STA 6207 - Practice Problems - Multiple Regression

Part A: Estimating and Testing

QA.1. You obtain the following partial output from a regression program. Fill in all missing parts.

X'X			X'Y
9.0000	19.8602	26.0985	34.4348
19.8602	45.6772	57.5914	76.4129
26.0985	57.5914	77.5334	100.3257
INV(X'X)			
7.2817	-1.1916	-1.5660	
-1.1916	0.5400	0.0000	
-1.5660	0.0000	0.5400	

Regression Statistics					
R Square	(a)				
Standard Error	0.0621				
Observations	(b)				
ANOVA					
	$d f$	SS	MS	F	$F(.05)$
Regression	(c)	0.2173	(d)	(e)	(f)
Residual	6	0.0232	0.0039		
Total	8	0.2405			
	Coefficients	Standard Error	t Stat	t(.025)	
Intercept	2.5823	0.1676	15.4048	(k)	
FL*	(g)	0.0456	(i)	(k)	
FC*	0.2540	(h)	(j)	(k)	

p.1.a. $\mathrm{R}^{2}=$ \qquad p.1.b. $\mathrm{n}=$ \qquad p.1.c. $\mathrm{df}_{\text {Reg }}=$ \qquad
p.1.d. $\mathrm{MS}($ Regression $)=$ \qquad p.1.e. $\mathrm{F}_{\text {obs }}=$ \qquad
p.1.f. Critical F-value $(\alpha=0.05)=$ \qquad p.1.g. $\beta_{1}=$ \qquad
p.1.h. $s\left\{\hat{\beta}_{2}\right\}=$ \qquad p.1.i. t-stat for $\mathrm{H}_{0}: \beta_{1}=0$: vs $\mathrm{H}_{\mathrm{A}}: \beta_{1} \neq 0$: \qquad
p.1.j. t-stat for $\mathrm{H}_{0}: \beta_{2}=0$: vs $\mathrm{H}_{\mathrm{A}}: \beta_{2} \neq 0$: \qquad p.1.k. Critical t-value $(\alpha=0.05)$ \qquad

QA.2. A multiple linear regression model is fit, relating height (Y, mm) to hand length ($\mathrm{X}_{1}, \mathrm{~mm}$) and foot length ($\mathrm{X}_{2}, \mathrm{~mm}$), for a sample of $\mathrm{n}=20$ adult males. The following partial computer output is obtained, for model 1 with 2 predictors.

ANOVA					
	$d f$	SS	MS	F	$F(0.05)$
Regression		37497			
Residual		19772		\#N/A	\#N/A
Total		57269	\#N/A	\#N/A	\#N/A
Coefficientandard Err			t Stat	P-value	
Intercept	1055.78	132.86	7.95	0.0000	
Hand	1.26	0.55	2.28	0.0357	
Foot	1.71	0.39	4.42	0.0004	

p.2.a Complete the table. Do you reject the null hypothesis $H_{0}: \beta_{1}=\beta_{2}=0$? Yes or No
p.2.b. Give the predicted height of a man with a hand length of 210 mm and a foot length of (260 mm). Just give the point estimate, not confidence interval for the mean or a prediction interval.
p.2.c. Give an unbiased estimate of the error variance σ^{2}
p.2.d. The coefficient of determination represents the proportion of variation in heights "explained" by the model with hand and foot length as predictors. What is the proportion explained for this model?

QA.3. For the Analysis of Variance in model 2 , with n observations and p predictors, complete the following parts.
p.3.a. Write the Regression and Residual sums of squares as quadratic forms.
p.3.b. Derive the distributions of SSRegression/ σ^{2} and SSResidual/ σ^{2}
p.3.c. Show that SSRegression/ σ^{2} and SSResidual/ σ^{2} are independent
p.3.d. What is the sampling distribution of MSRegression/MSResidual when $\beta_{1}=\ldots=\beta_{p}=0$?

QA.4. A multiple regression model is fit, based on Model 2, with p predictors and an intercept. Define the projection matrix as: $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$, where $\mathbf{X}=\left[\begin{array}{cccc}1 & X_{11} & \cdots & X_{1 p} \\ 1 & X_{21} & \cdots & X_{2 p} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & X_{n 1} & \cdots & X_{n p}\end{array}\right]$ Define $\frac{1}{n} \mathbf{J}_{n}=\frac{1}{n}\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1\end{array}\right] \quad$ where \mathbf{J}_{n} is $n \times n$ p.4.a. Show that \mathbf{P} and $\frac{1}{n} \mathbf{J}_{n}$ are symmetric and idempotent. (Hint: ($\left.X^{\prime} X\right)^{-\mathbf{1}}$ is symmetric). SHOW ALL WORK.
p.4.b. Obtain $\mathbf{P} \frac{1}{n} \mathbf{J}_{n}$ and show that $\mathbf{P}-\frac{1}{n} \mathbf{J}_{n}$ is idempotent. SHOW ALL WORK p.4.c. Obtain the rank of $\mathbf{P}, \frac{1}{n} \mathbf{J}_{n}$, and $\mathbf{P}-\frac{1}{n} \mathbf{J}_{n}$ SHOW ALL WORK
p.4.d. What is the sampling distribution of $\frac{1}{\sigma^{2}} \mathbf{Y}^{\prime}\left(\mathbf{P}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{Y}$? SHOW ALL WORK
p.4.e. Show that $\frac{1}{\sigma^{2}} \mathbf{Y}^{\prime}\left(\mathbf{P}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{Y}$ and $\frac{1}{\sigma^{2}} \mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{Y}$ are independent. SHOW ALL WORK.

QA.5. Use the following output to obtain the quantities given below:

X		
1	0	2
1	5	2
1	10	2
1	0	8
1	5	8
1	10	8

Y
4
6
9
7
10
12

$\left(X^{\prime} X\right)^{\wedge}-1$		
0.8796	-0.0500	-0.0926
-0.0500	0.0100	0.0000
-0.0926	0.0000	0.0185

$X^{\prime} Y$
48
290
270

Beta-hat
2.7222
0.5000
0.5556

P					
0.5833	0.3333	0.0833	0.2500	0.0000	-0.2500
0.3333	0.3333	0.3333	0.0000	0.0000	0.0000
0.0833	0.3333	0.5833	-0.2500	0.0000	0.2500
0.2500	0.0000	-0.2500	0.5833	0.3333	0.0833
0.0000	0.0000	0.0000	0.3333	0.3333	0.3333
-0.2500	0.0000	0.2500	0.0833	0.3333	0.5833

$\mathrm{Y}^{\prime} \mathrm{Y}$	426.00
$\mathrm{Y}^{\prime} \mathrm{PY}$	425.67
$\mathrm{Y}^{\prime}(\mathrm{I}-\mathrm{P}) \mathrm{Y}$	0.33
$\mathrm{Y}^{\prime}(\mathrm{J} / \mathrm{n}) \mathrm{Y}$	384.00
$\mathrm{Y}^{\prime}(\mathrm{P}-\mathrm{J} / \mathrm{n}) \mathrm{Y}$	41.67

Total Corrected: Sum Of Squares
Degrees of Freedom
Regression: Sum Of Squares
Residual: Sum Of Squares

Degrees of Freedom

Degrees of Freedom
$S^{2} \quad s\left\{\hat{\beta}_{1}\right\}$

Testing $H_{0}: \beta_{1}=\beta_{2}=0$ F-stat Num df Den df

Predicted Value for $\mathrm{Y}_{2} \quad s\left\{\hat{Y}_{2}\right\} \quad s\left\{e_{2}\right\}$

QA.6. Use the following output to obtain the quantities given below:

X			Y	$\left(X^{\prime} \mathrm{X}\right)^{\wedge}-1$			X'Y	Beta-hat
1	0	10	10	1.9167	-0.1250	-0.1000	120	4.250
1	2	10	16	-0.1250	0.0625	0.0000	270	1.875
1	4	10	22	-0.1000	0.0000	0.0067	1920	0.800
1	0	20	22					
1	2	20	25					
1	4	20	25					

P					
0.5833	0.3333	0.0833	0.2500	0.0000	-0.2500
0.3333	0.3333	0.3333	0.0000	0.0000	0.0000
0.0833	0.3333	0.5833	-0.2500	0.0000	0.2500
0.2500	0.0000	-0.2500	0.5833	0.3333	0.0833
0.0000	0.0000	0.0000	0.3333	0.3333	0.3333
-0.2500	0.0000	0.2500	0.0833	0.3333	0.5833

$Y^{\prime} \mathrm{Y}$	2574.00
$\mathrm{Y}^{\prime} \mathrm{PY}$	2552.25
$\mathrm{Y}^{\prime}(\mathrm{J} / \mathrm{n}) \mathrm{Y}$	2400.00

Complete the following elements of the regression model:

$X^{\prime} X$		
	40	
		90

ANOVA		
Source	df	SS
Total (Uncorr)		
Model		
Mu		
Regression		
Residual		
Total (Corr)		

$S^{2}=$ \qquad $s\left\{\beta_{2}\right\}=$ \qquad

Tests of (TS=Test statistic, RR=Rejection Region) each based on $\alpha=0.05$ significance level:
$H_{0}: \beta_{2}=0 \quad H_{A}: \beta_{2} \neq 0 \quad$ TS: \qquad RR: \qquad
$H_{0}: \beta_{1}=\beta_{2}=0 \quad H_{A}: \beta_{1} \neq 0$ and $/$ or $\beta_{2} \neq 0 \quad$ TS: \qquad RR: \qquad

Predicted Value for Y_{4} based on each of these two forms and its residual (show work):

$$
\begin{array}{ll}
\mathbf{X} \boldsymbol{\beta}: Y_{4}= & \mathbf{P Y}: Y_{4}= \\
e_{4}= \\
s\left\{Y_{4}\right\}=\square & s\left\{e_{4}\right\}=
\end{array}
$$

QA.7. A large electronics retailer is interested in the relationship between net revenue of plasma TV sales ($\mathrm{Y}, \$ 1000 \mathrm{~s}$), and the following 4 predictors: $X_{1}=$ shipping costs ($\$ /$ unit), $X_{2}=$ print advertising ($\$ 1000 \mathrm{~s}$), $\quad X_{3}=$ electronic media ads ($\$ 1000 \mathrm{~s}$), and $\mathrm{X}_{4}=$ rebate rate (\% of retail price). A sample of $\mathrm{n}=50$ stores is selected and the resulting (partial) regression output is obtained:

ANOVA

	$d f$	$S S$	$M S$	F	$F(0.05)$
Regression		259411.8			
Residual		224539.0			
Total	49	483950.8			

	Coefficients andard Errs					Stat	P-value
Intercept	4.31	70.82	0.0608	0.9518			
ShipCost	-0.08	4.68	-0.0175	0.9861			
PrintAds	2.27	1.05	2.1562	0.0364			
WebAds	2.50	0.85	2.9535	0.0050			
Rebate\%	16.70	3.57	4.6766	0.0000			
INV (X'X)							
1.005224	-0.029489	-0.006808	-0.002514	-0.019146			
-0.029489	0.004386	-0.000011	-0.000282	0.000021			
-0.006808	-0.000011	0.000221	-0.000031	-0.000228			
-0.002514	-0.000282	-0.000031	0.000143	-0.000002			
-0.019146	0.000021	-0.000228	-0.000002	0.002555			

p.7.a. Complete the ANOVA table.
p.7.b. Give the prediction for net revenue, when ShipCost=10, PrintAds=50, WebAds=40, Rebate\%=15.
p.7.c. Controlling for all other factors, give a 95% confidence interval for the change in expected net revenue ($\$ 1000$ s) when Rebate\% is increased by 1.
p.7.d. Test $H_{0}: \beta_{\text {PrintAds }}-\beta_{\text {WebAds }}=0$ vs $H_{A}: \beta_{\text {PrintAds }}-\beta_{\text {WebAds }} \neq 0$ at $\alpha=0.05$ significance level:
p.7.d.i. Test Statistic:
p.7.d.ii. Rejection Region
p.7.e. What proportion of variation in revenues is "explained" by the regression model?

QA.8. You obtain the following partial output from a regression program. Fill in all missing parts.

