for simple regression)

(2) RR : t0 ≥ t(α,n−p′) (p′ = 2 for simple regression)

(3) RR : t0 ≤ −t(α,n−p′) (p′ = 2 for simple regression)

• (1) P–value: 2 · P (t ≥ |t0|)
(2) P–value: P (t ≥ t0)

(3) P–value: P (t ≤ t0)

Using tables, we can only place bounds on these p–values, but statistical computing packages
will print them directly.

A second test is available to test whether the slope parameter is 0 (no linear association exists
between Y and X). This is based on the Analysis of Variance and the F -distribution:

1. H0 : β1 = 0 HA : β1 6= 0 (This will always be a 2–sided test)

2. T.S.: F0 = MS(REGRESSION)

MS(RESIDUAL)

3. R.R.: F0 > F(α,1,n−p′ (p′ = 2 for simple regression)

4. p-value: P (F > F0) (You can only get bounds on this from tables, but computer outputs
report them exactly)

Under the null hypothesis, the test statistic should be near 1, as β1 moves away from 0, the test
statistic should increase.

1.5.2 Confidence Intervals

Confidence intervals for model parameters can be obtained under all the previously stated assump-
tions. The 100(1 − α)100% confidence intervals can be obtained as follows:

β0 : β̂0 ± t(α/2,n−p′)s(β̂0)

β1 : β̂1 ± t(α/2,n−p′)s(β̂1)

β0 + β1Xi : Ŷi ± t(α/2,n−p′)s(Ŷi)

Prediction intervals for future observations at X = X0 can be obtained as well in an obvious
manner.



1.5.3 Examples

The previously described examples are continued here.

Example 1 – Pharmacodynamics of LSD

To determine whether there is a negative association between math scores and LSD concentra-

tion, we conduct the following test at α = 0.05 significance level. Note that s(β̂1) =
√

s2(β̂1) =√
2.26 = 1.50.

H0 : β1 = 0 Ha : β1 < 0

TS : t0 =
β̂1 − 0

s(β̂1)
=

−9.01
1.50

= −6.01 RR : t0 ≤ −t.05,5 = −2.015 P − val = P (t ≤ −6.01)

Next, we obtain a confidence interval for the true mean score when the tissue concentration is

X = 5.0. The estimated standard error of Ŷ5 is s(Ŷ5) =
√

s2(Ŷ5) =
√

8.26 = 2.87, and t(0.025,5) =
2.571. The 95% confidence interval for β0 + β1(5) is:

Ŷ5 = 89.12− 9.01(5) = 44.07 44.07± 2.571(2.87) ≡ 44.07± 7.38 ≡ (36.69, 51.45)

Example 2 – Estimating Cost Function of a Hosiery Mill

Here, we use the F -test to determine whether there is an association between product costs and
the production output at α = 0.05 significance level.

H0 : β1 = 0 Ha : β1 6= 0

TS : F0 =
MS(REGRESSION)

MS(RESIDUAL)
=

31125.98
38.87

= 800.77 RR : F0 ≥ F(.05,1,46) ≈ 1.680 P−val = P (F ≥ 800.77)

Unit variable cost is the average increment in total production cost per unit increase in produc-
tion output (β1). We obtain a 95% confidence interval for this parameter:

β̂1 = 2.0055 s2(β̂1) = .0050 s(β̂1) =
√

.0050 = .0707 t(.025,46) ≈ 2.015

β̂1 ± t(.025,46)s(β̂1) 2.0055± 2.015(.0707) 2.0055± 0.1425 (1.8630, 2.1480)

As the production output increases by 1000 dozen pairs, we are very confident that mean costs
increase by between 1.86 and 2.15 $1000. The large sample size n = 48 makes our estimate very
precise.



1.6 Regression Through the Origin

In some practical situations, the regression line is expected (theoretically) to pass trough the origin.
It is important that X = 0 is a reasonable level of X in practice for this to be the case. For instance,
in the hosiery mill example, if firm knows in advance that production will be 0 they close plant
and have no costs if they are able to work in “short–run,” however most firms still have “long–run”
costs if they know they will produce in future. If a theory does imply that the mean response (Y )
is 0 when X = 0, we have a new model:

Yi = β1Xi + εi i = 1, . . . , n

The least squares estimates are obtained by minimizing (over β1):

Q =
n∑

i=1

(Yi − β1Xi)2

This is obtained by taking the derivative of Q with respect to β1, and setting it equal to 0. The
value β̂1 that solves that equality is the least squares estimate of β1.

∂Q

∂β1
= 2

n∑

i=1

(Yi − β1Xi)(−Xi) = 0

⇒
n∑

i=1

YiXi = β̂1

n∑

i=1

X2
i ⇒ β̂1 =

∑n
i=1 XiYi∑n
i=1 X2

i

The estimated regression equation and residuals are:

Ŷi = β̂1Xi ei = Y − Ŷi = Y − β̂1Xi

Note that for this model, the residuals do not necessarily sum to 0:

ei = Y − Ŷi = Y − β̂1Xi = Yi −
(∑n

i=1 XiYi∑n
i=1 X2

i

)
Xi

⇒
n∑

i=1

ei =
n∑

i=1

Yi −
(∑n

i=1 XiYi∑n
i=1 X2

i

) n∑

i=1

Xi

This last term is not necessarily (and will probably rarely, if ever, in practice be) 0.
The uncorrected sum of squares is:

n∑

i=1

Y 2
i =

n∑

i=1

Ŷ 2
i +

n∑

i=1

e2
i + 2

n∑

i=1

Ŷiei

The last term (the cross–product term) is still 0 under the no–interecept model:

n∑

i=1

eiŶi =
n∑

i=1

(Yi −
(∑n

i=1 XiYi∑n
i=1 X2

i

)
Xi)(

(∑n
i=1 XiYi∑n
i=1 X2

i

)
Xi)

=
n∑

i=1

Yi(
(∑n

i=1 XiYi∑n
i=1 X2

i

)
Xi)−

n∑

i=1

(
(∑n

i=1 XiYi∑n
i=1 X2

i

)
Xi)2 =

(∑n
i=1 XiYi∑n
i=1 X2

i

) n∑

i=1

XiYi−
(∑n

i=1 XiYi∑n
i=1 X2

i

)2 n∑

i=1

X2
i = 0

So, we obtain the same partitioning of the total sum of squares as before:



n∑

i=1

Y 2
i =

n∑

i=1

Ŷ 2
i +

n∑

i=1

e2
i

SS(TOTAL UNCORRECTED) = SS(MODEL) + SS(RESIDUAL)

The model sum of squares is based on only one parameter, so it is not broken into the components
of mean and regression as it was before. Similarly, the residual sum of squares has n− 1 degrees of
freedom. Assuming the model is correct:

E[MS(MODEL)] = σ2 + β1

n∑

i=1

X2
i

E[MS(RESIDUAL)] = σ2

The variance of the estimator β̂1 is:

V ar[β̂1] = V ar

[∑n
i=1 XiYi∑n
i=1 X2

i

]
=

1
(
∑n

i=1 X2
i )2

n∑

i=1

X2
i V ar[Yi]

=
1

(
∑n

i=1 X2
i )2

(
n∑

i=1

X2
i )σ2 =

σ2

∑n
i=1 X2

i

Similarly, the variance of Ŷ0 = X0β̂1 is:

V ar[Ŷ0] = V ar[X0β̂1] = X2
0V ar[β̂1] =

σ2X2
0∑n

i=1 X2
i

Estimates are obtained by replacing σ2 with s2 = MS(RESIDUAL).

1.6.1 Example – Galton’s Height Measurements

In what is considered by many to be the first application of regression analysis, Sir Frances Galton
(1889, Natural Inheritance) obtained heights of n = 928 adult children (Y ) and the“midheight” of
their parents (X). Since the mean heights of adult children and their parents were approximately
the same (68.1” for adult children and 68.3” for their parents). Once both datasets have been
centered around their means, Galton found that adult chidrens heights were less extreme than
their parents. This phenomenon has been observed in many areas of science, and is referred to as
regression to the mean.

Here we fit a regression model through the origin, which for this centered data is the point
(68.1,68.3). We have the following quantities based on the centered data given in Galton’s table:

n = 928
n∑

i=1

X2
i = 3044.92

n∑

i=1

Y 2
i = 5992.48

n∑

i=1

XiYi = 1965.46

From this data, we obtain the following quantities:

β̂1 = β̂1 =
∑n

i=1 XiYi∑n
i=1 X2

i

=
1965.46
3044.92

= 0.6455



SS(MODEL) =
n∑

i=1

Ŷ 2
i =

n∑

i=1

(β̂1Xi)2 = β̂2
1

n∑

i=1

X2
i = (0.6455)2(3044.92) = 1268.73

SS(RESIDUAL) =
n∑

i=1

Y 2
i −

n∑

i=1

Ŷ 2
i = 5992.48 − 1268.73 = 4723.75

s2 = MS(RESIDUAL) =
SS(RESIDUAL)

n − 1
=

4723.75
927

= 5.10

s2(β̂1) =
s2

∑n
i=1 X2

i

=
5.10

3044.92
= .0017 s(β̂1) = .0409

From this, we get a 95% confidence interval for β1:

bh1 ± z(.025)s(β̂1) ≡ 0.6455 ± 1.96(.0409) ≡ 0.6455 ± 0.0802 ≡ (0.5653, 0.7257)

Note that there is a positive association between adult children’s heights and their parent’s
heights. However, as the parent’s height increases by 1”, the adult child’s height increases by
between 0.5633” and 0.7257” on average. This is an example of regression to the mean.

1.7 Models with Several Independent Variables

As was discussed in the section on the Analysis of Variance, models can be generalized to contain
p < n independent variables. However, the math to obtain estimates and their estimated variances
and standard errors is quite messier. This can be avoided by making use of matrix algebra, which
is introduced shortly. The general form of the multiple linear regression model is:

Yi = β0 + β1Xi1 + · · · + βpXip + εi ε ∼ NID(0, σ2)

The least squares estimates β̂0, β̂1, . . . , β̂p are the values that minimize the residual sum of
squares:

SS(RESIDUAL) =
n∑

i=1

(Yi − Ŷi)2 =
n∑

i=1

(Yi − β̂0 + β̂1Xi1 + · · · + β̂pXip)2

An unbiased estimate of σ2 is:

s2 = SS(RESIDUAL) =
SS(RESIDUAL)

n − (p + 1)

We will obtain these estimates after we write the model in matrix notation.

