STA 6207 - Homework 2

Q.1. Model $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \quad i=1, \ldots, n$
p.1.a. Derive the normal equations that minimize $Q=\sum_{i=1}^{n} \varepsilon_{i}^{2}$.
p.1.b. Solve for the ordinary least squares estimators $\hat{\beta}_{1}, \quad \hat{\beta}_{0}$
p.1.c. Derive $E\left\{\hat{\beta}_{1}\right\}, \quad V\left\{\hat{\beta}_{1}\right\}, \quad E\left\{\hat{\beta}_{0}\right\}, \quad V\left\{\hat{\beta}_{0}\right\}, \quad \operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\}$
p.1.d. Derive the mean and variance of $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$ and $e_{i}=Y_{i}-\hat{Y}_{i}$ and $\operatorname{COV}\left\{\hat{Y}_{i}, e_{i}\right\}$
Q.2. An electrical contractor fits a simple linear regression model, relating cost to wire a house (Y , in dollars) to the size of the house (X, in ft^{2}). She fits a model, based on a sample of $\mathrm{n}=16$ houses and obtains the following results.

$$
\hat{Y}=50.00+0.22 X \quad s^{2}=1600 \quad \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=4000000 \quad \bar{X}=2000
$$

p.2.a. Compute the estimated standard errors of $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$
p.2.b. Compute a 95% Confidence Interval for β_{1}
p.2.c. Compute a 95% Confidence Interval for the mean of all homes with $X_{0}=2000$
p.2.d. Compute a 95\% Prediction Interval for her brother-in-laws house with $\mathrm{X}_{0}=2000$
Q.3. A researcher is interested in the relationship between the education level and salaries in rural counties in the U.S. He obtains the percentage of adults over 25 with a college education in each county (X) and the per capita income of the county (Y , in $\$ 1000$ s). He obtains the following summary statistics, based on a sample of $\mathrm{n}=30$ counties.

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=2207.45 \quad \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=658.37 \quad \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=654.86 \quad \bar{X}=41.92 \quad \bar{Y}=35.83
$$

p.3.a. Compute least squares estimates of β_{0} and β_{1}
p.3.b. Show that $\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}-\frac{\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right]^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$
p.3.c. Use p.3.b. to compute an unbiased estimate of σ^{2}
Q.4. Consider the regression through the origin model: $Y_{i}=\beta_{1} X_{i}+\varepsilon_{i} \quad \varepsilon_{i} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \quad i=1, \ldots, n$ p.4.a. Derive the least squares estimator of β_{1}
p.4.b. Derive the mean and variance of the least squres estimator.
p.4.c. Consider the estimator $\tilde{\beta}_{1}=\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} X_{i}}$. Derive its mean and variance.
p.4.d. Which estimator has the smallest variance? Why?
Q.5. For the simple linear regression model with an intercept, show that $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)=0$
Q.6. For simple regression, we get: $\hat{\beta}_{1}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{S_{X X}}\right) Y_{i} \quad$ and $\bar{Y}=\sum_{i=1}^{n}\left(\frac{1}{n}\right) Y_{i} \quad \operatorname{COV}\left(\hat{\beta}_{1}, \bar{Y}\right)=$???
Q.7. For a simple linear regression model, derive $\operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\}$ completing the following parts:
p.7.a. Write $\hat{\beta}_{1}=\sum_{i=1}^{n} a_{i} Y_{i}$ and $\hat{\beta}_{0}=\sum_{i=1}^{n} b_{i} Y_{i}$ stating explicitly what the a_{i} and b_{i} values (functions) are
p.7.b. Using rules of Covariances of linear functions of random variables to derive $\operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\}$
p.7.c. Researchers in the U.S. fit regressions of relationship between viscosity (Y) and temperature (X) in degrees Fahrenheit, while foreign researchers work with temperature in degrees Celsius. The temperatures for the experimental runs are given below. Give the $\operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\}$ for each set of researchers as a function of σ^{2} (they use the same units for Y):