$X^{\prime} X$				$X^{\prime} Y$
9.0000	19.8602	26.0985		34.4348
19.8602	45.6772	57.5914		76.4129
26.0985	57.5914	77.5334		100.3257
INV(X'X)				
7.2817	-1.1916	-1.5660		
-1.1916	0.5400	0.0000		
-1.5660	0.0000	0.5400		

Regression Statistics					
R Square	(a)				
Standard Error	0.0621				
Observations	(b)				
ANOVA					
	$d f$	SS	MS	F	$F(.05)$
Regression	(c)	0.2173	(d)	(e)	(f)
Residual	6	0.0232	0.0039		
Total	8	0.2405			
	Coefficients	Standard Error	t Stat	$t(.025)$	
Intercept	2.5823	0.1676	15.4048	(k)	
FL*	(g)	0.0456	(i)	(k)	
FC*	0.2540	(h)	(j)	(k)	

p.8.a. $R^{2}=$ \qquad p.8.b. $n=$ \qquad p.8.c. $\mathrm{df}_{\text {Reg }}=$ \qquad p.8.d. MS(Regression) = \qquad p.8.e. $\mathrm{F}_{\mathrm{obs}}=$ \qquad
p.8.f. Critical F-value $(\alpha=0.05)=$ \qquad p.8.g. $\hat{\beta}_{1}=$ \qquad
p.8.h. $s\left\{\hat{\beta}_{2}\right\}=$ \qquad p.8.i. t-stat for $\mathrm{H}_{0}: \beta_{1}=0$: vs $\mathrm{H}_{\mathrm{A}}: \beta_{1} \neq 0$: \qquad
p.8.j. t-stat for $\mathrm{H}_{0}: \beta_{2}=0$: vs $\mathrm{H}_{\mathrm{A}}: \beta_{2} \neq 0$: \qquad p.8.k. Critical t-value ($\alpha=0.05$) \qquad

QA.9. A linear regression model is fit, relating mean January temperatures (Y , in ${ }^{\circ} \mathrm{F}$) to Elevation (X_{1}, in 100s of feet) and Latitude (X_{2}, in degrees north latitude) for a random sample of $n=63$ weather stations in Texas. The (partial) computer results are given below.

ANOVA									
	$d f$	SS	MS	F	F(.05)				
Regression		2472.2							
Residual		91.9		\#N/A	\#N/A				
Total		2564.1	\#N/A	\#N/A	\#N/A				
Coefficients:andard Err							t Stat	P-value	
Intercept	115.906	2.478	46.776	0.0000					
ELEV.C	-0.117	0.013	-8.877	0.0000					
LAT	-2.183	0.082	-26.580	0.0000					

p.9.a. Complete the ANOVA table.
p.9.b. Dallas/Fort Worth International Airport (DFW) was not in the sampled locations, and is located at an elevation of $X_{1}=5.6$ and a latitude of $X_{2}=32.9$. Give the predicted value for DFW.
p.9.c. For DFW, we obtain the following values: $x_{0}=\left[\begin{array}{c}1 \\ 5.6 \\ 32.9\end{array}\right] \quad x_{0}{ }^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} x_{0}=0.0454$.

Compute the 95\% Prediction Interval for DFW's mean January temperature.

QA.10. For the multiple regression model, with an intercept term, complete the following parts, show all of your work.
p.10.a. $\mathbf{Y}=\hat{\mathbf{Y}}+\mathbf{e} \quad \hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}} \quad \overline{\mathbf{Y}}=\frac{1}{n} \mathbf{J}_{n} \mathbf{Y}$ prove that $(\mathbf{Y}-\overline{\mathbf{Y}})^{\prime}(\mathbf{Y}-\overline{\mathbf{Y}})=(\hat{\mathbf{Y}}-\overline{\mathbf{Y}}) \cdot(\hat{\mathbf{Y}}-\overline{\mathbf{Y}})+\mathbf{e}^{\prime} \mathbf{e}$
p.10.b. Derive the sampling distributions of $\hat{\mathbf{Y}}-\overline{\mathbf{Y}} \quad$ and

QA.11. A linear regression model was fit, relating weekly number of passengers (Y, in 10000s) to number of street cars in operation (X_{1}, in 100s) and number of miles street cars ran (X_{2}, in 10000 miles) over a period of $n=20$ consecutive weeks. The following EXCEL spreadsheet summarizes the model.

$$
Y_{t}=\beta_{0}+\beta_{1} X_{t 1}+\beta_{2} X_{t 2}+\varepsilon_{t} \quad \varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)
$$

p.11.a. Complete the sheet.

Note: VIF = Variance Inflation Factor and DW = Durbin-Watson Statistic for Autocorrelation

X'X				X'Y			
20.00	25.89	17.81		76.27			
25.89	37.31	26.46		112.98			
17.81	26.46	19.21		81.06			
INV(X'X)				Beta-hat	SE\{B-hat $\}$	t	t(.025)
0.7614	-1.2257	0.9829		-0.73			
-1.2257	3.1660	-3.2261		2.69			
0.9829	-3.2261	3.5860		1.18			
Y'Y	Y'J/nY	Y'PY					
349.0592	290.8923	344.7835					
SSE	MSE	SSR	MSR	F	F(.05)		
r(X1, X2)	VIF	DW_Num	DW_Den	DW			
0.957434		4.906587					

p.11.b. The critical values for the Durbin-Watson test with $\mathrm{n}=20$ and $\mathrm{p}=2$ are: $\mathrm{d}_{\mathrm{L}}=1.10$ and $\mathrm{d}_{\mathrm{u}}=1.54$. Does the assumption of uncorrelated errors seem reasonable? Yes or No

[^0]
Part B: General Linear Hypothesis Tests

QB.1. A forensic study related Hand $\left(X_{1}\right)$ and Foot $\left(X_{2}\right)$ lengths to Stature (Y) for a sample of $n=75$ adult females (each variable in 100 s of mms). Consider the following three models.

$$
M_{1}: E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad M_{2}: E\{Y\}=\beta_{0}+\beta_{2} X_{2} \quad M_{3}: E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

Model 1 (Hand)					Model 2 (Foot)		
X'X			X'Y		X'X		X'Y
75	142.185		1199.70		143450	6686.317	45568.10
142.185	270.1992		2276.80		6686.317	414.390402	2819.37
INV(X'X)			beta-hat		INV(X'X)		beta-hat
5.586829	-2.93992		8.9042		2.81E-05	-0.0004537	0.0022
-2.93992	1.550753		3.7408		-0.00045	0.009733694	6.7688
Y'Y		Model 3 (Hand,Foot)				
19208.28		X'X				X'Y	
		75	142.185	176.062		1199.70	
		142.185	270.1992	334.2884		2276.80	
		176.062	334.2884	414.3904		2819.37	
		INV(X'X)				beta-hat	
		6.640061	-1.95728	-1.24223		7.4414	
		-1.95728	2.467531	-1.15897		2.3760	
		-1.24223	-1.15897	1.465136		1.7253	

p.1.a. Compute $\mathbf{Y}^{\prime}\left(\frac{1}{n} \mathbf{J}\right) \mathbf{Y}$ and the Total (Corrected) Sum of Squares.
p.1.b. Compute the Residual (Error) Sum of Squares for each model.
p.1.c. Compute $R\left(\beta_{1} \mid \beta_{0}\right), R\left(\beta_{2} \mid \beta_{0}\right), R\left(\beta_{1} \mid \beta_{0}, \beta_{2}\right), R\left(\beta_{2} \mid \beta_{0}, \beta_{1}\right)$
p.1.d. Use the general linear test for Model 3 to test $H_{0}: \beta_{1}=\beta_{2} \quad$ vs $\quad H_{A}: \beta_{1} \neq \beta_{2}$

QB.2. A firm has 2 types of expenditures that can varied in their marketing plan: advertising and in-store promotion. A regression model is fit, relating $Y=$ weekly sales to levels of these expense variables ($X_{1}=$ advertising, $X_{2}=i n-s t o r e$ promotion). The model fit is: $E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$. Set up the K^{\prime} matrix and m vector for testing: (a) whether mean sales are 500 when no advertising or in-store promotion is conducted, and (b) the effects of increasing X_{1} and X_{2} by 1 unit have the same effect on mean sales. That is, $\mathrm{H}_{0}{ }^{A}: \beta_{0}=500 \quad \mathrm{H}_{0}{ }^{\mathrm{B}}: \beta_{1}=\beta_{2}$.

QB.3. A marketing department is interested in the effects of changing advertising levels for television and internet on sales. They vary $X_{1}=T V$ ad $\$$, and $X_{2}=$ internet ad $\$$ and obtain the following regression results:

X'X				X'Y
20	416.5343	406.487		3676.373
416.5343	9546.826	8733.245		78940.14
406.487	8733.245	9111.308		77022.41
$\left(X^{\prime}\right)^{\wedge}(-1)$				betahat
0.800494	-0.01832	-0.01815		98.54071
-0.01832	0.00127	-0.0004		2.093241
-0.01815	-0.0004	0.001303		2.050869
SS(Resid)				
608.6247				

Give the analysis of variance.
Set up and conduct the general linear test that the effects of changing each type of advertising are equal in terms of sales at the $\alpha=0.05$ significance level.

QB.4. A researcher fits a simple linear regression model, relating yield of a chemical process to temperature when all inputs beside temperature are at a specific level. She wishes to test the following two hypotheses simultaneously (the temperature range the experiment was conducted was: $55 \circ \mathrm{~F}-85 \circ \mathrm{~F}$):

- The average yield increases by 2 units when temperature increases by $1^{\circ} \mathrm{F}$
- The average yield is 400 when the temperature is set to $70^{\circ} \mathrm{F}$
p.4.a. For model 2 , fill in the following matrix and vectors that she is testing (this is her null hypothesis):

p.4.b. She obtains the following results from fitting the regression based on $n=18$ measurements while conducting the experiment:
$\left(K^{\prime} \beta-m\right)^{\prime}\left(K^{\prime}\left(X^{\prime} X\right)^{-1} K\right)^{-1}\left(K^{\prime} \beta-m\right)=640 \quad Y^{\prime}(I-P) Y=3200$
p.4.c. Conduct her test at the $\alpha=0.05$ significance level.
- Test Statistic:
- Reject H_{0} if the Test Statistic falls in the range: \qquad

QB.5. A researcher fits a multiple linear regression model, relating yield (Y) of a chemical process to temperature $\left(\mathrm{X}_{1}\right)$, and the amounts of 2 additives (X_{2} and X_{3}, respectively). She fits the following model:

$$
E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}
$$

She wishes to test the following three hypotheses simultaneously:

- The mean response when $X_{1}=70, X_{2}=10, X_{3}=10$ is 80
- The average yield increases by 4 units when temperature increases by $1^{\circ} \mathrm{F}$, controlling for X_{2} and X_{3}
- The partial effect of increasing each additive is the same (controlling for all other factors)
p.5.a. Fill in the following matrix and vectors that she is testing (this is her null hypothesis):
$H_{\mathrm{o}}: K^{\prime} \beta-m=\left[\begin{array}{l}\mathrm{O} \\ \mathrm{O} \\ \mathrm{O}\end{array}\right] \Rightarrow[$

p.5.b. She obtains the following results from fitting the regression based on $n=24$ measurements while conducting the experiment:
$\left(K^{\prime} \beta-m\right)^{\prime}\left(K^{\prime}\left(X^{\prime} X\right)^{-1} K\right)^{-1}\left(K^{\prime} \beta-m\right)=1800 \quad Y^{\prime}(I-P) Y=7800$
p.5.c. Conduct her test at the $\alpha=0.05$ significance level.
- Test Statistic:

Reject H_{0} if the Test Statistic falls in the range: \qquad

QB.6. A research firm is interested in the effects of 4 types of advertising (Television, Radio, Newspaper, and Internet) on a firm's sales. They hold all other variables constant over the study period (such as price and store promotion). The sample is based on $n=30$ sales periods. They fit the following 2 regressions based on Model 1 (note that SS(Total Corrected)=5000):

Model1: $E(Y)=\beta_{0}+\beta_{T} T+\beta_{R} R+\beta_{N} N+\beta_{I} I \quad S S\left(\operatorname{Re} g_{1}\right)=4000$
Model2: $E(Y)=\beta_{0}+\beta_{A} A \quad A=T+R+N+I \quad S S\left(\operatorname{Re} g_{2}\right)=3700$
p.6.a. Test $H_{0}: \beta_{T}=\beta_{R}=\beta_{N}=\beta_{I}=0$ at $\alpha=0.05$ significance level.

Test Statistic \qquad Rejection Region \qquad
p.6.b. Set up the test of $H_{0}: \beta_{T}=\beta_{R}=\beta_{N}=\beta_{I}$ in the form of a general linear test by giving K^{\prime}, β, and m, and the degrees of freedom. Note that there are several ways K^{\prime} can be formed.
p.6.c. Test $H_{0}: \beta_{T}=\beta_{R}=\beta_{N}=\beta_{I} \quad$ at $\alpha=0.05$ significance level.

