STA 6207 – Practice Problems – Model Diagnostics

Q.1. A simple regression model is fit, relating a dependent variable Y, to an independent variable X. You are given the following data and summary statistics.

X	Y	Y-hat_j	Y-bar_j		sum(X)	sum(Y)
0	15				90	225
0	13					
0	17				SS_XX	SS_YY
10	25				600	642
10	27					
10	23				SS_XY	
20	34				600	
20	32					
20	39					

p.1.a. Give the fitted equation, based on the simple linear regression model:

٨	٨	^
$\beta_1 = $	$\beta_0 = $	<i>Y</i> =
, 1		

p.1.b. Fill in the 3rd and 4th columns of the table above.

p.1.c. Compute the Pure Error Sum of Squares and degrees of freedom:

SSPE =	df _{PE} =
p.1.d. Compute the Lack-of-Fit Sum of Squares and degrees of free	edom:
SSLF =	df _{LF} =

p.1.e. Test H₀: Model is Linear vs H_A: Model is not Linear at $\alpha = 0.05$ significance level.

Test Statistic ______ Rejection Region _____

Q.2. An analysis reports that a studentized deleted residual is 5.0

a) Conclude this case is an outlier b) Conclude this case is not an outlier c) Need more information

Q.3. A regression through the origin is to be fit, relating Y to X for n=5 observations. The X levels are (1,2,3,4,10).

p.3.a. Obtain X'X, $(X'X)^{-1}$, the P matrix, and the diagonal elements of P (v_{ii}) .

p.3.b. What do the v_{ii} elements sum to? Which, if any, elements are potentially influential?

p.3.c. Below is the fit for all cases (top), and with observation 5 dropped (bottom) $b_1 = \hat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n X_i^2}$ Note: $\sum_{i=1}^n e_i^2 \neq 0$

Х	Y	Y-hat	е	b1
1	2	2.75	-0.75	2.75
2	5	5.51	-0.51	SS(Res)
3	6	8.26	-2.26	
4	7	11.02	-4.02	
10	30	27.54	2.46	
Observati	on 5 dropp	ed		
х	Y	Y-hat	e	b1
1	2	1.93	0.07	1.93
2	5	3.87	1.13	SS(Res)
3	6	5.80	0.20	
4	7	7.73	-0.73	

p.3.d. Compute $Y_{5(5)}$, and using $s_{(5)}$ as estimate of σ : $DFFITS_5$, and $DFBETAS_{1(5)}$

Q.4. A simple linear regression model is fit, with n = 12 observations (3 each at 4 levels of X). The residual sum of squares from the Regression model is SSResidual = 9042. The 4 fitted values at the distinct X levels are: (40, 80, 120, and 160). The 4 sample means at the distinct X levels are: (60, 70, 80, and 190).

p.4.a. Complete the following ANOVA table (degrees of freedom and sums of squares

ANOVA		
Source	df	SS
Regression		
Residual		
Lack of Fit		
Pure Error		
Total Corrected		

p.4.b. Conduct the F-test for Lack-of Fit

p.4.b. Conduct the F-test for Lack-of Fit $H_0: E\{Y_{ij}\} = \mu_j = \beta_0 + \beta_1 X_j \quad j = 1,...,c; \quad i = 1,...,n_j \qquad H_A: E\{Y_{ij}\} = \mu_j \neq \beta_0 + \beta_1 X_j$

Test Statistic: _____ Rejection Region: _____

Do you conclude that the relationship between $E\{Y\}$ and X is linear? Yes or No

Q.5. A simple linear regression model is fit, based on n=5 individuals. The data and the projection matrix are given below:

Х		Y	Р				
1	2	8	0.344	0.303	-0.129	0.262	0.221
1	4	12	0.303	0.274	-0.035	0.244	0.215
1	25	24	-0.129	-0.035	0.953	0.059	0.153
1	6	14	0.262	0.244	0.059	0.226	0.209
1	8	18	0.221	0.215	0.153	0.209	0.203

p.5.a. Give the leverage values for each observation. Do any exceed twice the average of the leverage values?

 Observation 1
 Obs 2
 Obs 3
 Obs 4
 Obs 5

p.5.b. Give β , based on the following results

X'X		X'Y	INV(X'X)	
5	45	76	0.438	-0.026
45	745	892	-0.026	0.003

p.5.c. Compute SSE and S_e (Note: **Y'Y** = 1304 **Y'PY** = 1282.45)

p.5.d. The following table contains the fitted values with and without each observation, residual standard deviation when that observation was not included in the regression, and the regression coefficients when that observation was not included in the regression.

