STA 6207 - Homework 1 - Fall 2022

Part 1: Sampling from a Normal Distribution

Obtain random samples from a Normal with mean $\mu=100, \sigma=20$ of sizes $n=100,1000,10000,100000$.

- On a single page (2 rows, 2 columns) give the histograms on the same set of bins, with a normal density superimposed on each. Comment on the approximation accuracy.
- For each sample size, give the mean, standard deviation, and the following percentiles $(2.5,25,50,75$, 97.5). Compare these with the theoretical values.

Part 2: Sampling Distributions of Statistics - Normal Data

Obtain 10000 samples of: $n_{1}=25$ from $\mathrm{N}\left(\mu_{1}=60, \sigma_{1}=10\right)$ and $n_{2}=15$ from $\mathrm{N}\left(\mu_{2}=50, \sigma_{2}=8\right)$.
For each sample obtain the following quantities:

$$
\bar{y}_{1}, \quad s_{1}, \quad \bar{y}_{2}, \quad s_{2}, \quad X_{1}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma_{1}^{2}}, \quad X_{2}^{2}=\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma_{2}^{2}}, \quad t_{1}=\frac{\bar{y}_{1}-\mu_{1}}{s_{1} / \sqrt{n_{1}}}, \quad t_{2}=\frac{\bar{y}_{2}-\mu_{2}}{s_{2} / \sqrt{n_{2}}}, \quad F=\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}
$$

- Give the theoretical sampling distributions of all of the quantities (except s_{1} and s_{2}, which are not "standard" distributions).
- Plot histograms of X_{1}^{2}, t_{1}, F and superimpose their theoretical densities.
- For the three sample quantities in the previous part, give the mean, standard deviation, and the following percentiles $(2.5,25,50,75,97.5)$. Compare these with the theoretical values.

Part 3: Sampling Distributions of Statistics - NHL BMIs and Marathon Velocities

Part 3a: NHL Body Mass Indices (BMI)

For the population of 2013/14 National Hockey League players, obtain their mean and standard deviation. Give a histogram and superimposed normal density. Does a Normal distribution seem to be a reasonable model? Compute the population mean μ and variance σ^{2}.

- Obtain 10000 random samples of $n=25$ from this population, and save the following quantities:

$$
\bar{y}, \quad s, \quad \frac{(n-1) s^{2}}{\sigma^{2}}
$$

- Obtain the mean, standard deviation, and the following percentiles $(2.5,25,50,75,97.5)$ for the sample mean and scaled variance. Compare these with the theoretical values.
- Plot the sampling distribution of the sample mean and the scaled variance. Superimpose their theoretical densities assuming normality.

Part 3b: Rock and Roll Marathon

For the population of 2015 Rock and Roll Marathon Participants, obtain their mean and standard deviation by gender. Give histograms and superimposed normal densities. Does a Normal distribution seem to be a reasonable model? Compute the population mean μ and variance σ^{2} by gender.

- Obtain 10000 random samples of $n_{\mathrm{F}}=n_{\mathrm{M}}=20$ from this population, and save the following quantities:

$$
\bar{y}_{F}, \quad s_{F}, \quad \bar{y}_{M}, \quad s_{M}, \quad \frac{\left(n_{F}-1\right) s_{F}^{2}}{\sigma_{F}^{2}}, \frac{\left(\frac{S_{F}^{2}}{\sigma_{F}^{2}}\right)}{\left(\frac{S_{M}^{2}}{\sigma_{M}^{2}}\right)}
$$

- Obtain the mean, standard deviation, and the following percentiles $(2.5,25,50,75,97.5)$ of the mean and scaled variance for Females, as well as the F ratio. Compare these with the theoretical values, assuming normality.

Part 4: Size and Power of Likelihood Ratio, Wald, and Score Tests

Generate 10000 Pseudo-Random Samples from Poisson Distributions. Test H0: $\mu=3$ (2-sided) based on LR, Wald, and Score Tests. Give the (Empirical) Power of each Test for the following settings. A) $\mathrm{n}=20, \mu=3$.
B) $\mathrm{n}=20, \mu=2.57$. C) $\mathrm{n}=100, \mu=3$. D$) \mathrm{n}=100, \mu=2.57$.