Test Statistic \qquad Rejection Region \qquad

QB.7. A study was conducted, relating female heights (Y, in 100 s of mm) to hand length (X_{1}, in 100 s of mm) and foot length (X_{2} in 100s of mm), based on a sample of $n=15$ adult females. The following model was fit, with matrix results given below.

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \quad \varepsilon \sim N I D\left(0, \sigma^{2}\right) \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \quad \text { We wish to test } H_{0}: \beta_{1}=\beta_{2} \quad H_{A}: \beta_{1} \neq \beta_{2}
$$

$X^{\prime} X$				$X^{\prime} Y$
15	28.494	35.212		239.227
28.494	54.16752	66.9457		454.7339
35.212	66.9457	82.74338		561.9917
$\left(X^{\prime} X\right)^{\wedge}(-1)$				Beta-hat
119.146	-171.059	87.696		1.249
-171.059	544.165	-367.476		10.096
87.696	-367.476	260.008		-1.908
$Y^{\prime} Y$	$Y^{\prime} P Y$			
3817.66	3817.525			

p.7.a. Set this null hypothesis in the form
$\mathrm{H}_{0}: \mathbf{K}^{\prime} \boldsymbol{\beta}-\mathbf{m}=\mathbf{0}$
p.7.b. Obtain the estimate of $\boldsymbol{K}^{\prime} \boldsymbol{\beta} \mathbf{- m}$:
p.7.c. Obtain $K^{\prime}\left(X^{\prime} X\right)^{-1} \mathbf{K}$
p.7.d. Obtain the estimate of σ^{2}
p.7.e. Compute the test statistic, give the rejection region, and conclusion for the test:

Test Statistic: \qquad Rejection Region: \qquad Reject H_{0} ? Yes or No

QB.8. A regression model is fit, relating total team payroll (Y , in millions of $£^{s}$) to offensive goals scored (X_{1}) and defensive goals allowed $\left(X_{2}\right)$ for the $n=20$ teams during the 2013 English Premier League season. For this problem, we will treat this as a sample from a population of all possible league teams.

Rank	Team	Y	X0	X1	X2
1	Man City	233	1	66	34
2	Chelsea	179	1	75	39
3	Manchester United	181	1	86	43
4	Arsenal	154	1	72	37
5	Liverpool	132	1	43	28
6	Tottenham	96	1	66	46
7	Aston Villa	72	1	47	69
8	Newcastle United	62	1	45	68
9	Sunderland	58	1	41	54
10	Everton	63	1	55	40
11	Fulham	67	1	50	60
12	Swansea City	49	1	47	51
13	West Brom	54	1	53	57
14	Stoke City	60	1	34	45
15	Norwich	75	1	41	58
16	West Ham	56	1	45	53
17	Southampton	47	1	49	60
18	QPR	78	1	30	60
19	Reading	46	1	43	73
20	Wigan	44	1	47	73

$X^{\prime} X$				' $^{\prime} Y$	
20	1035	1048		1806	
1035	57445	52509		104325	
1048	52509	58202		85017	
INV(X'X)				Beta-hat	
2.994125	-0.02661	-0.02991		88.84439	
-0.026608	0.000336	0.000176		1.953057	
-0.029907	0.000176	0.000397		-1.90105	
Ybar	$Y^{\prime} Y$				
	20	220320			

p.8.a. Complete the following ANOVA table.

ANOVA					
	$d f$	$S S$	$M S$	F	$F(0.05)$
Regression					
Residual					
Total					

p.8.b. Test whether the offensive goals scored and defensive goals allowed effects are of equal magnitude, but opposite direction: $H_{0}: \beta_{1}=-\beta_{2}$

Rank	Team	Y	X0	X1	X2
1	Man City	233	1	66	34
2	Chelsea	179	1	75	39
3	Manchester United	181	1	86	43
4	Arsenal	154	1	72	37
5	Liverpool	132	1	43	28
6	Tottenham	96	1	66	46
7	Aston Villa	72	1	47	69
8	Newcastle United	62	1	45	68
9	Sunderland	58	1	41	54
10	Everton	63	1	55	40
11	Fulham	67	1	50	60
12	Swansea City	49	1	47	51
13	West Brom	54	1	53	57
14	Stoke City	60	1	34	45
15	Norwich	75	1	41	58
16	West Ham	56	1	45	53
17	Southampton	47	1	49	60
18	QPR	78	1	30	60
19	Reading	46	1	43	73
20	Wigan	44	1	47	73

Test Statistic: \qquad Rejection Region: \qquad Reject H_{0} ? Yes
No

QB.9. A forensic study related Hand $\left(\mathrm{X}_{1}\right)$ and Foot $\left(\mathrm{X}_{2}\right)$ lengths to Stature (Y) for a sample of $\mathrm{n}=75$ adult females (each variable in 100 s of mms). Consider the following three models.

$$
M_{1}: E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad M_{2}: E\{Y\}=\beta_{0}+\beta_{2} X_{2} \quad M_{3}: E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

Model 1 (Hand)			X'Y		Model 2 (Foot)		X'Y
X'X					X'X		
75	142.185		1199.70		143450	6686.317	45568.10
142.185	270.1992		2276.80		6686.317	414.390402	2819.37
INV(X'X)			beta-hat		INV(X'X)		beta-hat
5.586829	-2.93992		8.9042		2.81E-05	-0.0004537	0.0022
-2.93992	1.550753		3.7408		-0.00045	0.009733694	6.7688
Y'Y		Model 3 (H	Hand,Foot)				
19208.28		X'X				X'Y	
		75	142.185	176.062		1199.70	
		142.185	270.1992	334.2884		2276.80	
		176.062	334.2884	414.3904		2819.37	
		INV(X'X)				beta-hat	
		6.640061	-1.95728	-1.24223		7.4414	
		-1.95728	2.467531	-1.15897		2.3760	
		-1.24223	-1.15897	1.465136		1.7253	

p.9.a. Compute $\mathbf{Y}^{\prime}\left(\frac{1}{n} \mathbf{J}\right) \mathbf{Y}$ and the Total (Corrected) Sum of Squares.
p.9.b. Compute the Residual (Error) Sum of Squares for each model.
p.9.c. Compute $R\left(\beta_{1} \mid \beta_{0}\right), R\left(\beta_{2} \mid \beta_{0}\right), R\left(\beta_{1} \mid \beta_{0}, \beta_{2}\right), R\left(\beta_{2} \mid \beta_{0}, \beta_{1}\right)$
p.9.d. Use the general linear test for Model 3 to test $H_{0}: \beta_{1}=\beta_{2} \quad$ vs $\quad H_{A}: \beta_{1} \neq \beta_{2}$

QB.10. Consider a sequence of regression models to be fit, each based on n observations:
Model 0: $Y_{i}=\beta_{0}+\varepsilon_{i}$
Model 1: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\varepsilon_{i}$
Model 2: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\varepsilon_{i}$
p.10.a. Set-up \boldsymbol{P}_{0}, the projection matrix for model 0.
p.10.b. Obtain $\mathrm{R}\left(\beta_{0}\right)$ in terms of the data $Y_{1}, \ldots, Y_{\mathrm{n}}$.
p.10.c. Suppose $Y^{\prime} P_{0} Y=500 \quad Y^{\prime} P_{01} Y=750 \quad Y^{\prime} P_{02} Y=600 \quad Y^{\prime} P_{012} Y=1000$. Complete the following table:

Variable	Sequential SS	Partial SS
$\times 1$		
$\times 2$		
		(1) ${ }^{\text {den }}$
Variable	Sequential SS	Partial SS
$\times 2$		
$\times 1$		

p.10.d. Suppose SS(Total Corrected) $=1000$.

- P.10.d.i. Give the proportion of variation in Y that is explained by X_{1} alone
- P.10.d.i.. Give the proportion of variation in Y that is not explained by X_{1} that is explained by X_{2}

QB.11. A study considered noise level of the Teheran-Karaj express train (Y , in dB) in terms of distance to the center of the track (X_{1}, in meters) and speed of the train (X_{2}, in $k m / h$), with $n=50$. Consider the following models (in matrix form).

Model 0: $E\{Y\}=\beta_{0} \quad$ Model 01: $E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad$ Model 02: $E\{Y\}=\beta_{0}+\beta_{2} X_{2}$
Model 012: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \quad Y^{\prime} \mathbf{Y}=348654$
p.11.a. The sum of the speeds of the 50 observations is $\sum_{i=1}^{50} Y_{i}=4174.2$. For model 0 , obtain:
$\mathbf{X}_{\mathbf{0}}{ }^{\prime} \mathbf{X}_{\mathbf{0}}, \quad \mathbf{X}_{\mathbf{0}}{ }^{\prime} \mathbf{Y}, \quad\left(\mathbf{X}_{\mathbf{0}}{ }^{\prime} \mathbf{X}_{\mathbf{0}}\right)^{-1}, \quad \hat{\boldsymbol{\beta}}_{\mathbf{0}}, \quad \mathbf{Y}^{\prime} \mathbf{P}_{\mathbf{0}} \mathbf{Y}$
$\mathbf{X}_{0}{ }^{\prime} \mathbf{X}_{0}=$ \qquad $\mathbf{X}_{\mathbf{0}}{ }^{\prime} \mathbf{Y}=$ \qquad $\left(\mathbf{X}_{0}{ }^{\prime} \mathbf{X}_{0}\right)^{-1}=$ \qquad $\hat{\boldsymbol{\beta}}_{0}=$ $\mathbf{Y}^{\prime} \mathbf{P}_{\mathbf{0}} \mathbf{Y}=$ \qquad
p.11.b. For Models 01, 02, and 012, you obtain the following
$\mathbf{X}_{*}{ }^{\prime} \mathbf{Y}, \hat{\boldsymbol{\beta}}_{*} \quad$ Compute $\mathbf{Y}^{\prime} \mathbf{P}_{\mathbf{0 1}} \mathbf{Y}, \quad \mathbf{Y}^{\mathbf{\prime}} \mathbf{P}_{\mathbf{0 2}} \mathbf{Y}, \quad \mathbf{Y}^{\prime} \mathbf{P}_{\mathbf{0 1 2}} \mathbf{Y}$ and $M S E_{012}$

X01'Y	Beta-hat01	X02'Y	Beta-hat02		X012'Y	Beta-hat012	
4174.2	88.5825		4174.2	75.7838		4174.2	80.1494
186706	-0.1133		332604.84	0.0967		186706	-0.1158
						332604.84	0.1073

$\mathbf{Y}^{\prime} \mathbf{P}_{\mathbf{0 1}} \mathbf{Y}=$
$Y^{\prime} \mathbf{P}_{02} Y=$ \qquad $Y^{\prime} \mathbf{P}_{012} Y=$ \qquad $M S E_{012}=$ \qquad
p.11.c. Obtain the Sequential and Partial sums of squares for X_{1} and X_{2}, and their corresponding F-statistics.

Variable	Sequential SS	Sequential F		Partial SS	Partial F
X1					
X2					

QB.12. Consider the general linear test $H_{0}: \mathbf{K}^{\prime} \boldsymbol{\beta}=\mathbf{0}$ where \mathbf{K}^{\prime} has $\mathrm{q} \leq \mathrm{p}^{\prime}$ linearly independent rows.
p.12.a. Derive the mean vector and variance-covariance matrix of $\mathbf{K}^{\prime} \boldsymbol{\beta}$.
p.12.b. Show that $Q=\left(\mathbf{K}^{\prime} \hat{\boldsymbol{\beta}}\right),\left[\mathbf{K}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{K}\right]^{-1} \mathbf{K}^{\prime} \hat{\boldsymbol{\beta}} \quad$ and $\quad S S E$ are independent. Hint: Write $Q=\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}$.