Y-hat	Y-hat(-i)	S_i	beta0_i	beta1_i
10.92	12.45	2.07	11.41	0.52
12.14	12.19	3.28	9.76	0.61
24.99	45.00	0.63	5.00	1.60
13.36	9.46	3.24	9.46	0.62
14.59	13.72	1.86	8.72	0.62

p.5.d.i. Compute DFFITS for the fifth observation

p.5.d.ii. Compute DFBETAS0 for the first observation

p.5.d.iii. Compute DFBETAS1 for the third observation

Q.6. A linear regression model was fit, relating energy consumption (Y) to population (X) for n = 183 nations. The following results are for models with and without the United States. The leverage value for the US is $P_{ii} = .0275$, and the Population is X = 310.0

INV(X'X)				
0.00590971	-0.00001109			
-0.00001109	0.0000030			
	With US	With US	Without US	Without US
	Coefficients	Standard Error	Coefficients	Standard Error
Intercept	0.6257	0.5912	0.4231	0.3687
popMill	0.0571	0.0042	0.0505	0.0026
MSResidual	59.14		22.98	

p.6.a. Compute the fitted values for the US based on each model.

With US _____ Without US _____

p.6.b. Compute DFFITS for the US

p.6.c. Compute each of the DFBETAS for the US.

Intercept _____ Population _____

p.6.d. What is the average leverage value among the 183 nations?

Q.7. An experiment was conducted to measure the subsoil pressure of a steel ground roller. There were 3 replicates at each of 4 depths (X=5, 10, 15, 20 cm). The response was measured force (100s of Newtons).

The fitted regression equation is $\hat{Y} = 49.371 - 2.036X$

We want to test $H_0: E\{Y_i\} = \beta_0 + \beta_1 X_i$ $H_A: E\{Y_i\} = \mu_i \neq \beta_0 + \beta_1 X_i$

j	X_j	Ybar_j	SD_j	Yhat_j	Pure Error	Lack of Fit
1	5	40.38	4.32			
2	10	28.87	6.83			
3	15	16.23	3.76			
4	20	11.15	4.48			

p.7.a. Compute the Pure Error Sum of Squares and Degrees of Freedom. Hint: What is SD_j equal to?

 $SSPE = _ df_{PE} = _$

p.7.b. Compute the Lack-of-Fit Sum of Squares and Degrees of Freedom.

 $SSLF = _ df_{LF} = _$

p.7.c. Conduct the F-test for Lack-of-Fit

 Test Statistic:
 Rejection Region:
 Reject H₀?
 Yes / No

Q.8. A simple linear regression model is fit, based on n=5 individuals. The data and the projection matrix are given below:

Х		Y	Р				
1	0	4	0.402	0.330	-0.175	0.258	0.186
1	2	6	0.330	0.284	-0.041	0.237	0.191
1	16	32	-0.175	-0.041	0.897	0.093	0.227
1	4	7	0.258	0.237	0.093	0.216	0.196
1	6	10	0.186	0.191	0.227	0.196	0.201

p.8.a. Give the leverage values for each observation. Do any exceed twice the average of the leverage values?

 Observation 1
 Obs 2
 Obs 3
 Obs 4
 Obs 5

p.8.b. Give β , based on the following results

X'X		X'Y	INV(X'X)	
5	28	59	0.402	-0.036
28	312	612	-0.036	0.006

p.8.c. Compute SSE and S_e (Note: **Y'Y** = 1225 **Y'PY** = 1207.144)

p.8.d. The following table contains the fitted values with and without each observation, residual standard deviation when that observation was not included in the regression, and the regression coefficients when that observation was not included in the regression.