1.8 SAS Programs and Output

In this section, SAS code and its corresponding output are given for the two examples in Rawlings,
Pantula, and Dickey (RPD).



2 Introduction to Matrices

Text: RPD, Sections 2.1-2.6
Problems:
In this section, important definitions and results from matrix algebra that are useful in regression

analysis are introduced. While all statements below regarding the columns of matrices can also be
said of rows, in regression applications we will typically be focusing on the columns.

A matrix is a rectangular array of numbers. The order or dimension of the matrix is the
number of rows and columns that make up the matrix. The rank of a matrix is the number of
linearly independent columns (or rows) in the matrix.

A subset of columns is said to be linearly independent if no column in the subset can
be written as a linear combination of the other columns in the subset. A matrix is full rank
(nonsingular) if there are no linear dependencies among its columns. The matrix is singular if
lineardependencies exist.

The column space of a matrix is the collection of all linear combinations of the columns of a
matrix.

The following are important types of matrices in regression:

Vector – Matrix with one row or column

Square Matrix – Matrix where number of rows equals number of columns

Diagonal Matrix – Square matrix where all elements off main diagonal are 0

Identity Matrix – Diagonal matrix with 1’s everywhere on main diagonal

Symmetric Matrix – Matrix where element aij = aji ∀i, j

Scalar – Matrix with one row and one column (single element)

The transpose of a matrix is the matrix generated by interchanging the rows and columns of
the matrix. If the original matrix is A, then its transpose is labelled A′. For example:

A =

[
2 4 7
1 7 2

]
⇒ A′ =




2 1
4 7
7 2




Matrix addition (subtraction) can be performed on two matrices as long as they are of
equal order (dimension). The new matrix is obtained by elementwise addition (subtraction) of the
two matrices. For example:

A =

[
2 4 7
1 7 2

]
B =

[
1 3 0
2 4 8

]
⇒ A + B =

[
3 7 7
3 11 10

]

Matrix multiplication can be performed on two matrices as long as the number of columns
of the first matrix equals the number of rows of the second matrix. The resulting has the same



number of rows as the first matrix and the same number of columns as the second matrix. If
C = AB and A has s columns and B has s rows, the element in the ith row and jth column of C,
which we denote cij is obtained as follows (with similar definitions for aij and bij):

cij = ai1b1j + ai2b2j + · · · aisbsj =
s∑

k=1

aikbkj

For example:

A =

[
2 4 7
1 7 2

]
B =




1 5 6
2 0 1
3 3 3


 ⇒

C = AB =

[
2(1) + 4(2) + 7(3) 2(5) + 4(0) + 7(3) 2(6) + 4(1) + 7(3)
1(1) + 7(2) + 2(3) 1(5) + 7(0) + 2(3) 1(6) + 7(1) + 2(3)

]
=

[
31 31 37
21 11 19

]

Note that C has the same number of rows as A and the same number of columns as C. Note
that in general AB 6= BA; in fact, the second matrix may not exist due to dimensions of matrices.
However, the following equality does hold: (AB)′ = B′A′.

Scalar Multiplication can be performed between any scalar and any matrix. Each element
of the matrix is multiplied by the scalar. For example:

A =

[
2 4 7
1 7 2

]
⇒ 2A =

[
4 8 14
2 14 4

]

The determinant is scalar computed from the elements of a matrix via well–defined (although
rather painful) rules. Determinants only exist for square matrices. The determinant of a matrix A
is denoted as |A|.

For a scalar (a 1 × 1 matrix): |A| = A.
For a 2 × 2 matrix: |A| = a11a22 − a12a21.
For n × n matrices (n > 2):

1. Ars ≡ (n − 1) × (n − 1) matrix with row r and column s removed from A

2. |Ars| ≡ the minor of element ars

3. θrs = (−1)r+s|Ars| ≡ the cofactor of element ars

4. The determinant is obtained by summing the product of the elements and cofactors for any
row or column of A. By using row i of A, we get |A| =

∑n
j=1 aijθij

Example – Determinant of a 3 × 3 matrix
We compute the determinant of a 3 × 3 matrix, making use of its first row.

A =




10 5 2
6 8 0
2 5 1






a11 = 10 A11 =

[
8 0
5 1

]
|A11| = 8(1) − 0(5) = 8 θ11 = (−1)1+1(8) = 8

a12 = 5 A12 =

[
6 0
2 1

]
|A11| = 6(1) − 0(2) = 6 θ12 = (−1)1+2(6) = −6

a13 = 2 A13 =

[
6 8
2 5

]
|A13| = 6(5) − 8(2) = 14 θ13 = (−1)1+3(14) = 14

Then the determinant of A is:

|A| =
n∑

j=1

a1jθ1j = 10(8) + 5(−6) + 2(14) = 78

Note that we would have computed 78 regardless of which row and column we used.
An important result in linear algebra states that if |A| = 0, then A is singular, otherwise A is

nonsingular (full rank).

The inverse of a square matrix A, denoted A−1, is a matrix such that A−1A = I = AA−1

where I is the identity matrix of the same dimension as A. A unique inverse exists if A is square
and full rank.

The identity matrix, when multiplied by any matrix (such that matrix multiplication exists)
returns the same matrix. That is: AI = A and IA = A, as long as the dimensions of the matrices
conform to matrix multiplication.

For a scalar (a 1 × 1 matrix): A−1=1/A.

For a 2 × 2 matrix: A−1 = 1
|A|

[
a22 −a12

−a21 a11

]
.

For n × n matrices (n > 2):

1. Replace each element with its cofactor (θrs)

2. Transpose the resulting matrix

3. Divide each element by the determinant of the original matrix

Example – Inverse of a 3 × 3 matrix
We compute the inverse of a 3 × 3 matrix (the same matrix as before).

A =




10 5 2
6 8 0
2 5 1


 |A| = 78

|A11| = 8 |A12| = 6 |A13| = 14



|A21| = −5 |A22| = 6 |A23| = 40

|A31| = −16 |A32| = −12 |A33| = 50

θ11 = 8 θ12 = −6 θ13 = 14 θ21 = 5 θ22 = 6 θ23 = −40 θ31 = −16 θ32 = 12 θ33 = 50

A−1 =
1
78




8 5 −16
−6 6 12
14 −40 50




As a check:

A−1A =
1
78




8 5 −16
−6 6 12
14 −40 50







10 5 2
6 8 0
2 5 1


 =




1 0 0
0 1 0
0 0 1


 = I3

To obtain the inverse of a diagonal matrix, simply compute the recipocal of each diagonal
element.

The following results are very useful for matrices A,B,C and scalar λ, as long as the matrices’
dimensions are conformable to the operations in use:

1. A + B = B + A

2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. C(A + B) = CA + CB

5. λ(A + B) = λA + λB

6. (A′)′ = A

7. (A + B)′ = A′ + B′

8. (AB)′ = B′A′

9. (ABC)′ = C′B′A′

10. (AB)−1 = B−1A−1

11. (ABC)−1 = C−1B−1A−1

12. (A−1)−1 = A

13. (A′)−1 = (A−1)′

The length of a column vector x and the distance between two column vectors u and v are:

l(x) =
√

x′x l((u − v)) =
√

(u − v)′(u − v)

Vectors x and w are orthogonal if x′w = 0.



2.1 Linear Equations and Solutions

Suppose we have a system of r linear equations in s unknown variables. We can write this in matrix
notation as:

Ax = y

where x is a s × 1 vector of s unknowns; A is a r × s matrix of known coefficients of the s
unknowns; and y is a r × 1 vector of known constants on the right hand sides of the equations.
This set of equations may have:

• No solution

• A unique solution

• An infinite number of solutions

A set of linear equations is consistent if any linear dependencies among rows of A also appear
in the rows of y. For example, the following system is inconsistent:




1 2 3
2 4 6
3 3 3







x1

x2

x3


 =




6
10
9




This is inconsistent because the coefficients in the second row of A are twice those in the first row,
but the element in the second row of y is not twice the element in the first row. There will be no
solution to this system of equations.

A set of equations is consistent if r(A) = r([Ay]) where [Ay] is the augmented matrix [A|y].
When r(A) equals the number of unknowns, and A is square:

x = A−1y

2.2 Projection Matrices

The goal of regression is to transform a n-dimensional column vector Y onto a vector Ŷ in a
subspace (such as a straight line in 2-dimensional space) such that Ŷ is as close to Y as possible.
Linear transformation of Y to Ŷ, Ŷ = PY is said to be a projection iff P is idempotent and
symmetric, in which case P is said to be a projection matrix.

A square matrix A is idempotent if AA = A. If A is idempotent, then:

r(A) =
n∑

i=1

aii = tr(A)

where tr(A) is the trace of A. The subspace of a projection is defined, or spanned, by the columns
or rows of the projection matrix P.

Ŷ = PY is the vector in the subspace spanned by P that is closest to Y in distance. That is:

SS(RESIDUAL) = (Y − Ŷ)′(Y − Ŷ)



is at a minimum. Further:
e = (I−P)Y

is a projection onto a subspace orthogonal to the subspace defined by P.

Ŷ′e = (PY)′(I−P)Y = Y′P′(I −P)Y = Y′P(I −P)Y = Y′(P −P)Y = 0

Ŷ + e = PY + (I −P)Y = Y

2.3 Vector Differentiation

Let f be a function of x = [x1, . . . , xp]′. We define:

df

dx
=




∂f
∂x1
∂f
∂x2
...

∂f
∂xp




From this, we get for p × 1 vector a and p × p symmetric matrix A:

d(a′x)
dx

= a
d(x′Ax)

dx
= 2Ax

“Proof” – Consider p = 3:

a′x = a1x1 + a2x2 + a3x3
d(a′x)
dxi

= ai ⇒ d(a′x)
dx

= a

x′Ax =
[

x1a11 + x2a21 + x3a31 x1a12 + x2a22 + x3a32 x1a13 + x2a23 + x3a33

]



x1

x2

x3


 =

= x2
1a11 + x1x2a21 + x1x3a31 + x1x2a12 + x2

2a22 + x2x3a32 + x1x3a13 + x2x3a23 + x2
3a33

⇒
∂x′Ax

∂xi
= 2aiixi + 2

∑

j 6=i

aijxj (aij = aji)

⇒
∂x′Ax

∂x
=




∂x′Ax
∂x1

∂x′Ax
∂x2

∂x′Ax
∂x3


 =




2a11x1 + 2a12x2 + 2a13x3

2a21x1 + 2a22x2 + 2a23x3

2a31x1 + 2a32x2 + 2a33x3


 = 2Ax

2.4 SAS Programs and Output

In this section, SAS code and its corresponding output are given for the examples in Rawlings,
Pantula, and Dickey (RPD).