QB.13. A study was conducted, relating an abrasivity index measure (Y) to $\mathrm{p}=4$ predictors: UCS (X_{1}), BTS (X_{2}), and two brittleness indices: $B_{1}\left(X_{3}\right)$ and $B_{3}\left(X_{4}\right)$ in a sample of igneous rocks. The model fit is given below along with computations.
$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+\varepsilon_{i} \quad \varepsilon \sim \operatorname{NID}\left(0, \sigma^{2}\right)$

$X^{\prime} \mathrm{X}$						$\mathrm{X}^{\prime} \mathrm{Y}$
40	102.81	51.975	62.766	93.597		109.60
102.81	322.0451	121.9227	156.505	223.8523		263.04
51.975	121.9227	80.71724	93.99107	136.4427		152.32
62.766	156.505	93.99107	122.2703	153.0712		186.27
93.597	223.8523	136.4427	153.0712	241.7843		261.22
INV(X'X)						Beta-hat
1.509	-0.071	1.554	-0.634	-0.994		5.671
-0.071	0.023	0.045	-0.017	-0.008		-0.255
1.554	0.045	3.028	-1.150	-1.624		4.972
-0.634	-0.017	-1.150	0.482	0.605		-1.305
-0.994	-0.008	-1.624	0.605	0.930		-2.859
$Y^{\prime} \mathrm{Y}$	$Y^{\prime}(\mathrm{J} / \mathrm{n}) \mathrm{Y}$	$\mathrm{Y}^{\prime} \mathrm{PY}$				
331.28	300.30	322.05				

p.13.a. Compute SSE, df_{E} and MSE
p.13.b. Compute SSR, df_{R} and MSR
p.13.c. Test $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$ (abrasivity index is not associated with any of the predictors)

Test Statistic \qquad Rejection Region \qquad P > < . 05
p.13.c. Test $H_{0}: \beta_{3}=\beta_{4} \quad$ (The coefficients for the two brittleness indices are equal)
$K^{\prime}=$ $\mathrm{m}=$

Test Statistic \qquad Rejection Region \qquad P > < . 05

QB.14. Regression models were fit, relating various crime rates for U.S. states to a set of 25 predictors. The researchers fit the full model with all 25 predictors (say $\mathrm{X}_{1}, \ldots, \mathrm{X}_{25}$) and then the best 4 predictor model (say $\mathrm{X}_{1}, \ldots, \mathrm{X}_{4}$). For the outcome Total Crime, the authors report the following coefficients of multiple determination.

$$
R^{2}\left(X_{1}, \ldots, X_{25}\right)=.913 \quad R^{2}\left(X_{1}, \ldots, X_{4}\right)=.774 \quad \text { Compute } R^{2}\left(X_{5}, \ldots, X_{25} \mid X_{1}, \ldots, X_{4}\right)
$$

Part C: Models with Qualitative Variables and Interactions

QC.1. A linear regression model is fit, relating apartment rental prices (Y , in $\$ 100$) to square footage for for 5 apartments in each of 4 luxury neighborhoods (all apartments were built in the same decade). We consider the following 3 models,
where X_{1} is the square footage (100 s of ft^{2}); $X_{2}=1$ if neighborhood $A, 0$ otherwise; $X_{3}=1$ if neighborhood $B, 0$ otherwise; and $X_{4}=1$ if neighborhood $C, 0$ otherwise.

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}$
Model 3: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{1} X_{2}+\beta_{6} X_{1} X_{3}+\beta_{7} X_{1} X_{4}$
The ANOVA Tables from each model are given below.

ANOVA	Model1			Model2			Model3	
	$d f$	SS		$d f$	$S S$		$d f$	$S S$
Regression	1	201.2		4	228.7		7	249.6
Residual	18	90.3		15	62.7		12	41.8
Total	19	291.4		19	291.4		19	291.4

p.1.a. Test whether the "square footage effect" is the same for each neighborhood by completing the following parts (homogeneity of regressions):
p.1.a.i. H_{0} :
H_{A} :
p.1.a.ii. Conduct the test

Test Statistic \qquad Rejection Region \qquad
p.1.b. Assuming no interaction between neighborhood and square footage, test whether the neighborhoods have different means, controlling for square footage by completing the following parts (homogeneity of regressions):
p.1.b.i. $H_{0}: \quad H_{A}$:
p.1.b.ii. Conduct the test

Test Statistic \qquad Rejection Region \qquad
QC.2. Write the (full rank, additive) multiple regression equation for determining if the linear relationship of $\mathrm{Y}=$ response time as a function of $X=$ strength of signal has the same slope for three groups. Define all variables.

QC.3. A regression model is fit, relating time to complete a task (Y, in minutes) to nationality of the team ($X_{1}=1$ if $U S, 0$ if non-US) and complexity (X_{2}, on a TACOM scale) for nuclear power plant operators. The model fit is:
$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\varepsilon_{i}$

ANOVA										
	df	SS	MS	F	gnificance F		INV(X'X)			
Regressio	3	3234355	1078118	79	0.0000		0.7998	-0.7998	-0.1410	0.1410
Residual	66	903715	13693				-0.7998	1.5996	0.1410	-0.2820
Total	69	4138069					-0.1410	0.1410	0.0258	-0.0258
							0.1410	-0.2820	-0.0258	0.0515
	fficient	ndard Err	t Stat	P-value						
Intercept	-406.1	104.7	-3.88	0.0002						
Nation	-386.0	148.0	-2.61	0.0112						
Complexi	117.2	18.8	6.24	0.0000						
N*C	108.0	26.6	4.06	0.0001						

p.3.a. Test whether the slopes (with respect to complexity scores) are equivalent for US and non-US power plants.
H_{0} : \qquad H_{A} : \qquad Test Stat: \qquad P-Value: \qquad
p.3.b. Give the estimated mean time to complete a task with complexity of $X_{2}=5$ for US and non-US plants.

US: \qquad non-US: \qquad
p.3.c. Compute a 95\% Confidence Interval for the difference of the means estimated in p.3.b.

QC.4. Regression models were fit, relating height (Y , in mm) to hand length (X_{1}, in mm), foot length (X_{2}, in mm) and gender ($X_{3}=1$ if male, 0 if female) based on a sample of 80 males and 75 females. Consider these 4 models:

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{13} X_{1} X_{3}+\beta_{23} X_{2} X_{3} \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}$
Model 3 (Males Only): $E\{Y\}=\delta_{0}+\delta_{1} X_{1}+\delta_{2} X_{2} \quad$ Model 4 (Females Only): $E\{Y\}=\gamma_{0}+\gamma_{1} X_{1}+\gamma_{2} X_{2}$

ANOVA	Model1		ANOVA	Model2		ANOVA	Model3		ANOVA	Model4	
	$d f$	SS									
Regression	5	1201091	Regressio	3	1193101	Regression	2	208298	Regression	2	110552
Residual	149	157138	Residual	151	165128	Residual	77	88305	Residual	72	68833
Total	154	1358229	Total	154	1358229	Total	79	296603	Total	74	179385
Coefficientandard Error			Coefficient\$andard Error			Coefficientandard Error			Coefficientandard Err		
Intercept	744.14	83.68	Intercept	582.16	60.55	Intercept	439.42	97.49	Intercept	744.14	79.67
Hand	2.38	0.51	Hand	2.81	0.34	Hand	3.29	0.47	Hand	2.38	0.49
Foot	1.73	0.39	Foot	2.06	0.26	Foot	2.38	0.35	Foot	1.73	0.37
Male	-304.72	125.47	Male	39.61	8.50						
MaleHand	0.91	0.68									
MaleFoot	0.65	0.52									

p.4.a. Confirm the equivalence of the regression coefficients (but not standard errors) based on the appropriate models (Hint: set up the fitted equations based on the two models):

Females:
Males:
p.4.b. Test $H_{0}: \beta_{13}=\beta_{23}=0$ (No interactions between Hand and Gender or Foot and Gender).

Test Statistic: \qquad Rejection Region: \qquad p -value > or < 0.05 ?
p.4.c. Use Bartlett's Test to test whether the error variances among the individual regressions are equal:

$$
B=\frac{1}{C}\left[v \ln (M S E)-\sum_{i=1}^{t} v_{i} \ln \left(s_{i}^{2}\right)\right] \quad C=1+\frac{1}{3(t-1)}\left[\sum_{i=1}^{t} v_{i}^{-1}-v^{-1}\right]
$$

Test Statistic B = \qquad Rejection Region: \qquad p-value > or < 0.05?
p.4.d. What fraction of the total variation in height is explained by the set of predictors: hand length, foot length, and gender (but no interactions)?
p.4.e. Compute the standard deviations among the 80 Male heights and among the 75 Female heights (ignoring hand and foot length).

Males: SD = \qquad Females: SD = \qquad

QC.5. A study was conducted to determine whether having been exposed to an advertisement claiming a natural ingredient is contained in a perfume had an effect on subjects' rating of the perfume's scent. There were 112 subjects of which, 56 were exposed to the ad, and 56 were not. We fit the following regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \quad i=1, \ldots, 112 \quad X_{i}=\left\{\begin{array}{l}
1 \text { if Subject } i \text { was exposed to the ad } \\
0 \text { if Subject } i \text { was not exposed to the ad }
\end{array}\right.
$$

X'X		X'Y	Y'Y
112	56	587	3683.05
56	56	337	

p.5.a. First, we fit a model with only an intercept term, what will $P_{0}=X_{0}\left(X_{0}{ }^{\prime} X_{0}\right)^{-1} X_{0}$ ' be (symbolically, do not write out a 112×112 matrix!)? Compute $R\left(\beta_{0}\right)$.
$\mathrm{P}_{0}=$ \qquad $R\left(\beta_{0}\right)=$ \qquad
p.5.b. Compute $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and $\hat{\boldsymbol{\beta}} \quad$ NOTE: Write $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ as $\frac{1}{\left|\mathbf{X}^{\prime} \mathbf{X}\right|} \mathbf{A}$ for the appropriate \mathbf{A}
p.5.c. Compute $R\left(\beta_{0}, \beta_{1}\right), R\left(\beta_{1} \mid \beta_{0}\right)$, and MSResidual
$R\left(\beta_{0}, \beta_{1}\right)=$ \qquad $R\left(\beta_{1} \mid \beta_{0}\right)=$ \qquad MSResidual = \qquad
p.5.d. Use the t-test and the F-test to test $H_{0}: \beta_{1}=0$ vs $H_{A}: \beta_{1} \neq 0$
t-Statistic: \qquad Rejection Region: \qquad
F-Statistic: \qquad Rejection Region: \qquad

QC.6. A regression model is fit, relating Weight (Y , in pounds) to Gender ($\mathrm{X}_{1}=1$ if Male, 0 if Female) and Height (X_{2}, in inches) among professional NBA and WNBA players. The model fit is:
$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\varepsilon_{i}$

ANOVA						$I N V\left(X^{\prime} X\right)$			
	$d f$		SS	$M S$	F		3.2360	-3.2360	-0.0446

p.6.a. Test whether the slopes (with respect to height) are equivalent for male and female pro basketball players.
H_{0} : \qquad H_{A} : \qquad Test Stat: \qquad P-Value: \qquad
p.6.b. Give the estimated mean weight for a player with height $X_{2}=72$ inches for male and female pro basketball players.

Male \qquad Female: \qquad
p.6.c. Compute a 95\% Confidence Interval for the difference of the means estimated in p.6.b.

QC.7. A study measured Total Mercury levels (Y , in mg / g) in a sample of $\mathrm{n}=135$ Kuwaiti men. The independent variables were: $X_{1}=1$ if fisherman, 0 if not; $X_{2}=$ Weight (kg); and $X_{3}=\#$ Fish Meals/Week. The matrix results are given below.

X'X					${ }^{\prime}{ }^{\prime} Y$
135	100	9876	881		509.666
100	100	7280	845		418.083
9876	7280	728452	64639		38360.354
881	845	64639	9529		3959.497
INV(X'X)					beta-hat
0.967339	-0.060848	-0.012685	0.002005		-11.064
-0.060848	0.063336	0.000480	-0.003248		1.027
-0.012685	0.000480	0.000171	-0.000033		0.183
0.002005	-0.003248	-0.000033	0.000432		0.106
$Y^{\prime} Y$					
3081.235					

p.7.a Complete the following Analysis of Variance table.

Source	df	SS	MS	F_obs	F(0.05)
Regression					
Residual				\#N/A	\#N/A
Total (Corr)			\#N/A	\#N/A	\#N/A

p.7.b. Obtain a 95\% Confidence Interval for the effect of being a fisherman on expected total Mercury, controlling for Weight and Fish Meals/Week.
p.7.c. What proportion of the variance in Total Mercury is "explained" by this set of predictors?

QC.8. A regression model is fit, relating weight (Y, in pounds) to height (X_{1} in inches) and gender ($X_{2}=1$ if male, 0 if female) among a random sample of NBA/WNBA basketball players. The relationship between weight and height is fit first, separately for males and females, then combined in the model: $E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}$ p.8.a. Complete following table and test $H_{0}: \sigma_{\varepsilon M}^{2}=\sigma_{\varepsilon F}^{2}$ using Bartlett's Test.
$B=\frac{1}{C}\left[v \ln (M S E)-\sum_{i=1}^{t} v_{i} \ln \left(s_{i}^{2}\right)\right] \quad C=1+\frac{1}{3(t-1)}\left[\sum_{i=1}^{t} v_{i}^{-1}-v^{-1}\right] \quad$ Under $\mathrm{H}_{0} \quad B \dot{\boldsymbol{\sim}} \chi_{t-1}^{2}$

Regression	n		SSE	df
Males	15	4729.8		MSE
Females	15	3997.4		
All	30			

Test Statistic \qquad Rejection Region \qquad
p.8.b. The following (partial tables) include the estimated coefficients and standard errors for the males and females separately as well as the combined model. Complete the tables.