Run \#	1	2	3	4	5	6
$X(F)$	5	5	14	14	23	23
$X(C)$	-15	-15	-10	-10	-5	-5

$\operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\} \quad$ Fahrenheit $=$ \qquad Celsius = \qquad
Q.8. An Austrian study considered Breath Alcohol Elimination Rates (X, mg/L/hr*100) and Blood Alcohol Elimination Rates ($\mathrm{Y}, \mathrm{g} / \mathrm{L} / \mathrm{hr}^{*} 100$) in a sample of $\mathrm{n}=27$ adult females. The sample means, standard deviations and correlations are given below. Complete the following table for the simple linear regression relating Blood Elimination Rate (Y) to Breath Elimination Rate (X).

$$
\bar{X}=8.6704 \quad \bar{Y}=17.8815 \quad s_{X}=1.6522 \quad s_{Y}=3.6787 \quad r_{X Y}=0.8786
$$

Regression Statistics					
R Square					
Residual Std Error					
Observations					
ANOVA					
	$d f$	SS	$M S$	F	$F(.05)$
Regression					
Residual					
Total					
				$t(.025)$	
	Coefficientsandard Err	t Stat			
Intercept					
X					

Q.9. For the simple regression model (scalar form): $\quad Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}-\bar{X}\right)+\varepsilon_{i} \quad i=1, \ldots, n \quad \varepsilon_{i} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
p.9.a. Derive least squares estimators of β_{0} and β_{1}.
p.9.b. Derive $E\left\{\hat{\beta}_{1}\right\}, \quad E\left\{\hat{\beta}_{0}\right\}, \quad V\left\{\hat{\beta}_{1}\right\}, \quad V\left\{\hat{\beta}_{0}\right\}, \operatorname{COV}\left\{\hat{\beta}_{0}, \hat{\beta}_{1}\right\}$
Q.10. Consider the "centered" (with respect to the independent variable) model in scalar form:
$Y_{i}=\mu+\beta_{1}\left(X_{i}-\bar{X}\right)+\varepsilon_{i} \quad i=1, \ldots, n \quad \varepsilon_{i} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
p.10.a. Obtain the normal equations and the least squares estimated for the parameters μ and β_{1}.
p.10.b. Derive $\operatorname{COV}\left(\hat{\mu}, \hat{\beta}_{1}\right)$

Hint: $\operatorname{COV}\left(\sum_{i=1}^{n} a_{i} Y_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{COV}\left(Y_{i}, Y_{j}\right)$
Q.11. A linear regression was run on a set of data, based on a simple linear regression. You are given only the following partial information:

ANOVA						
	$d f$	SS	MS	F	P-value	
Regression						
Residual	5		44.2			
Total						
	Coefficients tandard Erro	t Stat	P-value			
Intercept	293.89	5.62	52.29	0.0000		
X	-1.65	0.13	-13.13	0.0000		

p.11.a. Compute a 95% Confidence Interval for β_{1} :

p.11.b. Give the F-statistic and rejection for testing $\mathrm{H}_{0}: \beta_{1}=0$ vs $\mathrm{H}_{\mathrm{A}}: \beta_{1} \neq 0$ at $\alpha=0.05$ significance level. (Hint: think of connection between t - and F -tests)
p.11.c. Compute the coefficient of determination, R^{2}.
Q.12. A regression model was fit, relating revenues (Y) to total cost of production and distribution (X) for a random sample of $n=30$ RKO films from the 1930s (the total cost ranged from 79 to 1530):
$n=30 \quad \bar{X}=685.2 \quad S_{x x}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=6126371 \quad \hat{Y}=55.23+0.92 X \quad S_{e}^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}=40067$
p.12.a. Obtain a 95% Confidence Interval for the mean revenues for all movies with total costs of $x^{*}=1000$

Note: $\left[\frac{1}{30}+\frac{(1000-685.2)^{2}}{6126371}\right]=0.0495$
$\hat{\mu}_{y}=$ \qquad $S E_{\hat{\mu}}=$ \qquad 95\%CI: \qquad
p.12.b. Obtain a 95\% Prediction Interval for tomorrow's new film that had total costs of $\mathrm{x}^{*}=1000$
$\hat{y}=$ \qquad $S E_{\hat{y}}=$ \qquad 95\%PI: \qquad
Q.13.