3 Multiple Regression in Matrix Notation

Multiple linear regression model:

Yi = β0 + β1Xi1 + β2Xi2 + · · · βpXip + εi i = 1, . . . , n

where i represents the observational unit, the second subscript on X represents the independent
variable number, p is the number of independent variables, and p′ = p + 1 is the number of
model parameters (including the intercept term). For the model to have a unique set of regression
coefficients, n > p′.

We can re–formulate the model in matrix notation:

Y — n × 1 column vector of observations on the dependent variable Y

X — n × p′ model matrix containing a column of 1’s and p columns of levels of the independent
variables X1, . . . ,Xp

β — p′ × 1 column vector of regression coefficients (parameters)

ε — n × 1 column vector of random errors

Y = X β + ε




Y1

Y2

...
Yn


 =




1 X11 · · · X1p

1 X21 · · · X2p

...
...

. . .
...

1 Xn1 · · · Xnp







β0

β1

...
βp


+




ε1

ε2

...
εn




For our models, X will be of full column rank, meaning r(X) = p′.

The elements of β, are referred to as partial regression coefficients, βj represents the change
in E(Y ) as the jth independent variable is increased by 1 unit, while all other variables are held
constant. The terms “controlling for all other variables” and “ceteris parabis” are also used to
describe the effect.

We will be working with many different models (that is, many different sets of independent
variables). Often we will need to be more specific of which independent variables are in our model.
We denote the partial regression coefficient for X2 in a model containing X1, X2, and X3 as β2·13.

3.1 Distributional Properties

We still have the same assumption on the error terms as before:

εi ∼ NID(0, σ2) i = 1, . . . , n

This implies that the joint probability density function for the random errors is:

f(ε1, ε2, . . . , εn) =
n∏

i=1

fi(εi) =
n∏

i=1

[
(2π)−1/2σ−1exp

{
−ε2

i

2σ2

}]
= (2π)−n/2σ−nexp

{
−
∑n

i=1 ε2
i

2σ2

}



In terms of the observed responses Y1, . . . , Yn, we have:

Yi ∼ NID(β0 + β1Xi1 + · · · + βpXip, σ
2) ⇒ Cov(Yi, Yj) = 0 ∀i 6= j

From this, the joint probability density function for Y1, . . . , Yn is:

f(y1, y2, . . . , yn) =
n∏

i=1

fi(yi) =
n∏

i=1

[
(2π)−1/2σ−1exp

{
−(yi − (β0 + β1Xi1 + · · · + βpXip))2

2σ2

}]
=

= (2π)−n/2σ−nexp

{
−
∑n

i=1(yi − (β0 + β1Xi1 + · · · + βpXip))2

2σ2

}

The least squares estimates are Best Linear Unbiased Estimates (B.L.U.E.). Under normality
assumption, maximum likelihood estimates are Minimum Variance Unbiased Estimates (M.V.U.E.).
In either event, the estimate of β is:

Example 1 – Pharmacodynamics of LSD

For the LSD concentration/math score example, we have the following model for Y = X β + ε:



78.93
58.20
67.47
37.47
45.65
32.92
29.97




=




1 1.17
1 2.97
1 3.26
1 4.69
1 5.83
1 6.00
1 6.41




[
β0

β1

]
+




ε1

ε2

ε3

ε4

ε5

ε6

ε7




Note that β and ε are unobservable and must be estimated.

3.2 Normal Equations and Least Squares Estimates

Consider the matrices X′X and X′Y:

X′X =




1 1 · · · 1
X11 X21 · · · Xn1

...
...

. . .
...

X1p X2p · · · Xnp







1 X11 · · · X1p

1 X21 · · · X2p

...
...

. . .
...

1 Xn1 · · · Xnp


 =




n
∑n

i=1 Xi1 · · ·
∑n

i=1 Xip∑n
i=1 Xi1

∑n
i=1 X2

i1 · · ·
∑n

i=1 Xi1Xip

...
...

. . .
...∑n

i=1 Xip

∑n
i=1 XipXi1 · · ·

∑n
i=1 X2

ip




For least squares estimation, we minimize Q( β), the error sum of squares with respect to β:

Q( β) = (Y −X β)′(Y −X β) = Y′Y −Y′X β − β′X′Y + β′X′X β = Y′Y−2Y′X β + β′X′X β

By taking the derivative of Q with respect to β, and setting this to 0, we get:

dQ( β)
d β

= 0 − 2X′Y + 2X′X β̂ = 0 ⇒ X′X β̂ = X′Y



This leads to the normal equations and the least squares estimates (when the X matrix is of
full column rank).

X′X β̂ = X′Y ⇒ β̂ = (X′X)−1X′Y

Example 1 – Pharmacodynamics of LSD

For the LSD concentration/math score example, we have the following normal equations and
least squares estimates:

X′X β̂ = X′Y ⇒
[

7 30.33
30.33 153.8905

] [
β̂0

β̂1

]
=

[
350.61

1316.6558

]

(X′X)−1 =
1

7(153.8905) − (30.33)2

[
153.8905 −30.33
−30.33 7

]

β̂ =
1

7(157.3246

[
153.8905 −30.33
−30.33 7

] [
350.61

1316.6558

]
=

1
7(157.3246

[
14021.3778
−1417.4607

]
=

[
89.129
−9.0095

]

3.3 Fitted and Predicted Vectors

The vector of fitted (or predicted) values Ŷ is obtained as follows:

Ŷi =




Ŷ1

Ŷ2
...

Ŷn




=




β̂0 + β̂1X11 + · · · β̂pX1p

β̂0 + β̂1X21 + · · · β̂pX2p
...β̂0 + β̂1Xn1 + · · · β̂pXnp


 =




1 X11 · · · X1p

1 X21 · · · X2p
...

...
. . .

...
1 Xn1 · · · Xnp







β̂0

β̂1
...

β̂p




= X β̂ = X(X′X)−1X′Y = PY

Here, P is the projection of hat matrix, and is of dimension n×n. The hat matrix is symmetric
and idempotent:

P = X(X′X)−1X′ = (X(X′X)−1X′)′ = P′ ⇒ Symmetric

PP = X(X′X)−1X′X(X′X)−1X′ = X(X′X)−1X′ = P ⇒ Idempotent



Example 1 – Pharmacodynamics of LSD

For the LSD concentration/math score example, we have the following hat matrix (generated
in a computer matrix language):

P =




1 1.17
1 2.97
1 3.26
1 4.69
1 5.83
1 6.00
1 6.41




1
7(157.3246

[
153.8905 −30.33
−30.33 7

] [
350.61

1316.6558

][
1 1 1 1 1 1 1

1.17 2.97 3.26 4.69 5.83 6.00 6.41

]
=

=




0.58796 0.33465 0.29384 0.09260 −0.06783 −0.09176 −0.14946
0.33465 0.22550 0.20791 0.12120 0.05207 0.04176 0.01690
0.29384 0.20791 0.19407 0.12581 0.07139 0.06327 0.04370
0.09260 0.12120 0.12581 0.14853 0.16665 0.16935 0.17586
−0.06783 0.05207 0.07139 0.16665 0.24259 0.25391 0.28122
−0.09176 0.04176 0.06327 0.16935 0.25391 0.26652 0.29694
−0.14946 0.01690 0.04370 0.17586 0.28122 0.29694 0.33483




The vector of residuals, e is the vector generated by elementwise subtraction between the data
vector Y and the fitted vector Ŷ . It can be written as follows:

e = Y − Ŷ = Y −PY = (I−P)Y

Also, note:
Ŷ + e = PY + (I−P)Y = (P + I−P)Y = Y

Example 1 – Pharmacodynamics of LSD

For the LSD concentration/math score example, we have the following fitted and residual vec-
tors:

Ŷ = X β̂ =




89.12− 9.01(1.17) = 78.58
89.12− 9.01(2.97) = 62.36
89.12− 9.01(3.26) = 59.75
89.12− 9.01(4.69) = 46.86
89.12− 9.01(5.83) = 36.59
89.12− 9.01(6.00) = 35.06
89.12− 9.01(6.41) = 31.37




e = Y − Ŷ =




78.93− 78.58 = 0.35
58.20− 62.36 = −4.16
67.47− 59.75 = 7.72

37.47− 46.86 = −9.39
45.65− 36.59 = 9.06

32.92− 35.06 = −2.14
29.97− 31.37 = −1.40




3.4 Properties of Linear Functions of Random Vectors

Note that β̂, Ŷ , and e are all linear functions of the data vector Y, and can be written as AY:

• β̂ = (X′X)−1X′Y ⇒ A = (X′X)−1X′



• Ŷ = PY ⇒ A = P = X(X′X)−1X′

• e = (I −P)Y ⇒ A = I−P = I−X(X′X)−1X′

Consider a general vector Z that is of dimension 3 × 1. This can be easily expanded to n × 1,
but all useful results can be seen in the simpler case.

Z =




z1

z2

z3




The expectation vector is the vector made up of the elementwise expected values of the
elements of the random vector.

E[Z] =




E(z1)
E(z2)
E(z3)


 =




µ1

µ2

µ3


 = µz

Note that the matrix (Z − µz)(Z − µz)′ is 3 × 3, and can be written as:



(z1 − µ1)2 (z1 − µ1)(z2 − µ2) (z1 − µ1)(z3 − µ3)
(z2 − µ2)(z1 − µ1) (z2 − µ2)2 (z2 − µ2)(z3 − µ3)
(z3 − µ3)(z1 − µ1) (z3 − µ3)(z2 − µ2) (z3 − µ3)2




The variance-covariance matrix is the 3 × 3 matrix made up of variances (on the main
diagonal) and the covariances (off diagonal) of the elements of Z.