Males					Females			
Coefficientandard Err			t Stat		Coefficient		ndard Err	t Stat
Intercept	-381.24	139.75	-2.73		Intercept	-267.36	89.55	-2.99
Height	7.57	1.76	4.30		Height	6.18	1.24	4.99
			All					
				efficiento	andard Err	t Stat		
			Intercept	-267.36	93.56	-2.86		
			Height	6.18	1.29	4.77		
			Male		163.62			
			Ht*M		2.13			

p.8.c. A final model is fit among all players, relating Weight to Height without including gender or the interaction.
$E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i 1} \quad S S E=9038.7 \quad$ Test $H_{0}: \beta_{2}=\beta_{3}=0$

Test Statistic \qquad Rejection Region \qquad

QC.9. A regression model was fit based on a sample of $\mathrm{n}=117$ Black Holes. The response was Bolometric Luminosity (Y), with predictors: Black Hole Mass (X_{1}) and Black Hole Type ($\mathrm{X}_{2}=1$ if Radio Quiet Quasar (RQQ), 0 if Radio Loud Quasar (RLQ)), and a cross-product term to allow for a possible interaction between Mass and Type. Note that there were 20 RQQ and 97 RLQ Black Holes.

Model 1: $\hat{Y}_{i}=39.356+0.791 X_{i 1}+2.047 X_{i 2}-0.257 X_{i 1} X_{i 2} \quad S S E_{1}=30.964$
Model 2: $Y_{i}=39.453+0.780 X_{i 1} \quad S S E_{2}=31.187$
p.9.a. Based on Model 1, give the fitted equations relating Bolometric Luminosity to Mass, seperately by Quasar Type.

RQQ: \qquad RLQ \qquad
P.9.b. Test whether the true relationship between Bolometric Luminosity and Mass is the same for RQQs and RLQs.
$\mathrm{H}_{0}: \quad \mathrm{H}_{\mathrm{A}}:$
Test Statistic: \qquad Rejection Region: \qquad P-value > or < . 05
p.9.c. When the regressions are fit seperately, the fitted equations are the same as you should have in part p.7.a. The residual variances (MSE's) for the models are: RQQ: $s_{\alpha}{ }^{2}=0.088$ RLQ: $s^{2}=0.309$. Use Bartlett's test to test whether the true variances are equal.

$$
B=\frac{1}{C}\left[v \ln (M S E)-\sum_{i=1}^{t} v_{i} \ln \left(s_{i}^{2}\right)\right] \quad C=1+\frac{1}{3(t-1)}\left[\sum_{i=1}^{t} v_{i}^{-1}-v^{-1}\right]=1.01
$$

Test Statistic: \qquad Rejection Region: \qquad P-value > or < . 05

Part D: Models with Curvature and Response Surfaces

QD.1. A second-order response surface is fit with 2 independent variables (including all main effects, cross-product, and squared terms) and $n=20$ observations. Give the degrees of freedom for regression and residual, as well as the rejection region for testing $H_{0}: E\{Y\}=\beta_{0}$
df(Regression $)=$ \qquad $d f($ Residual $)=$ \qquad Rejection Region: \qquad

QD.2. A regression model is fit, relating the number of breeding pairs of penguins to the year, over a period of years. The researchers use $Y=\log _{10}$ (\# breeding pairs) and $X=$ (Year - mean(Year)) . They fit 3 Models:

Model 1: $E\{Y\}=\beta_{0} \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X \quad$ Model 3: $E\{Y\}=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$

Model1	Model2	Model3
beta-hat	beta-hat	beta-hat
4.4197	4.4197	4.5390
	0.0199	0.0095
		-0.0012
$X^{\prime} Y$	$X^{\prime} Y$	$X^{\prime} Y$
48.6162	48.6162	48.6162
	21.0521	21.0521
		4300.8246

p.2.a. Compute $R\left(\beta_{0}\right), R\left(\beta_{0}, \beta_{1}\right), R\left(\beta_{0}, \beta_{1}, \beta_{2}\right), \quad R\left(\beta_{1} \mid \beta_{0}\right)$, and $R\left(\beta_{2} \mid \beta_{0}, \beta_{1}\right)$ (use 4 decimal places)
$R\left(\beta_{0}\right)=$ \qquad $R\left(\beta_{0}, \beta_{1}\right)=$ \qquad $R\left(\beta_{0}, \beta_{1,}, \beta_{2}\right)$ \qquad
$R\left(\beta_{1} \mid \beta_{0}\right)=$ \qquad $R\left(\beta_{2} \mid \beta_{0}, \beta_{1}\right)=$ \qquad
p.2.b. Compute the fitted values and residuals for the following years, for each model:

Year	X	Y	Fit1	Residual1	Fit2	Residual2	Fit3	Residual3
1981	-9.09	4.17						
1989	-1.09	4.62						
1998	7.91	4.41						

QD.3. An experiment to study the effect of temperature (x) on the yield of a chemical reaction (Y), was conducted. There was a total of $n=30$ experimental runs, each using one of 2 catalysts ($z=0$ if catalyst $1, z=1$ if catalyst 2). There were 5 evenly-spaced temperatures, coded as $x=-2,-1,0,+1,+2$. There were 3 replicates per temperature/catalyst. The model fit was:

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} z+\varepsilon \quad \varepsilon \sim \operatorname{NID}\left(0, \sigma^{2}\right)
$$

You are given the following results:

Parameter	Estimate	Std. Err.		$\left(X^{\prime} X\right)^{\wedge(-1) ~}$			
$\beta 0$	29.83	0.33		0.114	0.000	-0.024	-0.067
$\beta 1$	0.95	0.13		0.000	0.017	0.000	0.000
$\beta 2$	0.41	0.11		-0.024	0.000	0.012	0.000
$\beta 3$	-0.32	0.36		-0.067	0.000	0.000	0.133
SSResidual	25						

p.3.a. Test whether there is evidence of difference in catalysts, controlling for temperature.
H_{0} : \qquad H_{A} : \qquad Test Stat: \qquad Rej. Region: \qquad
p.3.b. Can we conclude that the relationship is not linear? Obtain a 95% Confidence Interval for the relevant parameter, and interpret.

Confidence Interval \qquad Conclude that the relation is linear? Yes or No
p.3.c. Obtain the estimated mean yield when catalyst 2 is used and at the standard temperature $(x=0)$, and compute a $95 \% \mathrm{Cl}$ for the mean.

Point Estimate: \qquad 95\% CI: \qquad
p.3.d. At what (centered) temperature do you estimate the yield to be maximized?

QD.4. A response surface was fit, relating (coded) Nitrogen $\left(X_{N}\right)$, Phosphorous $\left(X_{P}\right)$ and Number of Days $\left(X_{D}\right)$ on the percent crude oil removed from an experimental oil spill (Y). The following 3 models were fit, based on $n=20$ experimental spills:

Model 1: $E\{Y\}=\beta_{0}+\beta_{N} X_{N}+\beta_{P} X_{P}+\beta_{D} X_{D} \quad \operatorname{SSRes}_{1}=2945$
Model 2: $E\{Y\}=\beta_{0}+\beta_{N} X_{N}+\beta_{P} X_{P}+\beta_{D} X_{D}+\beta_{N P} X_{N} X_{P}+\beta_{N D} X_{N} X_{D}+\beta_{P D} X_{P} X_{D} \quad \operatorname{SSRes}_{2}=2504$
Model 3: $E\{Y\}=\beta_{0}+\beta_{N} X_{N}+\beta_{P} X_{P}+\beta_{D} X_{D}+\beta_{N P} X_{N} X_{P}+\beta_{N D} X_{N} X_{D}+\beta_{P D} X_{P} X_{D}+\beta_{N N} X_{N}^{2}+\beta_{P P} X_{P}^{2}+\beta_{D D} X_{D}^{2} \quad \operatorname{SSRes}_{3}=368$
p.4.a. Use Models 1 and 2 to test whether any of the interaction terms are significant, after controlling for main effects:
$H_{0}: \beta_{N P}=\beta_{N D}=\beta_{P D}=0$
\qquad
\qquad
p.4.b. Use Models 2 and 3 to test whether any of the quadratic terms are significant, after controlling for main effects and interactions: $H_{0}: \beta_{N N}=\beta_{P P}=\beta_{D D}=0$

Test Statistic \qquad Rejection Region \qquad Reject H_{0} ? Yes or No
p.4.c. The coded and actual levels are given below. The model was fit based on the coded values ($-1,0,1$) and several axial points.

Var\CodedVals	-1	0	1
Nitrogen	0	10	20
Phosphorous	0	1	2
Days	7	17.5	28

Give the actual levels, corresponding to the models' intercepts: Nit = \qquad , Phos = \qquad , Days = \qquad

QD.5. A study related Personal Best Shot Put distance (Y , in meters) to best preseason power clean lift (X , in kilograms). The following models were fit, based on a sample of $n=24$ male collegiate shot putters:
Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X$
$S S E_{1}=43.41$
$R_{1}^{2}=.686$
$\hat{Y}(X)=4.4353+0.0898 X$
Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$
$S S E_{2}=37.41$
$R_{2}^{2}=.729$
$\hat{Y}\left(X, X^{2}\right)=12.08+0.3285 X-0.00084 X^{2}$
p.5.a. Use Model 2 to test $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0 \quad(\mathrm{Y}$ is not related to X$)$

Test Statistic \qquad Rejection Region: \qquad Reject H_{0} ? Yes or No p.5.b. Use Models 1 and 2 to test $H_{0}: \beta_{2}=0 \quad(Y$ is linearly related to X)

Test Statistic: \qquad Rejection Region: \qquad Reject H_{0} ? Yes or No p.5.c. Give an estimate of the level of X is that maximizes $E\{Y\}$.
$X^{*}=$ \qquad

QD.6. A study related Freight Volume (Y) in Shanghai to GDP $\left(\mathrm{X}_{1}\right)$ and Fixed Investment $\left(\mathrm{X}_{2}\right)$ over a period of $\mathrm{n}=11$ years. The authors fit the following 3 models:

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \quad$ Model 3: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{11} X_{1}^{2}$

X1'X1			X1'Y	Y'Y	Ybar		
11	101.9252		73.9559	511.3755	6.7233		
101.9252	1165.029		735.7308				
INV(X1'X1)			Beta1				
0.4801	-0.0420		4.6037				
-0.0420	0.0045		0.2287				
X2'X2			X2'Y	X3'X3			X3'Y
11	101.9252	268.8874	73.9559	11	101.9252	1165.029	73.9559
101.9252	1165.029	3330.45	735.7308	101.9252	1165.029	15072.8	735.7308
268.8874	3330.45	14551.43	2053.5629	1165.029	15072.8	209541.9	8799.5043
INV(X2'X2)			Beta2	INV(X3'X3)			Beta3
0.5045	-0.0506	0.0023	4.7251	2.1808	-0.4891	0.0231	4.3315
-0.0506	0.0076	-0.0008	0.1860	-0.4891	0.1220	-0.0061	0.3003
0.0023	-0.0008	0.0002	0.0112	0.0231	-0.0061	0.0003	-0.0037

p.6.a. Compute SSTotal ${ }_{\text {Corrected }}$
p.6.b. Compute SSRegression and SSResidual for each model.
p.6.c. Compute $R\left(\beta_{2} \mid \beta_{0}, \beta_{1}\right)$ and $R\left(\beta_{11} \mid \beta_{0}, \beta_{1}\right)$
p.6.d. Test $H_{0}: \beta_{11}=0$ vs $H_{A}: \beta_{11} \neq 0$ (Note there are 2 ways of doing this).
p.6.e. What proportion of the variation in Y that is not explained by X_{1} is explained by X_{2} ?