Y-hat	Y-hat(-i)	S_i	beta0_i	beta1_i
1.64	12.45	2.07	11.41	0.52
5.27	12.19	3.28	9.76	0.61
30.67	45.00	0.63	5.00	1.60
8.90	9.46	3.24	9.46	0.62
12.53	13.72	1.86	8.72	0.62

p.8.d.i. Compute DFFITS for the fifth observation

p.8.d.ii. Compute DFBETAS0 for the first observation

p.8.d.iii. Compute DFBETAS1 for the third observation

$$H_{0}: E\left\{Y_{ij}\right\} = \beta_{0} + \beta_{1}X_{j} \qquad H_{A}: E\left\{Y_{ij}\right\} = \mu_{j} \neq \beta_{0} + \beta_{1}X_{j} \qquad j = 1, ..., c; \quad i = 1, ..., n_{j}$$

with: Residual $\equiv Y_{ij} - \hat{Y}_{j}$ Pure Error $\equiv Y_{ij} - \overline{Y}_{j}$ Lack of Fit $\equiv \overline{Y}_{j} - \hat{Y}_{j} \qquad \hat{Y}_{j} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{j} \qquad \overline{Y}_{j} = \frac{1}{n_{j}}\sum_{i=1}^{n_{j}}Y_{ij}$
Show: $\sum_{j=1}^{c}\sum_{i=1}^{n_{j}}\left(Y_{ij} - \hat{Y}_{j}\right)^{2} = \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}\left(Y_{ij} - \overline{Y}_{j}\right)^{2} + \sum_{j=1}^{c}\sum_{i=1}^{n_{j}}\left(\overline{Y}_{j} - \hat{Y}_{j}\right)^{2}$

Q.10. A simple linear regression model was fit, relating Weight (Y, in pounds) to Height (X, in inches) among a sample of n=9 Women's NBA basketball players. There were 3 distinct height levels, with 3 players per height. Use the table below to conduct the F-test for Lack of Fit. $H_0: E\{Y_{ij}\} = \beta_0 + \beta_1 X_j$ vs $H_A: E\{Y_{ij}\} = \mu_j \neq \beta_0 + \beta_1 X_j$

Height	Weight	Ybar(Grp)	Yhat(Grp)	PE	LF		
68	130						Coefficients
68	165					Intercept	-321.667
68	155					Height	6.875
72	180						
72	165						
72	150						
76	200						
76	185						
76	230						

Q.11. A random sample of n = 20 cricket players from India was obtained, and a simple linear regression was fit relating the number of runs (Y, in 1000s) and number of completed innings (X, in 100s) in international matches. Player 20 is Sachin Tendulakar who played in 411 completed innings (X = 4.11) and accounted for 18426 runs (Y = 18.426). Regression models were fit with and without Sachin, and results are given below.

X'X		X'Y	X'X_(20)		X'Y_(20)	
20.0000	22.6600	77.1320	19.0000	18.5500	58.7060	
22.6600	44.7782	172.7793	18.5500	27.8861	97.0484	
INV(X'X)		Beta-hat	INV(X'X_(20))	Beta-hat_	(20)
0.1172	-0.0593	-1.2074	0.1501	-0.0999	-0.8785	
-0.0593	0.0523	4.4696	-0.0999	0.1023	4.0646	
Y'Y	Y'PY		Y'Y_(20)	Y'PY_(20)		
693.2798	679.1187		353.7623	342.8852		

p.11.a. Obtain SSE and MSE and the estimated error standard deviation for each model.

$SSE_1 =$	$MSE_1 = $	s =	
SSE ₂ =	MSE ₂ =	s ₍₂₀₎ =	
p.11.b. Obtain the fitted value	and residual for Satchin for ea	ch model.	
Fitted ₁ =	Residual ₁ =	Fitted ₂ =	$\underline{\qquad} Residual_2 = \underline{\qquad}$
p.11.c. Obtain the leverage va	lue for Satchin from the full da	ta model, and his studentize	ed residual.
<i>v</i> _{20,20} =	$r_{20}^{*} = $		

p.11.d. Compute DFFITS₂₀ and DFBETAS₁₍₂₀₎ for Satchin. Note that both DFFITS and DFBETAS make use of $s_{(20)}$ to estimate σ .

 $DFFITS_{20} = ____ DFBETAS_{1(20)} = ____$

p.11.e. What is the average of the leverage values for the full data model?