Var[Z] =




V ar(z1) Cov(z1, z2) Cov(z1, z3)
Cov(z2, z1) V ar(z2) Cov(z2, z3)
Cov(z3, z1) Cov(z3, z2) V ar(z3)


 = Vz =




E[(z1 − µ1)2] E[(z1 − µ1)(z2 − µ2)] E[(z1 − µ1)(z3 − µ3)]
E[(z2 − µ2)(z1 − µ1)] E[(z2 − µ2)2] E[(z2 − µ2)(z3 − µ3)]
E[(z3 − µ3)(z1 − µ1)] E[(z3 − µ3)(z2 − µ2)] E[(z3 − µ3)2]


 =

= E[(Z − µz)(Z − µz)′] = Vz

Now let A be a k×n matrix of constants and z be a n×1 random vector with mean vector µz ,
and variance-covariance matrix Vz. Suppose further that we can write A and U = Az as follow:

A =




a′
1

a′
2
...

a′
k






U = Az =




a′
1z

a′
2z
...

a′
kz




=




u1

u2
...

uk




where a′
i is a 1 × n row vector of constants.

To obtain E[U] = µu, consider each element of U, namely ui and it’s expectation E(ui).

E[ui] = E[a′
iz] = E[ai1z1+ai2z2+· · ·+ainzn] = ai1E[z1]+ai2E[z2]+· · ·+ainE[zn] = a′

iµz i = 1, . . . , k

Piecing these together, we get:

E[U] =




E[u1]
E[u2]

...
E[uk]




=




a′
1µz

a′
2µz
...

a′
kµz




=




a′
1

a′
2
...

a′
k




µz = Aµz = µu

To obtain the variance covariance matrix of U = Az, first consider the definition of V[U], then
write in terms of U = Az:

Var[U] = Vu = E[(U − µu)(U − µu)′] =

= E[(Az −Aµz)(Az −Aµz)′] = E{[A(z − µz)][A(z − µz)]′} =

= E[A(z − µz)(z − µz)′A′] = AE[(z − µz)(z − µz)]A′ = AVzA′

Note that if Vz = σ2I, then Vu = σ2AA′.

3.5 Applications of Linear Functions of Random Variables

In this section, we consider two applications, each assuming independent observations (Cov[Yi, Yj ] =
0 i 6= j).

Case 1 – Sampling from a single population

E[Yi] = µ i = 1, . . . , n V ar[Yi] = σ2 i = 1, . . . , n

Let Y be the n × 1 vector made up of elements Y1, . . . , Yn. Then:

E[Y] =




E[Y1]
E[Y2]

...
E[Yn]




=




µ
µ
...
µ




= µ1



where 1 is a n × 1 column vector of 1′s.

Var(Y) =




V ar[Y1] Cov[Y1, Y2] · · · Cov[Y1, Yn]
Cov[Y2, Y1] V ar[Y2] · · · Cov[Y2, Yn]

...
...

. . .
...

Cov[Yn, Y1] Cov[Yn, Y2] · · · V ar[Yn]




=




σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · 0




= σ2I

Now consider the estimator Y :

Y =
∑n

i=1 Yi

n
=
[

1
n

1
n · · · 1

n

]
Y = a′Y

Now we can obtain the mean and variance of Y from these rules, with a′ =
[

1
n

1
n · · · 1

n

]
:

E[Y ] = a′E[Y] =
[

1
n

1
n · · · 1

n

]




µ
µ
...
µ


 = a‘µ1 =

n∑

i=1

(
1
n

)
µ = n

(
1
n

)
µ = µ

V ar[Y ] = a′Var[Y]a =
[

1
n

1
n · · · 1

n

]
σ2I




1
n
1
n
· · ·
1
n


 = σ2a′a = σ2

n∑

i=1

(
1
n

)2

= σ2n

(
1
n

)2

=
σ2

n

Case 2 – Multiple Linear Regression Model

E[Yi] = β0 + β1Xi1 + · · · + βpXip i = 1, . . . , n V ar[Yi] = σ2 i = 1, . . . , n

Let Y be the n × 1 vector made up of elements Y1, . . . , Yn. Then:

E[Y] =




E[Y1]
E[Y2]

...
E[Yn]




= X β

Var[Y] = σ2I

Now consider the least squares estimator β̂ of the regression coefficient parameter vector β.

β̂ = (X′X)−1X′Y = A′Y ⇒ A′ = (X′X)−1X′

The mean and variance of β̂ are:

E[ β̂] = E[A′Y] = A′E[Y] = (X′X)−1X′X β = β

Var[ β̂] = Var[A′Y] = A′Var[Y]A = (X′X)−1X′σ2IX(X′X)−1 = σ2(X′X)−1(X′X)(X′X)−1 = σ2(X′X)−1



3.6 Multivariate Normal Distribution

Suppose a n × 1 random vector Z has a multivariate normal distribution with mean vector 0 and
variance-covariance matrix σ2I. This would occur if we generated n independent standard normal
random variables and put them together in vector form. The density function for Z, evaluated any
fixed point z is:

Z ∼ NID(0, σ2I) ⇒ fZ(z) = (2π)−n/2|σ2I|−1/2exp{−1
2
z′(σ2I)−1z}

More generally, let U = AZ + b with A being a k×n matrix of constants, and b being a n× 1
vector of constants. Then:

E[U] = AE[Z] + b = b = µU V[U] = AV[Z]A′ = σ2AA′ = VU

The density function for U, evaluated any fixed point u is:

U ∼ NID(µU , σ2VU) ⇒ fU(u) = (2π)−k/2|VU |−1/2exp{−1
2
(u − µU )′(VU)−1(u− µU )}

That is, any linear function of a normal random vector is normal.

3.6.1 Properties of Regression Estimates

Under the traditional normal theory linear regression model, we have:

Y = X β + ε ε ∼ N(0, σ2I) ⇒ Y ∼ N(X β, σ2I)

Then the density function of Y evaluated is:

fY(y) = (2π)−n/2σ−nexp{− 1
2σ2

(y −X β)′(y −X β)}

Assuming the model is correct, we’ve already obtained the mean and variance of β̂. We further
know that its distibution is multivariate normal: β̂ ∼ N(β, σ2(X′X)−1).

The vector of fitted values Ŷ = X β̂ = X(X′X)−1X′Y = PY is also a linear function of Y and
thus also normally distributed with the following mean vector and variance-covariance matrix:

E[Ŷ] = X(X′X)−1X′E[Y] = X(X′X)−1X′X β = X β

Var[Ŷ] = X(X′X)−1X′σ2IX(X′X)−1X′ = σ2X(X′X)−1X′X(X′X)−1X′ = σ2X(X′X)−1X′ = σ2P

That is Ŷ ∼ N(X β, σ2P).



The vector of residuals e = Y − Ŷ = (I−P)Y is also normal with mean vector and variance-
covariance matrix:

E[e] = (I−P)X β = (X −PX) β = (X −X(X′X)−1X′X) β = (X−X) β = 0

Var[e] = (I−P)σ2I(I−P)′ = σ2(I−P)(I −P)′ = σ2(I−P)(I −P) = σ2(I−P)

Note the differences between the distributions of ε and e:

ε ∼ N( 0, σ2I) ⇒ e ∼ N( 0, σ2(I−P))

Often the goal is to predict a future outcome when the set of independent levels are at a given
setting, x′

0 =
[

1 x01 · · · x0p

]
. The future observation Y0 and its predicted value based on the

estimated regression equation are:

Y0 = x′
0 β + ε0 ε0 ∼ NID(0, σ2)

Ŷ0 = x′
0 β̂ Ŷ0 ∼ N(x′

0 β, σ2x′
0(X′X)−1x0)

It is assumed ε0 ∼ N(0, σ2) and is independent from the errors in the observations used to fit
the regression model (ε1, . . . , εn).

The prediction error is:

Y0 − Ŷ0 = x′
0 β + ε0 − x′

0 β̂ = x′
0( β − β̂) + ε0

which is normal with mean and variance:

E[Y0 − Ŷ0] = x′
0( β −E[ β̂]) + E[ε0] = x′

0( β − β) + 0 = 0

V [Y0 − Ŷ0] = V [Y0] + V [Ŷ0] = σ2 + σ2x′
0(X′X)−1x0 = σ2[1 + x′

0(X′X)−1x0]

and we have that:

Y0 − Ŷ0 ∼ N(0, σ2[1 + x′
0(X′X)−1x0])



4 Analysis of Variance and Quadratic Forms

The sums of square in the Analysis of Variance can be written as quadratic forms in Y. The
form we use is Y ′AY where A is a matrix of coefficients, referred to as the defining matrix.

The following facts are important and particularly useful in regression models (for a very detailed
discussion, see Linear Models (1971), by S.R. Searle).

1. Any sum of squares can be written as Y ′AY where A is a square, symmetric nonnegative
definite matrix

2. The degrees of freedom associated with any quadratic form is equal to the rank of the defining
matrix, which is equal to its trace when the defining matrix is idempotent.

3. Two quadratic forms are orthogonal if the product of their defining matices is 0

4.1 The Analysis of Variance

Now consider the Analysis of Variance.

Y = Ŷ + e Y′Y =
n∑

i=1

Y 2
i = SS(TOTAL UNCORRECTED)

Note that Y′Y = Y′IY, so that I is the defining matrix, which is symmetric and idempotent. The
degrees of freedom for SS(TOTAL UNCORRECTED) is then the rank of I, which is its trace, or
n.

Now, we decompose the Total uncorrected sum of squares into it’s model and error components.

Y′Y = (Ŷ + e)′(Ŷ + e) = Ŷ′Ŷ + Ŷ′e + e′Ŷ + e′e =

= (PY)′(PY) + (PY)′(I −P)Y + [(I −P)Y]′PY + [(I −P)Y]′[(I −P)Y] =

= Y′P′PY + Y′P′(I −P)Y + Y′(I −P)′PY + Y′(I −P)′(I −P)Y =

= Y′PPY + (Y′PY −Y′PPY) + (Y′PY −Y′PPY) + (Y′IY −Y′IPY −Y′PIY + Y′PPY) =

= Y′PY + (Y′PY −Y′PY) + (Y′PY −Y′PY) + (Y′Y −Y′PY −Y′PY + Y′PY) =

= Y′PY + 0 + 0 + (Y′Y −Y′PY) = Y′PY + Y′(I −P)Y =

= Y′P′PY + Y′(I −P)′(I −P)Y = Ŷ′Ŷ + e′e

We obtain the degrees of freedom as follow, making use of the following identities regarding the
trace of matrices:

tr(AB) = tr(BA) tr(A + B) = tr(A) + tr(B)

SS(MODEL) = Ŷ′Ŷ = Y′PY

df(MODEL) = tr(P) = tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ip′) = p′ = p + 1

SS(RESIDUAL) = e′e = Y′(I−P)Y

df(RESIDUAL) = tr(I−P) = tr(In) − tr(P) = n − p′ = n − p − 1

Table 8 gives the Analysis of Variance including degrees of freedom, and sums of squares (both
definitional and computational forms).