Dataset: std_intensity.dat
Source: T.R.M. De Beer, G.J. Vergote, W.R.G. Baeyens, J.P. Remon, C. Vervaetand F. Verpoort (2004).
"Development and Validation of a Direct, non-Destructive Quantitative Method for
MedroxyprogesteroneAcetate in a Pharmaceutical Suspension Using FT-Raman Spectroscopy," European Journalof Pharmaceutical Sciences, Vol. 23, pp. 355-362

Description: Simple Linear Regression relating measured peak intensities (Y) to standard suspension Concentration. 4 concentrations, 6 reps/conc.

Variables/Columns
Standard Suspension Concentration (mg/ml) 1-8
Measured Peak Intensities (AU) 10-16

Fit a simple linear regression model, relating measured peak intensity (Y) to standard suspension concentration (X) using "brute-force" computations and the 1 m function in R. Give the following results (clearly stating all elements of tests).
a) Sample size, sample means, sums of squares and sum of crossproducts
b) Least squares estimates of β_{1} and β_{0} and unbiased estimate of σ^{2}
c) Estimated standard errors, t-statistics, P-values, and 95% CI's regarding β_{1} and β_{0}
d) Total SS, Error SS, Regression SS, Analysis of Variance, and F-test
e) 95% Confidence Interval for Mean and 95% Prediction Interval for single measurement when X $=140$.
Q.14. Oddsmakers predictions of total scores in Women's NBA 2010-2018 regular season games (with overtime games removed). The following program obtains the population model among all games from the 9 seasons.

```
wnba1 <- read.csv("http://users.stat.uf1.edu/~winner/data/wnba_spread.csv")
attach(wnba1); names(wnba1)
# Mode1 for the Population of Games
Y <- totPts[OT == 0]; X <- OU[OT == 0]
(N <- length(Y))
(rho <- cor(X,Y))
(beta1 <- cov(X,Y) / var(X))
(beta0 <- mean(Y) - mean(X) * beta1)
E.Y <- beta0 + beta1 * X
eps <- Y - E.Y
(sigma2 <- sum(eps^2) / N)
summary(eps)
win.graph(height=5.5, width=7.0)
plot(Y ~ X, pch=16, cex=0.5)
abline(lm(Y~X), col="red", lwd=3)
ymax <- 1.3*2*N*dnorm(0, 0 , sqrt(sigma2))
hist(eps, breaks=seq(-50,50,2), xlab="eps", ylim=c(0, ymax))
lines(seq(-50,50,.1), N*2*dnorm(seq(-50,50,.1),0,sqrt(sigma2)))
```

Generate 10000 random samples of size $\mathrm{n}=25$, and for each sample obtain 95% Condidence Intervals for $\beta_{0}, \beta_{1}, \rho, \sigma^{2}\left(\mathrm{SSE} / \sigma^{2} \sim \chi_{\mathrm{n}-2}\right)$. You will also need to save: $\hat{S E}\left\{\hat{\beta}_{0}\right\}, \hat{S E}\left\{\hat{\beta}_{1}\right\}$
a) Obtain the empirical coverage rates of the 95% CI's for $\beta_{0}, \beta_{1}, \rho, \sigma^{2}$
b) Obtain histograms of : $\frac{\hat{\beta}_{0}-\beta_{0}}{\hat{S E}\left\{\hat{\beta}_{0}\right\}}, \frac{\hat{\beta}_{1}-\beta_{1}}{\hat{S E}\left\{\hat{\beta}_{1}\right\}}, \frac{S S E}{\sigma^{2}}=\frac{(n-2) M S E}{\sigma^{2}}$