QD.7. Show that for simple regression, when we have n_{i} observations at the $i^{\text {th }}$ distinct level of X, the Pure error sum of squares can be written as

$$
S S P E=\sum_{i=1}^{c}\left(n_{i}-1\right) S_{i}^{2} \quad \text { where } S_{i}^{2} \text { is the sample variance of } Y_{i 1}, \ldots, Y_{i n_{i}}
$$

p.7.a. An experiment was conducted to study the relationship of between yield from a chemical reaction (y) and the reaction temperature (x). The following data were obtained from $\mathrm{n}=12$ runs. The fitted equation based on $\mathrm{n}=12$ runs was Y-hat $=92.68-0.15 x$. Complete the table by filling in values for $X=100$.

Level(i)	1	2	3	4	5	6
$n(i)$	1	2	2	3	2	2
$x(i)$	60	70	80	90	100	110
$y(i)$	51	82,78	90,96	$100,89,99$	82,84	54,52
$y-b a r(i)$	51	80	93	96		53
$S^{\wedge} 2(i)$	0	8	18	37		2
$y-h a t(i)$	83.81	82.34	80.86	79.38		76.42
n^{*} (ybar-yhat)^2	1076.77	10.92	294.84	828.62		1097.44
(n-1)S^2	0	8	18	74		2

p.7.b. Conduct the Lack-of-Fit F-test by completing the following table: (H_{0} : Linear Model is appropriate)

Source	df	SS	MS	F	F(.05)
Lack-of-Fit					
Pure Error					

p.7.c. Do you reject the hypothesis that a linear fit is appropriate at the 0.05 significance level? Yes / No
p.7.d. Based on the same dataset, a quadratic model is fit based on the original (non-centered) X values:

$$
E(Y)=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}
$$

- Give the fitted value for $X=100$
- Compute simultaneous 95% CIs for β_{1} and β_{2} based on Bonferroni's adjustment.

	Estimate	Std. Error
Intercept	-427.018	32.774
X	12.260	0.772
$X^{\wedge} 2$	-0.072	0.004

- Based on your simultaneous Cls give an approximate confidence interval for the X value where Y is maximized.

QD.8. A response surface model related yield of methyl ester from waste canola oil (Y) to 3 factors: Time (X_{1}, in minutes $(15,30,45)$), Temperature (X_{2}, in degrees Celsius $(240,255,270)$) and Methanol/Oil Ratio $\left(X_{3}(1,1.5,2)\right.$).

Two models are considered are given below, along with the partial ANOVA tables, based on $\mathrm{n}=19$ cases.

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{12} X_{1} X_{2}+\beta_{13} X_{1} X_{3}+\beta_{23} X_{2} X_{3}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}+\beta_{33} X_{3}^{2}$
Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{12} X_{1} X_{2}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}$
p.8.a. Complete the ANOVA Tables.

ANOVA	Full Model				
	$d f$	$S S$	$M S$	F	$F(.05)$
Regression		17395.68			
Residual		452.7547			
Total		17848.44			
ANOVA	Reduced Model				
	$d f$	$S S$	$M S$	F	$F(.05)$
Regression		17143.29			
Residual		705.149			
Total		17848.44			

p.8.b. Test whether all terms that include X_{3} can be excluded from the model.

Null Hypothesis:
Test Statistic: \qquad Rejection Region: \qquad
p.8.c. The fitted equation for model 2 can be written as follows. Solve for the value \mathbf{x}^{*} that maximizes the response (in terms of \mathbf{B}_{1} and \mathbf{B}_{2}) ?
$\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{12} X_{1} X_{2}+\hat{\beta}_{11} X_{1}^{2}+\hat{\beta}_{22} X_{2}^{2}=\hat{\beta}_{0}+\mathbf{B}_{1}{ }^{\prime} \mathbf{x}+\mathbf{x} \mathbf{x}^{\prime} \mathbf{B}_{2} \mathbf{x}$
$\mathbf{x}=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right] \quad \mathbf{B}_{1}=\left[\begin{array}{l}\hat{\beta}_{1} \\ \hat{\beta}_{2}\end{array}\right] \quad \mathbf{B}_{2}=\left[\begin{array}{cc}\hat{\beta}_{11} & \hat{\beta}_{12} / 2 \\ \hat{\beta}_{12} / 2 & \hat{\beta}_{22}\end{array}\right]$
p.8.d. The estimated regression coefficients, \mathbf{B}_{1} and \mathbf{B}_{2} and $\mathbf{B}_{2}{ }^{-1}$ are given below. Obtain the optimum levels of Temperature (X_{1}) and Time (X_{2}).

Coefficients		B1		B2		
Intercept	2950.9606		-21.61		0.0284	0.0424
Time	-21.6095		-22.25		0.0424	0.0417
Temp	-22.2503					
TimTem	0.0849				INV(B2)	
Time2	0.0284				-67.74	68.85
Temp2	0.0417				68.85	-46.02

QD.9. A second-order response surface is to be fit with 4 predictors. How many experimental runs will be needed so that the full model will have 20 Error degrees of freedom?

Part E: Model Building

QE.1. A regression model is to be fit, relating mean January High temperature (Y) to 3 potential predictors (ELEVation, LATitude, and LONGitude). The following results are obtained:

						$d f$	$S S$	MS
	b	SE(b)	t Stat	P-value	Regression	1	2311.213	2311.213
Intercept	60.94146	0.363461	167.6699	0	Residual	367	8428.007	22.9646
ELEV	-0.00188	0.000187	-10.0321	$4.32 E-$ 21	Total	368	10739.22	
Intercept	129.2194	1.1704	110.4105	0.0000	Regression	1	9768.30	9768.30
LAT	-2.2656	0.0373	-60.7646	0.0000	Residual	367	970.92	2.65

| | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: |
| Intercept | 129.5893 | 1.2998 | 99.7002 | 0.0000 | Regression | 2 | 9769.44 | 4884.72 |
| ELEV | 0.0000 | 0.0001 | 0.6563 | 0.5120 | Residual | 366 | 969.78 | 2.65 |
| LAT | -2.2796 | 0.0430 | -53.0544 | 0.0000 | | | | |
| | | | | | | | | |
| Intercept | 105.6653 | 6.5092 | 16.2332 | 0.0000 | Regression | 2 | 854.10 | 427.05 |
| ELEV | 0.0023 | 0.0001 | 16.2047 | 0.0000 | Residual | 366 | 1049.01 | 2.87 |
| LONG | -0.7846 | 0.0676 | -11.6090 | 0.0000 | | | | |
| | | | | | | | | |
| Intercept | 117.5506 | 2.9467 | 39.8925 | 0.0000 | Regression | 2 | 9814.92 | 4907.46 |
| LAT | -2.3027 | 0.0374 | -61.5047 | 0.0000 | Residual | 366 | 924.30 | 2.53 |
| LONG | 0.1297 | 0.0302 | 4.2967 | 0.0000 | | | | |
| | | | | | | | | |
| Intercept | 57.9594 | 7.2895 | 7.9510 | 0.0000 | Regression | 3 | 9976.42 | 3325.47 |
| ELEV | -0.0014 | 0.0002 | -8.7908 | 0.0000 | Residual | 365 | 762.80 | 2.09 |
| LAT | -2.0491 | 0.0446 | -45.9090 | 0.0000 | Total | 368 | 10739.22 | |
| LONG | 0.6718 | 0.0675 | 9.9520 | 0.0000 | | | | |

p.1.a. Based on Stepwise Regression with $S L S=S L E=0.05$, what will be the sequence of models selected and the final model. Give BRIEFLY the reason for each step.
p.1.b. Compute SBC and C_{p} for the 3 2-variable models and the 3 -variable model (C_{p} for the 3 -variable model will be 4 by definition). Based on each criteria which model is selected?

$$
C_{p}=\frac{S S(\operatorname{Re} s)_{p}}{M S(\operatorname{Re} s)_{\text {Full }}}+2 p^{\prime}-n \quad S B C\left(p^{\prime}\right)=n \ln \left(S S(\operatorname{Re} s)_{p}\right)+[\ln (n)] p^{\prime}-n \ln (n)
$$

ELEV, LAT $\quad C_{p}=$ \qquad $S B C=$ \qquad ELEV, LONG $\quad C_{p}=$ \qquad $S B C=$ \qquad

ELEV, LAT $\quad C_{p}=$ \qquad SBC = \qquad

ELEV, LAT, LONG $\quad C_{p}=$ \qquad $S B C=$ \qquad
p.1.c. Which model will have the highest adjusted- R^{2} ?
p.1.d. Give the Sequential and Partial sums of squares for each variable (for the ordering: ELEV, LAT, LONG) by completing the following table:

Variable	Sequential SS	Partial SS
ELEV		
LAT		
LONG		

QE.2. A study looked at the relationship between stack loss (Y, a measure of ammonia escaping a process), and 3 protential predictors: airflow (Air), cooling temperature (temp), and acid concentration (acid).
$E(Y)=\beta_{0}+\beta_{\text {Air }}$ Air $+\beta_{\text {Temp }}$ Temp $+\beta_{\text {Acid }}$ Acid
p.2.a Complete the following table where:
$C_{p}=\frac{S S(\operatorname{Res})_{p}}{s^{2}}+2 p^{\prime}-n \quad A I C=n \ln \left(S S(\operatorname{Res})_{p}\right)+2 p^{\prime}-n \ln (n)$
SS(Total Corr) 20.69

Independent Vars	SS(Res)	R-Square	R^2-Adj l	Cp	AIC
Air	3.19	0.85	0.84	13.34	-35.57
Temp	4.83	0.77	0.75	28.93	-26.86
Acid	17.38	0.16	0.12	148.26	0.03
Air,Temp	1.89	0.91	0.90	2.95	-44.59
Air,Acid	3.09	0.85	0.83	14.39	$-\mathbf{3 4 . 2 3}$
Temp,Acid	4.75	0.77	0.74		$-\mathbf{2 5 . 2 1}$
Air,Temp,Acid	1.79				

p.2.b. Which model is best by each of the following criteria? Why do you choose that model for that criteria?
p.2.b.i. Adjusted-R2:
p.2.b.ii. C_{p} :
p.2.b.iii. AIC:
p.2.c. Give the following sums of squares:
p.2.c.i. R(Air | Intercept, Temp, Acid):
p.2.d. Test $H_{0}: \beta_{\text {Temp }}=\beta_{\text {Acid }}=0$ versus $H_{A}: \beta_{\text {Temp }}$ and/or $\beta_{\text {Acid }} \neq 0$ at the $\alpha=0.05$ significance level:
p.2.d.i. Test Statistic:
p.2.d.ii. Rejection Region:

QE.3. A potentially cubic regression model is fit, relating Y to X. We get the following fits for all possible models:

	Coefficients	Standard Error	t Stat	P-value		Coefficients	Standard Error	t Stat	P-value
Intercept	13.0256	7.7852	1.67	0.1107	Intercept	39.9909	2.0364	19.64	0.0000
X	8.6304	0.6659	12.96	0.0000	X	2.2993	0.3301	6.97	0.0000
					X-cube	0.0173	0.0008	21.03	0.0000
	Coefficients	Standard Error	t Stat	P-value					
Intercept	39.4330	1.4266	27.64	0.0000		Coefficients	Standard Error	t Stat	P-value
X-square	0.4383	0.0077	56.99	0.0000	Intercept	43.4009	1.2529	34.64	0.0000
					X -square	0.2893	0.0308	9.40	0.0000
	Coefficients	Standard Error	t Stat	P-value	X-cube	0.0078	0.0016	4.91	0.0001
Intercept	52.0023	2.0269	25.66	0.0000					
X-cube	0.0225	0.0006	35.70	0.0000		Coefficients	Standard Error	t Stat	P-value
					Intercept	45.0566	2.1990	20.49	0.0000
	Coefficients	Standard Error	t Stat	P-value	X	-0.8961	0.9760	-0.92	0.3714
Intercept	46.6514	1.8053	25.84	0.0000	X-square	0.3910	0.1151	3.40	0.0034
X	-1.9882	0.4183	-4.75	0.0002	X-cube	0.0047	0.0038	1.23	0.2338
X-square	0.5309	0.0202	26.29	0.0000					

p.3.a. We fit a Stepwise Regression Model with SLE $=$ SLS $=0.20$
p.3.a.i. What variable is entered at Step 1? Why?
p.3.a.ii. What happens at Step 2? Why?
p.3.a.iii. What happens at Step 3? Why?

QE.4a. True or False: In all possible regressions, the model chosen based on R^{2}-Adj criterion will always give the model as the MS(Residual) criterion. True or False

QE.4b. True or False: In Stepwise Regression, it is possible for a predictor to enter a model at an early stage, then be removed at a later stage. True or False

QE.5. All possible regressions are fit among models containing 3 potential independent variables ($X_{1}=$ quay cranes/berth, $\mathrm{X}_{2}=$ terminal (yard) cranes/berth, and $\mathrm{X}_{3}=$ berth length. The response is the Throughput/berth (Y in 1000s of TEU). The models are based on a sample $n=15$ Chinese ports.