Source of Degrees of Sum of Squares
Variation Freedom Definitional Computational

TOTAL(UNCORRECTED) n Y′Y Y′Y
MODEL p′ = p + 1 Ŷ′Ŷ = Y′PY β̂

′
X′Y

ERROR n − p′ e′e = Y′(I −P)Y Y′Y− β̂
′
X′Y

Table 8: Analysis of Variance in Matrix form

Example 1 – Pharmacodynamics of LSD

We obtain the Analysis of Variance in matrix form:

SS(TOTAL UNCORRECTED) = Y′Y =
[

78.93 58.20 67.47 37.47 45.65 32.92 29.97
]




78.93
58.20
67.47
37.47
45.65
32.92
29.97




=

=
n∑

i=1

Y 2
i = 19639.2365 df(TOTAL UNCORRECTED) = n = 7

SS(MODEL) = β̂
′
X′Y =

[
89.1239 −9.0095

] [ 350.61
1316.6558

]
=

89.1239(350.61)+ (−9.0095)(1316.6558) = 19385.3201 df(MODEL) = p′ = 2

SS(RESIDUAL) = Y′Y− β̂
′
X′Y = 19639.2365−19385.3201 = 253.9164 df(RESIDUAL) = n−p′ = 7−2 = 5

The total uncorrected sum of squares represents variation (in Y ) around 0. We are usually
interested in variation around the sample mean Y . We will partition the model sum of squares into
two components: SS(REGRESSION) and SS(µ). The first sum of squares is associated with β1

and the second one is associated with β0.

Model with only the mean µ = β0 (β1 = 0)

Consider the following model, we obtain the least squares estimates and model sum of squares.

Yi = β0 + εi = µ + εi

Y = X β + ε X =




1
1
...
1


 = 1 β = [µ] = [β0]



β̂ = (X′X)−1X′Y = (1′1)−11′Y 1′1 = n 1′Y =
n∑

i=1

Yi

⇒ β̂ = (1′1)−11′Y =
∑n

i=1 Yi

n
= Y

SS(µ) = β̂
′
X′Y = Y (

n∑

i=1

Yi) = nY
2

= Y′1(1′1)−11′Y = Y′(
1
n
11′)Y =

Y′




1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n


Y = Y′(

1
n
J)Y

where J is a n × n matrix of 1s. Note that (1/n)J is an idempotent matrix:

(
1
n
J)(

1
n
J) =

(
1
n

)2

JJ =
(

1
n

)2




n n · · · n
n n · · · n
...

...
. . .

...
n n · · · n


 =

1
n
J

By subtraction, we get SS(REGRESSION) = SS(MODEL) − SS(µ):

SS(REGRESSION) = SS(MODEL) − SS(µ) = Y′PY −Y′(
1
n
J)Y = Y′(P− 1

n
J)Y

To demonstrate that the defining matrix for SS(REGRESSION) is idempotent and that the
three sum of squares are orthogonal, consider the following algebra where X∗ is the matrix made
up of the columns of X associated with the p independent variables and not the column for the
intercept.

X = [1|X∗] PX = P[1|X∗] = X = [1|X∗]

⇒ P1 = 1 ⇒ PJ = J

X′ = [1|X∗]′ X′P = [1|X∗]′P = X′ = [1|X∗]′

⇒ 1′P = 1′ ⇒ JP = J

(P− 1
n
J)(P− 1

n
J) = PP −P(

1
n
J)− 1

n
JP + (

1
n
J)(

1
n
J) = P − (

1
n
J) − (

1
n
J) + (

1
n
J) = P− 1

n
J

Summarizing what we have obtained so far (where all defining matrices are idempotent):

SS(TOTAL UNCORRECTED) = Y′IY = Y′Y df(TOTAL UNCORRECTED) = tr(In) = n

SS(µ) = Y′(
1
n
J)Y df(µ) = tr(

1
n
J) =

1
n

(n) = 1

SS(REGRESSION) = Y′(P− 1
n
J)Y df(REGRESSION) = tr((P− 1

n
J) = tr(P)−tr(

1
n
J) = p′−1 = p+1−1 = p



SS(RESIDUAL) = Y′(I −P)Y df(RESIDUAL) = tr(I −P) = tr(I) − tr(P) = n − p′

To show that the sums of squares for the mean, regression, and residual are pairwise orthogonal,
consider the products of their defining matrices: First for SS(µ) and SS(REGRESSION):

(
1
n
J)(P− 1

n
J) =

1
n
JP − (

1
n
J)(

1
n
J) =

1
n
J− 1

n
J = 0

Next for SS(µ) and SS(RESIDUAL):

(
1
n
J)(I −P) =

1
n
JI − 1

n
JP =

1
n
J− 1

n
J = 0

Finally for SS(REGRESSION) and SS(RESIDUAL):

(P−
1
n
J)(I −P) = PI −PP−

1
n
JI+

1
n
JP = P −P−

1
n
J+

1
n
J = 0

Example 1 – Pharmacodynamics of LSD

For the LSD concentration/math score example, we have the ANOVA in Table 9.

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

TOTAL(UNCORRECTED) 7 19639.24 —
MEAN 1 17561.02 —
TOTAL (CORRECTED) 6 2078.22 —
REGRESSION 1 1824.30 1824.30
RESIDUAL 5 253.92 50.78

Table 9: Analysis of Variance for LSD data

A summary of key points regarding quadratic forms:

• The rank, r(X) is the number of linearly independent columns in X

• The model is full rank if r(X) = p′ assuming n > p′

• A unique least squares solution exists iff the model is full rank.



• All defining matrices in the Analysis of Variance are idempotent.

• The defining matrices for the mean, regression, and residual are pairwise orthogonal and
sum to I. Thus they partition the total uncorrected sum of squares into orthogonal sums of
squares.

• Degrees of freedom for quadratic forms are the ranks of their defining matrices; when idem-
potent, the trace of a matrix is its rank.

4.2 Expectations of Quadratic Forms

In this section we obtain the expectations of the sums of squares in the Analysis of Variance, making
use of general results in quadratic forms. The proofs are given in Searle (1971). Suppose we have
a random vector Y with the following mean vector and variance-covariance matrix:

E[Y] = µ Var[Y] = VY = Vσ2

Then, the expectation of a quadratic form Y′AY is:

E[Y′AY] =tr(AVY) + µ′A µ = σ2tr(AV) + µ′A µ

Under the ordinary least squares assumptions, we have:

E[Y] = X β Var[Y] =σ2In

Source of Variation “A” Matrix
TOTAL UNCORRECTED I
MODEL P = X(X′X)−1X′

REGRESSION P− 1
nJ

RESIDUAL I−P

Now applying the rules on expectations of quadratic forms:

E[SS(MODEL)] = E[Y′PY] = σ2tr(PI) + β′X′PX β =

= σ2tr(P) + β′X′X(X′X)−1X′X β = σ2p′ + βX′X β

E[SS(REGRESSION)] = E[Y′(P− 1
n
J)Y] = σ2tr(P− 1

n
J) + β′X′(P− 1

n
J)X β =

σ2(p′ − 1) + β′X′X β − β′X′ 1
n
JX β = pσ2 + β′X′(I− 1

n
J)X β

This last matrix can be seen to involve the regression coefficients: β1, . . . , βp, and not β0 as
follows:

X′(I− 1
n
J)X = X′X −X′ 1

n
JX

X′X =




n
∑n

i=1 Xi1 · · ·
∑n

i=1 Xip∑n
i=1 Xi1

∑n
i=1 X2

i1 · · ·
∑n

i=1 Xi1Xip

...
...

. . .
...∑n

i=1 Xip

∑n
i=1 XipXi1 · · ·

∑n
i=1 X2

ip






1
n
X′JX =

1
n




n n · · · n∑n
i=1 Xi1

∑n
i=1 Xi1 · · ·

∑n
i=1 Xi1

...
...

. . .
...∑n

i=1 Xip

∑n
i=1 Xip · · ·

∑n
i=1 Xip


X =

=
1
n




n2 n
∑n

i=1 Xi1 · · · n
∑n

i=1 Xip

n
∑n

i=1 Xi1 (
∑n

i=1 Xi1)
2 · · · (

∑n
i=1 Xi1) (

∑n
i=1 Xip)

...
...

. . .
...

n
∑n

i=1 Xip (
∑n

i=1 Xip) (
∑n

i=1 Xi1) · · · (
∑n

i=1 Xip)
2


 =

=




n
∑n

i=1 Xi1 · · ·
∑n

i=1 Xip

∑n
i=1 Xi1

(
∑n

i=1
Xi1)2

n · · · (
∑n

i=1
Xi1)(

∑n

i=1
Xip)

n
...

...
. . .

...
∑n

i=1 Xip
(
∑n

i=1
Xip)(

∑n

i=1
Xi1)

n · · · (
∑n

i=1
Xip)2

n




⇒ X′(I−
1
n
J)X = X′X−X′ 1

n
JX =

=




n
∑n

i=1 Xi1 · · ·
∑n

i=1 Xip∑n
i=1 Xi1

∑n
i=1 X2

i1 · · ·
∑n

i=1 Xi1Xip

...
...

. . .
...∑n

i=1 Xip

∑n
i=1 XipXi1 · · ·

∑n
i=1 X2

ip


−




n
∑n

i=1 Xi1 · · ·
∑n

i=1 Xip

∑n
i=1 Xi1

(
∑n

i=1
Xi1)2

n · · · (
∑n

i=1
Xi1)(

∑n

i=1
Xip)

n
...

...
. . .

