## STA 6167 - Exam 1 - Fall 2019 - PRINT Name HN SWER KEY

## For all significance tests, use $\alpha = 0.05$ significance level.

Q.1. Two multiple linear regression models were fit relating price of art works (Y = log(sale price)) to the following predictors: surface area (SA) of the object, the medium of the object (collage, drawing, painting\*, photograph, print, sculptures). There were 5 dummy variables for medium  $(M_1,...,M_5)$ , with painting being the reference category. The first model had a linear trend for year (t), while the second model had 12 dummy variables (Yr<sub>1</sub>,...,Yr<sub>12</sub>) for the 13 individual years (thus not forcing the trend to be linear). The models and results are given below, based on a sample of n = 518artworks sold during the 13 year period 1997-2009.

Model 1: 
$$E\{Y\} = \beta_0 + \beta_{SA}SA + \sum_{i=1}^{5} \beta_{M_i}M_i + \beta_t t$$
  $R_1^2 = .502$ 

Model 2: 
$$E\{Y\} = \beta_0 + \beta_{SA}SA + \sum_{i=1}^{5} \beta_{M_i}M_i + \sum_{i=1}^{12} \beta_{Yr_i}Yr_i \quad R_2^2 = .555$$

p.1.a. Give the number of parameters for the models. Model 1: \_\_\_\_\_\_ Model 2: \_\_\_

p.1.b. For Model 1, test H<sub>0</sub>:  $\beta_{SA} = \beta_{M1} = \beta_{M2} = \beta_{M3} = \beta_{M4} = \beta_{M5} = \beta_t = 0$ 

$$F = \frac{R^2/P}{(1-R^2)/(1-P')} = \frac{.502/4}{.498/500} = \frac{500(.502)}{7(.498)} = \frac{73.44}{7(.498)}$$

1-.05,7,540 = 2010

Rejection Region F ? 2. 10 40

p.1.c. Model 1 is a special case of Model 2, with the yearly trend being a straight line, while Model 2 allows any structure for the year effects. Based on comparing Complete and Reduced models, test between the following hypotheses.

H<sub>0</sub>: Model 1 is appropriate (linear trend) versus H<sub>A</sub>: Model 2 is appropriate (trend is not linear)

$$F = \frac{.555 - .502}{19 - 8} = \frac{.053(499)}{.445(11)} = 5.40$$

$$\frac{1 - .555}{499} = \frac{.789}{.445(11)} = 5.40$$

Test Statistic F = 5.40 Rejection Region  $F \ge 1.789$  P(s) or > 0.05

Test Statistic

Q.2. A regression model was fit, relating the heat capacity of solid hydrogen bromide (Y, in cal/(mol\*K)) to Temperature (X, in degrees Kelvin) based on n=18 experimental runs. The temperatures were centered (for computational reasons), but this has no effect on predicted values or Sums of Squares. The following 3 models are fit where the mean temperature was 145.16.

Model 1:  $E\{Y\} = \beta_0 + \beta_1(X - \overline{X})$   $\hat{Y}^1 = 11.2756 + 0.0216(X - 145.16)$   $SSE_1 = 0.1945$   $SSR_1 = 3.3889$ 

Model 2:  $E\{Y\} = \beta_0 + \beta_1(X - \overline{X}) + \beta_2(X - \overline{X})^2$   $\hat{Y}^2 = 11.1596 + 0.0192(X - 145.16) + 0.00029(X - 145.16)^2$   $SSE_2 = 0.0370$   $SSR_2 = 3.5465$ 

Model 3:  $E\{Y\} = \beta_0 + \beta_1 \left(X - \overline{X}\right) + \beta_2 \left(X - \overline{X}\right)^2 + \beta_3 \left(X - \overline{X}\right)^3$ 

 $\hat{Y}^3 = 11.1718 + 0.0155(X - 145.16) + 0.00021(X - 145.16)^2 + 0.0000059(X - 145.16)^3 \quad SSE_3 = 0.0172 \quad SSR_3 = 3.5662$ 

p.2.a. For Model 3, Test  $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ .

$$F = \frac{3.5662/3}{.0172/(18-4)} = \frac{14(3.5662)}{.0172(3)} = 961.98$$

F. 05,3,14 = 3.344

Test Statistic: F = 961.98 Rejection Region:  $F \ge 3.344$  P-value > or (<)

p.2.b. What proportion of the total variation in Y is "explained" by the predictors in Model 2.

p.2.c. Give the predicted heat capacities for temperatures X=125.16, 145.16, and 165.16 for each Model.