Q.12. An experiment was conducted relating springiness in berries (Y, in mm) to sugar equivalent (X, in g/L). There were c = 4 distinct sugar equivalent groups, with n_j = 5 berries per group. The lack-of-fit test for a linear relation is:

$$H_0: E\{Y_{ij}\} = \mu_j = \beta_0 + \beta_1 X_j \quad i = 1, ..., 5; \ j = 1, ..., 4 \quad H_A: E\{Y_{ij}\} = \mu_j \neq \beta_0 + \beta_1 X_j$$

ANOVA												
	df	SS	MS	F	gnificance	F	j	Х_j	n_j	Yhat_j	Ybar_j	s^2_j
Regressio	1	245.74	245.74	57.40	0.0000		1	176.5	5	21.89	21.77	0.38
Residual	18	77.06	4.28				2	209.3	5	18.04	18.77	2.90
Total	19	322.80					3	225	5	16.20	15.41	11.30
							4	259.5	5		12.32	3.18
C	Coefficients	andard Err	t Stat	P-value								
Intercept	42.6025	3.4019	12.5233	0.0000								
sugCont	-0.1174	0.0155	-7.5763	0.0000								

Note:
$$s_j^2 = \frac{\sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2}{n_j - 1}$$
 $n_j > 1, 0$ otherwise

p.12.a. Give the fitted value for the linear regression for the 4^{th} group (X₄ = 259.5).

p.12.b. Compute the Pure Error Sum of Squares, degrees of freedom and Mean Square.

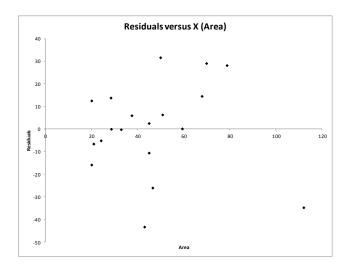
SS _{PE} =	df _{PE} =	MS _{PE} =
p.12.c. Compute the Lack-of-Fit Sum	of Squares, degrees of freed	om and Mean Square.
SS _{LF} =	df _{LF} =	MS _{LF} =
p.12.d. Give the Test Statistic, Rejecti	on Region, and P-value relat	ive to .05 for the Lack-of-Fit test.
Test Statistic:	Rejection Region:	P-value > or < .05

Q.13. A regression model is fit, relating energy consumption (Y) to total area (X) for a sample of n = 19 luxury hotels in Hainan Province, China. The Analysis of Variance for the simple linear regression model is given below.

ANOVA					
	df	SS	MS	F	gnificance
Regressio	1	25521.76	25521.76	57.75	0.0000
Residual	17	7512.94	441.94		
Total	18	33034.70			

p.13.a. A plot of the residuals versus area is given below. It demonstrates which possible violations of assumptions (circle all that apply).

Non-normal Errors Unequal Variance Serial Correlation of Errors Non-linear Relation between Y and X



p.13.b. A second regression model is fit, relating the squared residuals (Y) to area (X). Conduct the Breusch-Pagan test to test whether the equal variance assumption is reasonable. The sums of squares are given below.

ANOVA		
	df	SS
Regressio	1	1239379
Residual	17	3871645
Total	18	5111024

 Test Statistic:

 Rejection Region:
 P-value > or < .05</td>

Q.14. A random sample of n = 15 Bollywood movies was obtained, and a simple linear regression was fit relating the log Revenues (Y) the log Budget (X) in international matches. Movie 15 was **Sultan** with log Revenues Y_{15} = 5.705 and log Budget X_{15} = 4.500 . Regression models were fit with and without **Sultan**, and results are given below.

X'X		X'Y	X'X_(15)		X'Y_(15)	
15.000	55.474	53.796	14.000	50.974	48.091	L
55.474	214.736	213.087	50.974	194.488	187.417	7
INV(X'X)		Beta-hat	INV((X'X)_(2	15))	Beta-hat	_(15)
1.495	-0.386	-1.871	1.563	-0.410	-1.609	Ð
-0.386	0.104	1.476	-0.410	0.112	1.385	5
Y'Y	Υ'ΡΥ		Y'Y_15	Y'PY_15		
218.04	213.79		185.50	182.26		

p.14.a. Obtain SSE and MSE and the estimated error standard deviation for each model.

SSE₁ = _____ MSE₁ = _____ s = _____

 $SSE_2 = _$ $S_{(15)} = _$

p.14.b. Obtain the fitted value for **Sultan** for each model and its leverage value based on the full data set.

p.8.c. . Compute ${\tt DFFITS}_{\rm 15}$ for ${\bf Sultan}.$ Note that ${\tt DFFITS}$ makes use of $\mathit{s}_{(15)}$ to estimate σ .

DFFITS₁₅ = _____