...
∑n

i=1 Xip
(
∑n

i=1
Xip)(

∑n

i=1
Xi1)

n · · · (
∑n

i=1
Xip)2

n




=




0 0 · · · 0

0
∑n

i=1 X2
i1 −

(
∑n

i=1
Xi1)2

n · · ·
∑n

i=1 Xi1Xip − (
∑n

i=1
Xi1)(

∑n

i=1
Xip)

n
...

...
. . .

...

0
∑n

i=1 XipXi1 −
(
∑

n

i=1
Xip)(

∑
n

i=1
Xi1)

n · · ·
∑n

i=1 X2
ip − (

∑
n

i=1
Xip)2

n




=

=




0 0 · · · 0
0

∑n
i=1(Xi1 − X1)2 · · ·

∑n
i=1(Xi1 − X1)(Xip − Xp)

...
...

. . .
...

0
∑n

i=1(Xip − Xp)(Xi1 − X1) · · ·
∑n

i=1(Xip − Xp)2


 =



Thus, E[SS(REGRESSION)] involves a quadratic form in β1, . . . , βp, and not in β0 since the first
row and column of the previous matrix is made up of 0s. Now, we return to E[SS(RESIDUAL)]:

E[SS(RESIDUAL)] = E[Y′(I −P)Y] = σ2tr(I −P) + β′X′(I −P)X β =

σ2(n − p′) + βX′X β − βX′PX β = σ2(n − p′) + βX′X β − βX′X β = σ2(n − p′)

Now we can obtain the expected values of the mean squares from the Analysis of Variance:

MS(REGRESSION) =
SS(REGRESSION)

p
⇒ E[MS(REGRESSION)] = σ2 +

1
p

β′X′(I− 1
n
J)X β

MS(RESIDUAL =
SS(RESIDUAL)

n − p′
⇒ E[MS(RESIDUAL)] = σ2

Note that the second term in E[MS(REGRESSION)] is a quadratic form in β, if any βi 6= 0
(i = 1, . . . , p), then E[MS(REGRESSION)] > E[MS(RESIDUAL)], otherwise they are equal.

4.2.1 The Case of Misspecified Models

The above statements presume that the model is correctly specified. Suppose:

Y = X β + Z γ + ε ε ∼ N(0, σ2I)

but we fit the model:
Y = X β + ε

Then E[MS(RESIDUAL)] can be written as:

E[SS(RESIDUAL)] = σ2tr(I −P) + (X β + Z γ)′(I −P)(X β + Z γ) =

= σ2(n − p′) + β′X′(I −P)X β + β′X′(I −P)Z γ + γ′Z′(I −P)X β + γ′Z′(I −P)Z γ =

= σ2(n − p′) + 0 + 0 + 0 + γ′Z′(I −P)Z γ since X′(I −P) = (I −P)X = 0

E[MS(RESIDUAL)] =
E[SS(RESIDUAL)]

n − p′
= σ2 +

1
n − p′

γ ′Z′(I −P)Z γ

which is larger than σ2 if the elements of γ are not all equal to 0 (which would make our fitted
model correct).



Theoretical Estimated
Estimator Variance Variance

β̂ σ2(X′X)−1 s2(X′X)−1

Ŷ σ2X(X′X)−1X′ = σ2P s2X(X′X)−1X′ = s2P
e σ2(I−P) s2(I−P)

Table 10: Theoretical and estimated variances of regression estimators in Matrix form

4.2.2 Estimated Variances

Recall the variance-covariance matrices of β̂, Ŷ, and e. Each of these depended on σ2, which is
in practice unknown. Unbiased estimators of these variances can be obtained by replacing σ2 with
an unbiased estimate:

s2 = MS(RESIDUAL) =
1

n − p′
Y′(I−P)Y

assuming the model is correct. Table 10 gives the true and estimated variances for these estimators.

4.3 Distribution of Quadratic Forms

We have obtained means of quadratic forms, but need their distributions to make statistical infer-
ences. The assumptions for the traditional inferences to be made is that ε and Y are normally
distributed, otherwise tests are approximate.

The following results are referred to as Cochran’s Theorem, see Searle (1971) for proofs. Suppose
Y is distributed as follows with nonsingular matrix V:

Y ∼ N(µ,Vσ2) r(V) = n

then:

1. Y′
(

1
σ2 A

)
Y is distributed noncentral χ2 with:

(a) Degrees of freedom = r(A)

(b) Noncentrality parameter = Ω = 1
σ2 µ′A µ if AV is idempotent

2. Y′AY and Y′BY are independent if AVB = 0

3. Y′AY and linear function BY are independent if BVA = 0

4.3.1 Applications to Normal Multiple Regression Model

The sums of squares for the Analysis of Variance are all based on idempotent defining matrices:

For the Model sum of squares:

SS(MODEL)
σ2

= Y′
(

1
σ2

P
)

Y AV = PI = P AVAV = PP = P

df(MODEL) = r(A) = r(P) = p′

Ω(MODEL) =
1

2σ2
β′X′PX β =

1
2σ2

β′X′X β



For the Mean sum of squares:

SS(µ)
σ2

= Y′
(

1
σ2

1
n
J
)

Y AV =
1
n
JI =

1
n
J AVAV =

1
n
J

1
n
J =

1
n
J

df(MEAN) = r(
1
n
J) =

1
n

n∑

i=1

1 =
1
n

n = 1

Ω(MEAN) =
1

2σ2
β′X′ 1

n
JX β =

1
2σ2

(1′X β)2

n

The last equality is obtained by recalling that J = 11′, and:

β′X′JX β = β′X′11′X β = ( β′X′1)(1′X β) = (1′X β)2

For the Regression sum of squares:

SS(REGRESSION)
σ2

= Y′
(

1
σ2

(P− 1
n
J)
)

Y AV = P− 1
n
J)I

AVAV = PP −P
1
n
J − 1

n
JP +

1
n
J

1
n
J = P− 1

n
J

df(REGRESSION) = r(P− 1
n
J)) = r(P) − r(

1
n
J) = p′ − 1

Ω(REGRESSION) =
1

2σ2
β′X′(P−1

n
J)X β =

1
2σ2

β′X′(P−1
n
J)X β =

1
2σ2

β′X′(I−1
n
J)X β

For the Residual sum of squares:

SS(RESIDUAL)
σ2

= Y′
(

1
σ2

(I −P)
)

Y AV = (I −P)I = (I− P) AVAV = (I −P)(I −P) = (I −P)

df(RESIDUAL) = r(A) = r((I −P)) = r(I) − r(P) = n − p′

Ω(RESIDUAL) =
1

2σ2
β′X′(I −P)X β =

1
2σ2

( β′X′X β − β′X′X β) = 0

Since we have already shown that the quadratic forms for SS(µ), SS(REGRESSION), and
SS(RESIDUAL) are all pairwise orthogonal, and in our current model V = I, then these sums of
squares are all independent due to the second part of Cochran’s Theorem.

Consider any linear function K′β̂ = K′(X′X)−1X′Y = BY. Then, by the last part of Cochran’s
Theorem, K′β̂ is independent of SS(RESIDUAL):

B = K′(X′X)−1X′ V = I A = (I −P)



⇒ BVA = K′(X′X)−1X′ − K′(X′X)−1X′P =

K′(X′X)−1X′ −K′(X′X)−1X′X(X′X)−1X′ = K′(X′X)−1X′ −K′(X′X)−1X′ = 0

Consider the following random variable F :

F =
X2

1/ν1

X2
2/ν2

where X2
1 is distibuted noncentral χ2 with ν1 degrees of freedom and noncentrality parameter Ω1,

and X2
2 is distibuted central χ2 with ν2 degrees of freedom. Further, assume that X2

1 and X2
2 are

independent. Then, F is distrbuted noncental F with ν1 numerator, ν2 denominator degrees of
freedom, and noncentrality parameter Ω1.

This applies as follows for the F -test in the Analysis of Variance.

• SS(REGRESSION)
σ2 ∼ noncentral-χ2 with df = p and Ω = β′

X′(P− 1
nJ)X β

2σ2

• SS(RESIDUAL)
σ2 ∼ central-χ2 with df = n − p′

• SS(REGRESSION) and SS(RESIDUAL) are independent

•

(
SS(REGRESSION)

σ2

)
/p

(
SS(RESIDUAL)

σ2

)
/(n−p′)

= MS(REGRESSION)

MS(RESIDUAL)
∼ noncentral-F with p numerator and n−p′ denom-

inator degrees’ of freedom, and noncentrality parameter Ω = β′
X′(P− 1

nJ)X β
2σ2

• The noncentrality parameter for SS(REGRESSION) does not involve β0, and for full rank X, Ω =
0 ⇐⇒ β1 = β2 = · · · = βp = 0, otherwise Ω > 0

This theory leads to the F -test to determine whether the set of p regression coefficients β1, β2, . . . , βp

are all equal to 0:

• H0 : β∗ = 0 where β∗ =




β1

β2
...

βp




• HA : β∗ 6= 0

• TS : F0 = SS(REGRESSION)/p

MS(RESIDUAL)/(n−p′)
= MS(REGRESSION)

MS(RESIDUAL)

• RR : F0 :≥ F(α,p,n−p′)

• P -value: Pr{F ≥ F0} where F ∼ Fp,n−p′

• The power of the test under a specific alternative can be found by finding the area under
the relevant noncentral-F distribution to the right of the critical value defining the rejection
region.



Example 1 – LSD Pharmacodynamics

Suppose that the true parameter values are: β0 = 90, β1 = −10, and σ2 = 50 (these are
consistent with the least squares estimates). Recall that the fact β0 6= 0 has no bearing on the
F -test, only that β1 6= 0. Then:

Ω =
β′X′(P− 1

nJ)X β

2σ2
= 22.475

Figure 3 gives the central-F distribution (the distribution of the test statistic under the null hy-
pothesis) and the noncentral-F distribution (the distribution of the test statistic under this specific
alternative hypothesis). Further, the power of the test under these specific parameter levels is the
area under the noncentral-F distribution to the right of Fα,1,5. Table 4.3.1 gives the power (the
probability we reject H0 under H0 and several sets of values in the alternative hypothesis) for three
levels of α, where F(.100,1,5) = 4.06, F(.050,1,5) = 6.61, and F(.010,1,5) = 16.26. The reason that
the column for the noncentrality parameter is 2Ω is that SAS’ function for returning
a tail area from a noncentral-F distribution is twice the noncentrality parameter we
use in this section’s notation.)

f h o _ a c t

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

0 . 0 1 2

0 . 0 1 4

0 . 0 1 6

0 . 0 1 8

0 . 0 2 0

f

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Figure 3: Central and noncentral-F distributions for LSD example, β1 = −10, σ2 = 50

Note that as the true slope parameter moves further away from 0 for a fixed α level, the power
increases. Also, as α (the size of the rejection region) decreases, so does the power of the test.
Under the null hypothesis (β1 = 0), the size of the rejection region is the power of the test (by
definition).