Vars	SSResid	SSReg
X1	152359	283731
X2	124788	311302
X3	434546	1544
X1,X2	96491	339599
X1,X3	112392	323698
X2,X3	86155	349935
X1,X2,X3	47908	388182
SSTotal(C)	436090	

$$
\begin{aligned}
& C_{P}=\frac{S S(\operatorname{Re} s)_{\text {Model }}}{\operatorname{MS}(\operatorname{Res})_{\text {Complete }}}+2 p^{\prime}-n \\
& A I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+2 p^{\prime}-n \ln (n) \\
& S B C=B I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+\ln (n) p^{\prime}-n \ln (n)
\end{aligned}
$$

p.5.a. Compute SBC for the model with X_{1} as the only predictor.
p.5.b. Compute Adjusted- R^{2} for the model with X_{1} and X_{3}.
p.5.c. Compute C_{p} for the model with X_{2} and X_{3}.
p.5.d. Will C_{p} choose model $\left(X_{2}, X_{3}\right)$ or model $\left(X_{1}, X_{2}, X_{3}\right)$? Why?

QE.6. A series of models were fit, relating Average January High Temperature (Y , in degrees F) to Elevation (X_{1}, in 100 s ft above sea level), and Latitude (degrees North Lat) for $n=369$ weather stations in Texas. Latitude and Elevation were centered in the regression models.

$$
\begin{aligned}
& C_{P}=\frac{S S(\operatorname{Re} s)_{\text {Model }}}{\operatorname{MS}(\operatorname{Res})_{\text {Complete }}}+2 p^{\prime}-n \\
& A I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+2 p^{\prime}-n \ln (n) \\
& S B C=B I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+\ln (n) p^{\prime}-n \ln (n)
\end{aligned}
$$

Variables in Model	SS(RES)	C_p	AIC	SBC
ELEV (E)	7986.3	4764.2	1138.6	1146.4
LAT (L)	1168.0		429.2	437.0
E,L	616.2	32.8	195.2	207.0
E,L,E*L	603.9	26.9		205.4
E,L,E^2,L^2	575.0	10.3	173.7	
E,L,E*L,E^2,L^2	565.2	6	169.3	192.8

p.6.a. Complete the table.
p.6.b. Based on each criteria, which model do you choose?
C_{p} : \qquad AIC: \qquad SBC: \qquad
QE.7. Regression models are fit, relating price of Compact Hybrid Cars (Y , in $\$ 1000 \mathrm{~s}$) to Acceleration (X_{1}, in $\mathrm{km} / \mathrm{hour} / \mathrm{sec}$) and Miles per Gallon (max of Gas and Electric mph) for $\mathrm{n}=25$ models from years 2009-2013.

Consider the following models with Residual Sums of Squares for each model (SSTotal ${ }_{\text {corr }}=2196$)

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1} \quad \operatorname{SSE} E_{1}=1307 \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{2} X_{2} \quad \operatorname{SSE}_{2}=1747$
Model 3: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \quad \operatorname{SSE}_{3}=953 \quad$ Model 4: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2} \quad S S E_{4}=854$
Note:
$C_{P}=\frac{S S(\operatorname{Re} s)_{\text {Model }}}{\operatorname{MS}(\operatorname{Res})_{\text {Complete }}}+2 p^{\prime}-n$
$A I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+2 p^{\prime}-n \ln (n)$
$S B C=B I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+\ln (n) p^{\prime}-n \ln (n)$
p.7.a. Compute C_{p} for Model 1.
p.7.b. Compute AIC for model 2
p.7.c. Compute SBC for models 3 and 4. Which model is preferred based on that criteria?

QE.8. A model is fit relating January Mean Temperature (Y , in Fahrenheit) to Elevation (X_{1}, in 100s of feet above sea level) and Latitude ($\mathrm{X}_{2}=$ Degrees North Latitude -30) for a random sample of $\mathrm{n}=29$ weather stations in Texas. Two models are fit:

Model 1: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \quad$ Model 2: $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}+\beta_{12} X_{1} X_{2}$
The matrix form for Model 1 is given below.

Model1				
X1'X1				X1'Y
29	424.37	39.91667		1329.4
424.37	12333.16	1024.833		17777.29
39.91667	1024.833	183.5892		1468.948
INV(X1'X1)				Beta-hat1
0.070532	-0.00215	-0.00333		50.6488
-0.00215	0.000217	-0.00074		-0.0954
-0.00333	-0.00074	0.010317		-2.47845
$Y^{\prime} Y$				
62025.94				

p.8.a. Compute $\mathbf{Y}^{\prime} \mathbf{P}_{1} \mathbf{Y}, \quad \mathbf{Y}^{\prime}\left(\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{Y}$, the Error and Regression Sums of Squares, and the estimate of σ for Model 1.
$\mathbf{Y}^{\prime} \mathbf{P}_{1} \mathbf{Y}=$

$$
\mathbf{Y}^{\prime}\left(\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{Y}=
$$

\qquad $S S R e g=$ \qquad $s=$ \qquad
p.8.b. Compute a 95\% Confidence Interval for β_{2}
p.8.c. For Model 2, we get the following results. Obtain the fitted value for a location with an Elevation of 500 feet above sea level and at 30 degrees North Latitude based on each model. Note the units with which X_{1} and X_{2} been "operationalized" with.

Beta-hat2	Y'P2Y
51.12363	62002.74
-0.15163	
-2.30609	
0.000163	
-0.14301	
0.026796	

Model 1 \qquad Model 2 \qquad
p.8.d. Test $H_{0}: \beta_{11}=\beta_{22}=\beta_{12}=0$
\qquad
\qquad
p.8.e. Compute AIC for each model. Which model do you select based on the AIC criteria.
$A I C=n \ln (S S E)+2 p^{\prime}-n \ln (n)$
QE.9. Over Michael Jordan's (Pro Basketball player, not UCBerkley Stat/CS Professor) career, he played 15 seasons. A plot of his average Points per 48 Minutes (regulation game) versus season is given below.

Consider the following orders of polynomials models (treating his seasons as a random sample of all seasons he could have played over the same ages / physical conditions): $2^{\text {nd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$.

$$
C_{P}=\frac{S S(\operatorname{Re} s)_{\text {Model }}}{\operatorname{MSS}(\operatorname{Res})_{\text {Complete }}}+2 p^{\prime}-n
$$

Note: $\quad A I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+2 p^{\prime}-n \ln (n)$

$$
S B C=B I C=n \ln \left(S S(\operatorname{Re} s)_{\text {Model }}\right)+\ln (n) p^{\prime}-n \ln (n)
$$

Complete the following table. Which order model is selected by C_{p} ? by BIC? \qquad

Poly Order	\# Parms	df_Err	SSE	R^2	Cp	AIC	BIC=SBC
2	3		110.16	0.6926		35.908	38.032
4	5		55.61	0.8448	4.737		33.195
5	6		52.72		6.231	30.854	35.102
6	7		45.69	0.8725	7.000	30.707	

QE.10. A study relating shipping fuel use (Y , tons/day) to speed (X , knots) for container ships travelling between Tokyo and Xiamen was fit by the following regression models based on $n=20$ experimental runs.

Model 1: $E\{Y\}=\beta_{0}+\beta_{1}(X-\bar{X})$
$S S E_{1}=182.9746$
Model 2: $E\{Y\}=\beta_{0}+\beta_{1}(X-\bar{X})+\beta_{2}(X-\bar{X})^{2} \quad S S E_{2}=27.0208$
Model 3: $E\{Y\}=\beta_{0}+\beta_{1}(X-\bar{X})+\beta_{2}(X-\bar{X})^{2}+\beta_{3}(X-\bar{X})^{3} \quad S S E_{3}=26.1413$
p.10.a. Complete the following table.

Model	p'	Cp	AIC	BIC
Linear			48.272	50.264
Quadratic		2.569		15.042
Cubic		4.000	13.356	

Note:

$$
C_{p}=\frac{S S E(\text { Model })}{M S E(\text { Complete })}-\left(n-2 p^{\prime}\right) \quad A I C=n \ln \left(\frac{\operatorname{SSE}(\text { Model })}{n}\right)+2 p^{\prime} \quad B I C=n \ln \left(\frac{S S E(\text { Model })}{n}\right)+\ln (n) p^{\prime}
$$

p.10.b. Which model would you choose based on the 3 criteria? C_{p} \qquad AIC \qquad BIC \qquad

Part F: Multicollinearity

QF.1. True or False: When the independent variables have been set up in a controlled experiment to be uncorrelated among themselves, the Variance Inflation Factor for each predictor will be 0. True or False

QF.2. A regression model is fit, relating January mean temperature (Y) to ELEVation, LATitude, and LONGitude for $\mathrm{n}=369$ weather stations in Texas (the data are aggregated over a period of years). The following table gives the Regression and Residual sums of squares for each model. All models contain an intercept.

Model	SS(REG)	SS(RES)
ELEV	5785.3	7986.3
LAT	12603.3	1168.3
LONG	2239.5	11532.1
ELEV,LAT	13155.1	616.5
ELEV,LONG	7669.7	6101.9
LAT,LONG	13087.0	684.6
ELEV,LAT,LONG	13156.8	614.8

p.2.a. Compute $R(L O N G), R(L O N G \mid E L E V), R(L O N G \mid L A T), R(L O N G \mid E L E V, L A T)$
p.2.b. Based on the simple linear regression, relating Y to LONG: $E\{Y\}=\beta_{0}+\beta_{\text {LONG }}$ LONG, test
$H_{0}: \beta_{\text {LONG }}=0 \quad H_{A}: \beta_{\text {LONG }} \neq 0$

Test Statistic: \qquad Rejection Region: \qquad
p.2.c. Based on the simple linear regression, relating Y to ELEV, LAT, LONG:
$\mathrm{E}\{\mathrm{Y}\}=\beta_{0}+\beta_{\mathrm{ELEV}} \mathrm{ELEV}+\beta_{\mathrm{LAT}} \mathrm{LAT}+\beta_{\mathrm{LONG}} \mathrm{LONG}$, test $H_{0}: \beta_{\mathrm{LONG}}=0 \quad H_{\mathrm{A}}: \beta_{\mathrm{LONG}} \neq 0$

Test Statistic: \qquad Rejection Region: \qquad
p.2.d. The Coefficient of Determination, when LONG is regressed on ELEV and LAT is 0.843 . Compute the Variance Inflation Factor for LONG.

Part G: Weighted and Generalized Least Squares

QG.1. A regression model is fit, where X is the dose individuals receive and Y is a measure of therapeutic response. The following table gives the sample size, mean, and variance for each level of dose (the overall mean is 25). Consider the simple linear regression model $Y=X \beta+\varepsilon$

X	Sample Size	Mean	Variance
0	4	11	4
2	9	16	5
4	4	24	3
8	9	30	5
16	4	49	4

p.1.a. Obtain the weighted least squares estimate of $\beta \hat{\beta}_{W}=\left(X^{*} X^{*}\right)^{-1} X^{* \prime} Y^{*} \quad X^{*}=W X, Y^{*}=W Y$
p.1.b. Obtain the fitted values in the original scale: $\hat{Y}_{W}=X \hat{\beta}_{W}$
p.1.c. Test whether the relationship between dose and response is linear ($\alpha=0.05$).