α
β1 2Ω 0.100 0.050 0.010
0 0 0.100 0.050 0.010
-2 1.80 0.317 0.195 0.053
-4 7.19 0.744 0.579 0.239
-6 16.18 0.962 0.890 0.557
-8 28.77 0.998 0.987 0.831
-10 44.95 1.000 0.999 0.959

Table 11: Power = Pr(Reject H0) under several configurations of Type I error rate (α) and slope
parameter (β1) for σ2 = 50

4.4 General Tests of Hypotheses

Tests regarding linear functions of regression parameters are conducted as follow.

• Simple Hypothesis ⇒ One linear function

• Composite Hypothesis ⇒ Several linear functions

H0 : K′ β = m HA : K′ β 6= m

where K′ is a k×p′ matrix of coefficients defining k linear functions of the βs
j to be tested (k ≤ p′),

and m is a k × 1 column vector of constants (often, but not necessarily 0s). The k linear functions
must be linearly independent, but need not be orthogonal. This insures that K′ will be full (row)
rank (that is r(K′) = k) and that H0 will be consistent ∀m.

Estimator and its Variance

Parameter – K′ β −m

Estimator – K′ β̂ −m E[K′ β̂ −m] = K′ β −m

Variance of Estimator – Var[K′ β̂ −m] = Var[K′ β̂] = K′Var[ β̂]K = K′σ2(X′X)−1K = Vσ2

Sum of Squares for testing H0 : K ′ β = m
A quadratic form is created from the estimator K′ β̂ −m by using a defining matrix that is

the inverse of V. This is can be thought of as a matrix version of “squaring a t-statistic.

Q = (K′ β̂ −m)′[K′(X′X)−1K]−1(K′ β̂ −m)

That is, Q is a quadratic form in K′ β̂ −m with A = [K′(X′X)−1K]−1 = V−1. Making use of the
earlier result, regarding expectations of quadratic forms, namely:

E[Y′AY] =tr(AVY) + µ′A µ = σ2tr(AV) + µ′A µ



we get:

E[Q] = σ2tr[(K′(X′X)−1K)−1(K′(X′X)−1K)] + (K′ β −m)′[K′(X′X)−1K]−1(K′ β −m) =

= σ2tr[Ik] + K′ β −m)′[K′(X′X)−1K]−1(K′ β − m) = kσ2 + (K′ β −m)′[K′(X′X)−1K]−1(K′ β −m)

Now, AV = Ik is idempotent and r(A) = r(K) = k (with the restrictions on K′ stated above).
So as long as ε holds our usual assumptions (normality, constant variance, independent elements),
then Q/σ2 is distributed noncentral-χ2 with k degrees of freedom and noncentrality parameter:

ΩQ =
µ′Aµ

2σ2
=

(K′ β −m)′[K′(X′X)−1K]−1(K′ β −m)
2σ2

where ΩQ = 0 ⇐⇒ K′ β = m

So, as before, for the test of β∗ = 0, we have a sum of squares for a hypothesis that is
noncentral-χ2, in this case having k degrees of freedom. Now, we show that Q is independent
of SS(RESIDUAL), for the case m = 0 (it holds regardless, but the math is messier otherwise).

Q = (K′ β̂)′[K′(X′X)−1K]−1(K′ β̂) SS(RESIDUAL) = Y′(I −P)Y

Q = β̂
′
K[K′(X′X)−1K]−1(K′ β̂) = Y′X(X′X)−1K[K′(X′X)−1K]−1(K′(X′X)−1X′Y

Recall that Y′AY and Y′BY are independent if BVA = 0. Here, V = I.

BA = X(X′X)−1K[K′(X′X)−1K]−1(K′(X′X)−1X′(I −P) = 0

since X′P = X′X(X′X)−1X′ = X′. Thus Q is independent of SS(RESIDUAL). This leads to the
F -test for the test.

• H0 : K′ β −m = 0

• HA : K′ β −m 6= 0

• TS : F0 = Q/k
s2 = (K′ β̂−m)′[K′(X′X)−1K]−1(K′ β̂−m)/k

MS(RESIDUAL)

• RR : F0 ≥ F(α,k,n−p′)

• P -value: Pr(F ≥ F0) where F ∼ F(k,n−p′)

4.4.1 Special Cases of the General Test

Case 1 - Testing a Simple Hypothesis (k = 1)

In this case, K′(X′X)−1K is a scalar, with an inverse that is its recipocal. Also, K′ β̂ −m is
a scalar.

Q = (K′ β̂ −m)′[K′(X′X)−1K]−1(K′ β̂ −m) =
(K′ β̂ −m)2

K′(X′X)−1K

⇒ F0 =
(K′ β̂ −m)2

s2[K′(X′X)−1K]
=

(
K′ β̂ −m

sqrts2[K′(X′X)−1K]

)2

= t20



Case 2 - Testing k Specific β
′s
j = 0

In this case, K′ β −m is simply a “subvector” of the vector β, and K′(X′X)−1K is a “sub-
matrix” of (X′X)−1. Be careful of row and column labels because of β0.

Suppose we wish to test that the last q < p elements of β are 0, controlling for the remaining
p − q independent variables:

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0 HA : Not all βi = 0 (i = p − q + 1, . . . , p)

Here, K′ is a q × p′ matrix that can be written as K′ = [0|I], where 0 is a q × p′ − q matrix of 0s

and I is the q × q identity matrix. Then:

K′ β̂ =




β̂p−q+1

β̂p−q+2

...
β̂p


 K′(X′X)−1K =

=




cp−q+1,p−q+1 cp−q+1,p−q+2 · · · cp−q+1,p

cp−q+2,p−q+1 cp−q+2,p−q+2 · · · cp−q+2,p

...
...

. . .
...

cp,p−q+1 cp,p−q+2 · · · cp,p




where ci,j is the element in the (i + 1)st row and (i + 1)st column of (X′X)−1. Then Q is:

Q = (K′ β̂)′[K′(X′X)−1K]−1(K′ β̂) =
[

β̂p−q+1 β̂p−q+2

... β̂p

]



cp−q+1,p−q+1 cp−q+1,p−q+2 · · · cp−q+1,p

cp−q+2,p−q+1 cp−q+2,p−q+2 · · · cp−q+2,p

...
...

. . .
...

cp,p−q+1 cp,p−q+2 · · · cp,p




−1 


β̂p−q+1

β̂p−q+2

...
β̂p




⇒ F0 =
Q/q

s2

Case 3 – Testing a single βj = 0

This is a simplification of case 2, with K′(X′X)−1K being the (j + 1)st element of (X′X)−1,
and K′ β̂ = β̂j .

Q =
(β̂j)2

cjj
⇒ F0 =

(β̂j)2

s2cjj
=

[
β̂j√
s2cjj

]2

= t20

4.4.2 Computing Q from Differences in Sums of Squares

The sums of squares for a general test can be obtained by fitting various models, and taking
differences in Residual suns of squares.

H0 : K′ β = m HA : K′ β 6= m



First, the Full Model is fit, that lets all parameters to be free (HA), and the least squares estimate
is obtained. The residual sum of squares is obtained and labelled SS(RESIDUALFULL). Under
the full model, with no restriction on the parameters, p′ parameters are estimated and this sum of
squares has n − p′.

Next, the Reduced Model is fit, that places k ≤ p′ constraints on the parameters (H0). Any
remaining parameters are estimated by least squares. The residual sum of squares is obtained and
labelled SS(RESIDUALREDUCED). Note that since we are forcing certain parameters to take
on specific values SS(RESIDUALREDUCED) ≥ SS(RESIDUALFULL), with the equality only
taking place if the estimates from the full model exactly equal the constrained values under H0.
With the k constraints, only p′−k parameters are being estimated and the residual sum of squares
has n − (p′ − k) degrees of freedom.

We obtain the sum of squares and degrees of frredom for the test by taking the difference in
the residual sums of squares and in their corresponding degrees’ of freedom:

Q = SS(RESIDUALREDUCED) − SS(RESIDUALFULL) df(Q) = (n − (p′ − k)) − (n − p′) = k

As before:

F =
Q/k

s2
=

(SS(RESIDUALREDUCED)−SS(RESIDUALFULL)

(n−(p′−k))−(n−p′)

SS(RESIDUALFULL)

n−p′

Examples of Constraints and the Appropriate Reduced Models

Suppose that Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + εi.

H0 : β1 = β2 (k = 1)

Yi = β0+β1Xi1+β1Xi2+β3Xi3+β4Xi4+εi == β0+β1(Xi1+Xi2)+β3Xi3+β4Xi4+εi = β0+β1X
∗
i1+β3Xi3+β4Xi4+εi X∗

i1 = Xi1+Xi2

H0 : β0 = 100 β1 = 5 (k = 2)

Yi = 100+5Xi1+β2Xi2+β3Xi3+β4Xi4+εi ⇒ Yi−100−5Xi1 = β2Xi2+β3Xi3+β4Xi4+εi Y ∗
i = β2Xi2+β3Xi3+β4Xi4+εi Y ∗

i = Yi−100−5Xi1

Some notes regarding computation of Q:

• Q can always be computed from differences in residual sums of squares.

• When β0 is in the model, and not involved in H0 : K′ β = 0 then we can use Q = SS(MODELFULL)−
SS(MODELREDUCED).

• When β0 6= 0, is in the reduced model, you cannot use the difference in Regression sums of
squares, since SS(TOTAL UNCORRECTED)differs between the two models.

Best practice is always to use the error sums of squares.