QG.2. A regression model is fit, where X is the dose individuals receive and Y is a measure of therapeutic response. The following table gives the sample size, mean, and variance for each level of dose (the overall mean is 25). Consider the simple linear regression model $Y=X \beta+\varepsilon$

X	Sample Size	Mean
0	9	10
2	16	15
4	4	27
8	16	30
16	9	48

p.2.a. Obtain the weighted least squares estimate of $\beta \hat{\beta}_{W}=\left(X^{* \prime} X^{*}\right)^{-1} X^{*} Y^{*} \quad X^{*}=W X, Y^{*}=W Y$
p.2.a.1. $W=$
p.2.a.ii. $X^{*}=$
p.2.a.iii. $\quad Y^{*}=$
p.2.a.iv. $\hat{\beta}_{W}=$
p.2.b. Obtain the fitted values in the original scale: $\hat{Y}_{W}=X \hat{\beta}_{W}$

QG.3. A study related the spread in shotgun pellets (Y, sqrt(AREA)) to distance shot (X, in feet) for a particular shotgun and bullet type (different from the in-class example).
p.3.a. Based on the residuals versus fitted plot (Plot 2 on page 1), which violation(s) if any is/are violated?
i) Linearity
ii) Equal Variances
iii) Independence
p.3.b. We wish to fit an Estimated Weighted Least Squares Regression of the following model:
$Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\varepsilon_{i} \quad x_{i}=X_{i}-\bar{X} \quad$ with weights $w_{i}=\frac{1}{s_{j}^{2}} \quad$ where s_{j} is SD of Y for distance group of shot i
The data are given below, give the form of \mathbf{W} used in estimating $\hat{\boldsymbol{\beta}}_{\mathbf{W}}=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{W} \mathbf{Y}$

\mathbf{X}	\mathbf{x}	$x^{\wedge} 2$	y 1	y 2	y 3	y 4	y 5	y 6	$\mathrm{SD}(\mathrm{grp})$
10	-20	400	3.01	3.02	3.29	3.00	3.20	3.11	0.119
20	-10	100	5.57	5.00	5.42	5.73	5.29	5.10	0.278
30	0	0	8.09	6.80	7.95	8.62	8.41	8.62	0.685
40	10	100	10.81	10.19	13.01	11.17	11.33	9.35	1.232
50	20	400	16.07	14.90	17.47	14.21	13.13	11.93	1.996

p.3.c. From the results below, complete the following table. (SSE* based on transformed residuals)

X'WX			X'WY	
519.5807125	-9180.684522	178240.8398	1899.813	
-9180.684522	178240.8398	-3451225.692	-29592.3	
178240.8398	-3451225.692	68848673.11	580927.4	
INV(X'WX)			Beta_W	SE(B_W)
0.02146079	0.00100725	-0.00000507	8.020371	
0.00100725	0.00023816	0.00000933	0.286385	
-0.00000507	0.00000933	0.00000050	0.00203	
SSE*	s^2			
25.09147082				

QG.4. A regression is fit, relating Gross Profits (Y , in $\$ 100 \mathrm{M}$) to amount bet in Slot Machines (X_{1}, in $\$ 1 \mathrm{~B}$) and amount bet on table games (X_{2}, in $\$ 1 B$) for all Atlantic City casinos annually for 1978-2012 ($n=35$). The results for the regression coefficients and their standard errors are given below, for the model fit by Ordinary Least Squares.

Coefficientsandard Err			
	0.193	0.818	
Intercept	0.159	0.023	
Slots	0.159		
Tables	0.552	0.165	

p.4.a. Compute the test statistic and give the rejection region for testing $H_{0}: \beta_{1}=0$ vs $H_{A}: \beta_{1} \neq 0$

Test Statistic: \qquad Rejection Region: \qquad
p.4.b. Compute a 95\% Confidence Interval for β_{2}.
p.4.c. The Durbin-Watson test results in strongly rejecting the null hypothesis $H_{0}: \rho=0$ (See plot 2, page 1). A transformation, that when applied to the X -matrix and Y -vector produces uncorrelated errors:
$\mathbf{Y}^{*}=\mathbf{T}^{-1} \mathbf{Y}=\mathbf{T}^{-1} \mathbf{X} \boldsymbol{\beta}+\mathbf{T}^{-1} \boldsymbol{\varepsilon}:$
$\mathbf{T}^{-1}=\left[\begin{array}{cccccc}\sqrt{1-\rho^{2}} & 0 & 0 & \cdots & 0 & 0 \\ -\rho & 1 & 0 & \cdots & 0 & 0 \\ 0 & -\rho & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -\rho & 1\end{array}\right]$ For this data, $\hat{\rho}=\frac{\frac{1}{n} \sum_{t=1}^{n} e_{t}^{2}}{\frac{1}{n} \sum_{t=2}^{n} e_{t} e_{t-1}}=\frac{1.103}{1.562} \quad \mathbf{Y}=\left[\begin{array}{l}0.90 \\ 1.51 \\ \vdots \\ 4.98 \\ 3.60\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{lll}1 & 0.41 & 0.39 \\ 1 & 1.01 & 1.02 \\ \vdots & \vdots & \vdots \\ 1 & 26.28 & 6.42 \\ 1 & 24.42 & 5.70\end{array}\right]$

Compute the first 2 and last rows of the estimated transformed vector and matrix: $\mathbf{T}^{-1} \mathbf{Y}$ and $\mathbf{T}^{-1} \mathbf{X}$
p.4.d. The results from the estimated Generalized least squares fit are given below. Repeat parts p.3.a. and p.3.b. using them.

INV(X*'X*)			Beta_EGLS	SE(B_EGLS)
1.70995	0.00314	-0.24162	-0.0322	
0.00314	0.00228	-0.00878	0.1891	
-0.24162	-0.00878	0.07111	0.4478	
SSE*	s^2			
20.2328				

QG.5. A regression model was fit, relating the share of big 3 television network prime-time market share (Y, \%) to household penetration of cable/satellite dish providers ($\mathrm{X}=$ MVPD) for the years 1980-2004 ($\mathrm{n}=25$). The regression results and residual versus time plot are given below.

ANOVA						
	$d f$	SS	MS	F		
Regressio	1	7073.7	7073.7	685.7		
Residual	23	237.3	10.3			
Total	24	7311.0				
Coefficientsandard Err						
t Stat						P-value
Intercept	112.029	2.090	53.61	0.0000		
mvpd	-0.863	0.033	-26.19	0.0000		

p.5.a. Compute the correlation between big 3 market share and MVPD.
p.5.b. The residual plot appears to display serial autocorrelation over time. Conduct the Durbin-Watson test, with null hypothesis that residuals are autocorrelated.

$$
\sum_{t=2}^{25}\left(e_{t}-e_{t-1}\right)^{2}=161.4 \quad d_{L}(\alpha=0.05, n=25, p=1)=1.29 \quad d_{U}(\alpha=0.05, n=25, p=1)=1.45
$$

Test Statistic: \qquad Reject H_{0} ? Yes or No
p.5.c. Data were transformed to conduct estimated generalized least squares (EGLS), to account for the autocorrelation. The parameter estimates and standard errors are given below. Obtain 95\% confidence intervals for β_{1}, based on Ordinary Least Squares (OLS) and EGLS. Note that the error degrees' of freedom are 23 for OLS and 22 for EGLS (estimated the autocorrelation coefficient).

beta-egls	SE(b-egls)
110.577	3.469
-0.845	0.055

\qquad

QG.6. A study compared surveyed velocities measured for $\mathrm{n}=9$ rock glaciers in Western Canada (Y , in meters/year) and their long term velocities, based on glacier length and age (X, in meters/year). The number of surveyed points on the glaciers varies, and \mathbf{Y} is the mean of those measurements. Assume the variances of the individual points are all equal, and equal to σ^{2}. Note the "effective" sample size in 9 here, since we are working with the 9 means as the data.

Glacier	\#points	Y	X
1	5	0.35	0.35
2	5	0.3	0.15
3	6	0.32	0.07
4	5	0.08	0.08
5	5	0.06	0.05
6	4	0.07	0.1
7	6	0.16	0.27
8	4	0.17	0.31
9	10	0.26	0.39

$\mathrm{X}^{\prime} \mathrm{X}$			$\mathrm{X}^{\prime} \mathrm{Y}$
9	1.77		1.77
1.77	0.4899		0.4036
INV (X'X)			b
0.3839	-1.3869		0.1197
-1.3869	7.0522		0.3914
$\mathrm{Y}^{\prime} \mathrm{Y}$	$\mathrm{Y}^{\prime} \mathrm{PY}$	SSE	
0.4519	0.3698	0.0821	

$\mathrm{X}^{*} \mathrm{X}^{*}$			$\mathrm{X}^{*} \mathrm{Y}^{*}$				
50	10.73		10.39				
10.73	3.1817		2.5309				
					$\mathbf{I N V}\left(\mathrm{X}^{*} \mathrm{X}^{*}\right)$		
:---:	:---:	:---:					
0.0724	-0.2441						
-0.2441	1.1376						
$\mathrm{Y}^{*} \mathrm{Y}^{*}$	$\mathrm{Y}^{*} \mathbf{Y}^{*} \mathbf{Y}^{*}$	SSE* *					
2.6917	2.2623	0.4294					

p.6.a. Give the variance of Y_{5} (as a function of σ^{2}) :
p.6.b. We want to obtain the Weighted Least Squares Estimator:
$\hat{\boldsymbol{\beta}}_{W L S}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{Y}=\left(\mathbf{X}^{*} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{* \prime} \mathbf{Y}^{*} \quad V\{\mathbf{Y}\}=\sigma^{2} \mathbf{V} \quad \mathbf{X}^{*}=\mathbf{W X} \quad \mathbf{Y}^{*}=\mathbf{W} \mathbf{Y}$
Set up the \mathbf{W} matrix (note that \mathbf{X} also has a column of $1^{\text {s }}$ for the intercept).
p.6.c. Based on the Ordinary Least Squares (middle portion), and Weighted Least Squares (right-side portion), obtain estimated standard errors for $\hat{\beta}_{1, O L S}$ and $\hat{\beta}_{1, W L S}$ and 95% Confidence Intervals for β_{1} :

OLS: Standard Error: \qquad $\mathrm{Cl}:$ \qquad

WLS: Standard Error: \qquad $\mathrm{Cl}:$ \qquad

QG.7. A study is conducted, relating dose of a weight loss drug (X) to weight reduction (Y). There were $n=4$ doses, with varying numbers of subjects per dose. The doses were $X=1,2,3,4$, and the sample sizes were $r=6,8,2,4$, respectively. A simple linear regression model, relating Y to X, with the error variance for individual subjects being σ^{2}. Observations are independent across subjects.
p.7.a. Set up the matrix computations to obtain the variance-covariance matrix for the weighted least squares estimator as a function of σ^{2}. All numbers, no symbols.
p.7.b. Set up the matrix computations to obtain the variance-covariance matrix for the ordinary least squares estimator as a function of σ^{2}. All numbers, no symbols.

QG.7. An economic history report studied the relationship between marginal product of labour (MPL) and estimated population of sampled communities (Pop) over an $n=28$ decade period from 1250-1529. Due to theoretical reasons, the model was fit on the \log scale, with $Y=\ln (M P L)$ and $X=\ln (P o p)$. The author fit weighted least squares, where the weight used was the number of communities (C) which were used for population estimates by decade (the more communities used, the better the overall estimate, and C ranged from 2 to 14). The model fit was: $\mathrm{E}\{\mathbf{Y}\}=\mathbf{X} \boldsymbol{\beta}$.

$$
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right] \quad \mathbf{C}^{1 / 2}=\operatorname{diag}\left\{\sqrt{C_{i}}\right\} \quad \mathbf{Y}^{*}=\mathbf{C}^{1 / 2} \mathbf{Y} \quad \mathbf{X}^{*}=\mathbf{C}^{1 / 2} \mathbf{X}
$$

The following results are obtained for the transformed \mathbf{Y}^{*} and \mathbf{X}^{*}. Complete the following table that would be obtained by standard software packages that fit WLS. Hint: in the unweighted case,

$$
\mathbf{Y}^{\prime}(1 / n) \mathbf{J Y}=\mathbf{Y}^{\prime} \mathbf{P}_{0} \mathbf{Y} \text { and } \mathbf{Y}^{\prime} \mathbf{P Y}=\mathbf{Y}^{\prime} \mathbf{P}_{01} \mathbf{Y}
$$

X*'X*			X*'Y*	Source	SS	df	MS	F	F(.05)
203	836.3475		917.10	Regression					
836.3475	3470.013		3748.55	Error			\#N/A	\#N/A	\#N/A
				Total			\#N/A	\#N/A	\#N/A
INV(X*'X*)									
0.7031	-0.1695				Estimate	Std Error	t	LB	UB
-0.1695	0.0411			Intercept					
				\ln (Pop)					
Y*'Y*	Y*'P01*Y*	Y*'PO*Y*							
4182.513		4143.912							

QG.8. A regression model, relating mean temperature (Y , in F) to Year-1946 (X) for Years 1946-2014 has a DurbinWatson statistic of DW $=0.628$. Two regression models were fit, one with ordinary least squares (OLS) and one with estimated generalized least squares (GLS) with an AR1 process for errors.

Which of the following sets of estimates and standard errors do you believe are OLS and GLS?

	Estimate	Std.Error				
Intercept	75.0941	0.2158				
year0	0.0385	0.0057	\quad		Estimate	Std. Error
:---	---:	---:				
Intercept	75.0789	0.1793				
year0	0.0389	0.0048				

[^0]: p.11.c. Based on the VIF, is there evidence of serious multicollinearity? Yes or No