4.4.3 R-Notation to Label Sums of Squares

Many times in practice, we wish to test that a subset of the partial regression coefficients are all
equal to 0. We can write the model sum of squares for a model containing β0, β1, . . . , βp as:

R(β0, β1, . . . , βp) = SS(MODEL)

The logic is to include all βi in R(·) that are in the model being fit. Returning to the case of testing
the last q < p regression coefficients are 0:

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0 HA : Not all βi = 0 (i = p − q + 1, . . . , p)

H0 : R(β0, β1, . . . , βp−q) = SS(MODELREDUCED)

H0 : R(β0, β1, . . . , βp) = SS(MODELFULL)

Q = SS(MODELFULL − SS(MODELREDUCED = R(β0, β1, . . . , βp) − R(β0, β1, . . . , βp−q) =

= R(βp−q+1, . . . , βp|β0, β1, . . . , βp−q)

Special cases include:

SS(REGRESSION) = SS(MODEL) − SS(µ) = R(β0, β1, . . . , βp) − R(β0) = R(β1, . . . , βp|β0)

Partial (TYPE III) Sums of Squares: R(β0, . . . , βi−1, βi, βi+1, . . . , βp)−R(β0, . . . , βi−1, βi+1, . . . , βp) =

= R(βi|β0, . . . , βi−1, βi+1, . . . , βp)

Sequential (TYPE I) Sums of Squares: R(β0, . . . , βi−1, βi) − R(β0, . . . , βi−1) = R(βi|β0, . . . , βi−1)

SS(REGRESSION) = R(β1, . . . , βp|β0) = R(β1|β0) + R(β2|β1, β0) + · · · + R(βp|β1, . . . , βp−1)

The last statement shows that sequential sums of squares (corrected for the mean) sum to the
regression sum of squares. The partial sums of squares do not sum to the regression sum of squares
unless the last p columns of X are mutually pairwise orthogonal, in which case the partial and
sequential sums of squares are identical.

4.5 Univariate and Joint Confidence Regions

In this section confidence regions for the regression parameters are given. See RPD for cool pictures.

Confidence Intervals for Partial Regression Coefficients and Intercept



Under the standard normality, constant variance, and independence assumptions; as well as the
independence of K′ β̂ and SSE(RESIDUAL), we have:

β̂j ∼ N(βj , σ
2cjj) where cjj is the (j + 1)st diagonal element of (X′X)−1

⇒ β̂j − βj√
s2cjj

∼ t(n−p′) ⇒ Pr{β̂j − t(α/2,n−p′)

√
s2cjj ≤ βj ≤ β̂j − t(α/2,n−p′)

√
s2cjj} = 1− α

⇒ (1 − α)100% Confidence Interval for βj : β̂j ± t(α/2,n−p′)

√
s2cjj

Confidence Interval for β0 + β1X10 + · · · + βpXp0 = x′
0 β

By a similar argument, we have a (1 − α)100% confidence interval for the mean at a given
combination of levels of the independent variables, where Ŷ0 = x′

0 β̂:

Ŷ0 ± t(α/2,n−p′)

√
s2x′

0(X′X)−1x0

Prediction Interval for Future Observation Y0 when X1 = X10, . . . ,Xp = Xp0 (x0)
For a (1 − α)100% prediction interval for a single outcome (future observation) at a given

combination of levels of the independent variables, where Ŷ0 = x′
0 β̂:

Ŷ0 ± t(α/2,n−p′)

√
s2 [1 + x′

0(X′X)−1x0]

Bonferroni’s Method for Simultaneous Confidence Statements

If we want to construct c confidence statements, with simultaneous conficence coefficient 1−α,
then we can generate the c confidence intervals, each at level (1 − α

c ). That is, each confidence
interval is more conservative (wider) than if they had been constructed one-at-a-time.

Joint Confidence Regions for β

From the section on the general linear tests, if we set K′ = Ip′ , we have the following distribu-
tional property:

( β̂ − β)′[(X ′X)−1]−1( β̂ − β)
p′s2

∼ F(p′,n−p′)

⇒ Pr{( β̂ − β)′(X′X)( β̂ − β) ≤ p′s2F(1−α,p′,n−p′)} = 1 − α

Values of β in this set constitute a joint (1 − α)100% confidence region for β.



4.6 A Test for Model Fit

A key assumption for the model is that the relation between Y and X is linear (that is E[Y] = X β).
However, the relationship may be nonlinear. S-shaped functions are often seen in biological and
business applications, as well as the general notion of “diminishing marginal returns,” for instance.

A test can be conducted, when replicates are obtained at various combinations of levels of the
independent variables. Suppose we have c unique levels of x in our sample. It’s easiest to consider
the test when there is a single independent variable (but it generalizes straightforwardly). We
obtain the sample size (nj), mean (Y j) and variance (s2

j) at each unique level of X (Y is the overall
sample mean for Y ). We obtain the a partition of SS(TOTAL CORRECTED) to test:

H0 : E[Yi] = β0 + β1Xi HA : E[Yi] = µi 6= β0 + β1Xi

where µi is the mean of all observations at the level Xi and is not linear in Xi. The alternative
can be interpreted as a 1–way ANOVA where the means are not necessarily equal. The partition
is given in Table 12, with the following identities with respect to sums of squares:

SS(TOTAL CORR) = SS(REG) + SS(LF) + SS(PE)

where SS(RESIDUAL) = SS(LF) + SS(PE). Intuitively, these sums of squares and their degrees
of freedom can be written as:

SS(LF) =
n∑

i=1

(Y (i) − Ŷi)2 =
c∑

j=1

nj(Y j − Ŷ(j))2 dfLF = c − 2

SS(PE) =
n∑

i=1

(Yi − Y (i))2 =
c∑

j=1

(nj − 1)s2
j dfLF = n − c

where Y (i) is the mean for the group of observations at the same level of X as observation i and
Ŷ(j) is the fitted value. The test for goodness-of-fit is conducted as follows:

Source df SS

Regression (REG) 1
∑n

i=1(Ŷi − Y )2

Lack of Fit (LF) c − 2
∑c

j=1 nj(Y j − Ŷ(j))2

Pure Error (PE) n − c
∑c

j=1(nj − 1)s2
j

Table 12: ANOVA for Lack of Fit F -test

• H0 : E[Yi] = β0 + β1Xi (Relation is linear)

• HA : E[Yi] = µi 6= β0 + β1Xi (Relationship is nonlinear)

• TS : F0 = MS(LF )
MS(PE) = SS(LF )/(c−2)

SS(PE)/(n−c)

• RR : F0 ≥ F(α,c−2,n−c)

Example – Building Costs



A home builder has 5 floor plans: 1000ft2, 1500, 2000, 2500, and 3000. She knows that the
price to build individual houses varies, but believes that the mean price may be linearly related to
size in this size range. She samples from her files the records of n = 10 houses, and tabulates the
total building cost for each of the houses. She samples ni = 2 homes at each of the c = 5 levels of
X. Consider each of the following models:

Model 1: E[Y ] = 5000 + 10X σ = 500

Model 2: E[Y ] = −12500 + 30X − 0.05X2 σ = 500

These are shown in Figure 12.

M o d e l  2

M o d e l  1

y

- 2 0 0 0 0

- 1 0 0 0 0

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

s i z e

1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0

Figure 4: Models 1 and 2 for the building cost example

Data were generated from each of these models, and the simple linear regression model
was fit. The least squares estimates for model 1 (correctly specified) and for model 2 (incorrectly
fit) were obtained:

Model 1: Ŷ = 5007.22 + 10.0523X

Model 2: Ŷ = 4638.99 + 10.1252X

The observed values, group means, and fitted values from the simple linear regression model are
obtained for both the correct model (1) and the incorrect model (2) in Table 4.6.

The sums of squares for lack of fit are obtained by taking deviations between the group means
(which are estimates of E[Yi] under HA) and the fitted values (which are estimates of E[Yi] under
H0).

Model 1 SS(LF) =
n∑

i=1

nj(Y (i)−Ŷi)2 = 2(15303.96−15059.40)2+· · ·+2(35496.89−35164.04)2 = 631872.71



Correct Model (1) Incorrect Model (2)
i Xi Yi Y (i) Ŷi Yi Y (i) Ŷi

1 1000 14836.70 15303.96 15059.49 12557.72 12429.03 14764.23
2 1000 15771.22 15303.96 15059.49 12300.33 12429.03 14764.23
3 1500 20129.51 19925.80 20085.63 21770.87 21045.46 19826.86
4 1500 19722.08 19925.80 20085.63 20320.05 21045.46 19826.86
5 2000 25389.36 25030.88 25111.77 27181.07 27242.41 24889.48
6 2000 24672.40 25030.88 25111.77 27303.75 27242.41 24889.48
7 2500 29988.95 29801.31 30137.90 31139.83 30931.27 29952.10
8 2500 29613.68 29801.31 30137.90 30722.71 30931.27 29952.10
9 3000 35362.12 35496.89 35164.04 33335.17 32799.24 35014.73
10 3000 35631.66 35496.89 35164.04 32263.31 32799.24 35014.73

Table 13: Observed, fitted, and group mean values for the lack of fit test

Model 2 SS(LF) =
n∑

i=1

nj(Y (i)−Ŷi)2 = 2(12429.03−14764.23)2+· · ·+2(32799.24−35014.73)2 = 36683188.83

The sum of squares for pure error are obtained by taking deviations between the observed
outcomes and their group means (this is used as an unbiased estimate of σ2 under HA, after dividing
through by its degrees of freedom).

Model 1 SS(PE) =
n∑

i=1

(Yi − Y (i))2 = (14836.70− 15303.96)2 + · · · + (35631.66− 35496.89)2 = 883418.93

Model 2 SS(PE) =
n∑

i=1

(Yi − Y (i))2 = (12557.72− 12429.03)2 + · · · + (32263.31− 32799.24)2 = 1754525.81

The F -statistics for testing between H0 (that the linear model is the true model) and HA (that
the true model is not linear) are:

Model 1 F0 =
MS(LF )
MS(PE)

=
SS(LF )/(c − 2)
SS(PE)/(n − c)

=
631872.71/(5 − 2)
883418.93/(10 − 5)

= 1.19

Model 2 F0 =
MS(LF )
MS(PE)

=
SS(LF )/(c − 2)
SS(PE)/(n − c)

=
36683188.83/(5 − 2)
1754525.81/(10 − 5)

= 34.85

The rejection region for these tests, based on α = 0.05 significance level is:

RR : F0 ≥ F(.05,3,5) = 5.41

Thus, we fail to reject the null hypothesis that the model is correct when the data were generated
from the correct model. Further, we do reject the null hypothesis when data were generated from
the incorrect model.