2. 11.1596 ± 20 (.0192) + 400 (.00029) = 11.1596 ± ,3840 + .1160

3. 11.1718 ± 20(.0155) + 400(.00021) ± 8000(.000059)

M2: 125.16: 0,89/6 145.16: [1.1596 165.16: [1.6596

M3: 125.16: D. 898/a 145.16: ((./718 165.16: 1(,6130

2 each

Q.3. An experiment was conducted relating viscosity of flour used in baking ice cream cones (Y, in degrees MacMichael) to the conents of moisture ( $X_M$ , in %), protein ( $X_P$ , in %), and ash ( $X_A$ , in percent) for n = 39 flours obtained from different flour mills. The following models were fit, with the results for Model 3 given below. All models assume errors are independent and normally distributed.

Model 1: 
$$Y = \beta_0 + \beta_A X_A + \varepsilon$$
 Model 2:  $Y = \beta_0 + \beta_P X_P + \beta_A X_A + \varepsilon$ 

Model 3: 
$$Y = \beta_0 + \beta_M X_M + \beta_P X_P + \beta_A X_A + \varepsilon$$

Zeach 3

| ANOVA      | Zeach Zeach 2 B |          |         |       |        |           | Coefficient;andard Err t Stat |       |       |                   |   |
|------------|-----------------|----------|---------|-------|--------|-----------|-------------------------------|-------|-------|-------------------|---|
|            | df              | SS       | MS      | F     | F(.05) | Intercept | -115.36                       | 63.29 | -1.82 | ≈ 2.03            | , |
| Regression | 3               | 24094.91 | 803/.64 | 27.65 | 0.0000 | moisture  | 4.15                          | 4.38  | .95   | gg/d/animosososos | ~ |
| Residual   | 35              | 10164.83 | 290.42  |       | ≈ 2.8  | protein   | 19.99                         | 2.76  | 7.24  |                   |   |
| Total      | 38              | 34259.74 |         |       |        | ash       | -128.86                       | 15.37 | -8,38 | V                 |   |

p.3.a Compute the coefficient of determination, R<sup>2</sup> for the above model (Model 3).

p.3.b. Complete the ANOVA and regression coefficients tables and test 1) whether the Viscosity is related to any of the content variables  $H_0: \beta_M = \beta_P = \beta_A = 0$  and 2) whether Viscosity is related to the individual content variables, controlling for the others  $H_0: \beta_i = 0$ .

p.3.c. The Regression Sums of Squares for Models 1 and 2 are  $SSR_1 = 8869.33$  and  $SSR_2 = 23834.15$ , respectively. Give the following sequential sums of squares.

$$23834.17 - 8869.33 = /4964.82$$

$$24094.91 - 23834.15 = 260.76$$

$$SSR(X_A) = 869.33 \quad SSR(X_P | X_A) = 14964.82 \quad SSR(X_M | X_A, X_P) = 260.76$$

p.3.d. Compute  $R^2_{YX_P \bullet X_A}$  (the coefficient of partial determination between Y and X<sub>P</sub>, given X<sub>A</sub>).

Q.4. A model was fit, relating US annual energy consumption to the following set of predictors:  $X_1 = \mathbf{GDP}$ ,  $X_2 = \mathbf{price}$  of electricity (**pElec**),  $X_3 = \mathbf{pop}$ ulation,  $X_4 = \mathbf{price}$  of natural gas (**pNatGas**), and  $X_5 = \mathbf{price}$  of heating oil (**pHeatOil**). A second model is fit, with only **GDP** ( $X_1$ ) and **pElec** ( $X_2$ ). The models were fit for the years 1984-2010.

Model 1: 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$
  $SSE_1 = 2.860$   $SSR_1 = 100.752$   $\sum_{t=2}^{27} (e_t - e_{t-1})^2 = 5.608$  Model 2:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$   $SSE_2 = 3.038$   $SSR_2 = 100.574$ 

p.4.a. The critical values for the Durbin-Watson statistic for n = 27 and p = 5 are  $d_L = 1.01$  and  $d_U = 1.86$ . Compute the Durbin-Watson statistic for testing H<sub>0</sub>: the errors are not autocorrelated and circle the best conclusion.

$$DW = \frac{5.608}{2.860} = 1.96$$

D-W Statistic: Conclude: Reject  $H_0$  Accept  $H_0$  Inconclusive p.4.b. Compute  $SSR(X_3, X_4, X_5 \mid X_1, X_2)$ 

p.4.c. Test H<sub>0</sub>: 
$$\beta_3 = \beta_4 = \beta_5 = 0$$

$$\frac{0.178/3}{2.860/3.78/(27-6)} = \frac{21(.178)}{3(.27-6)} = 0.4357$$

$$\begin{bmatrix}
7.55, 3.21 & 3.072
\end{bmatrix}$$

Test Statistic: 
$$F = .4357$$
 Rejection Region:  $F = 23.072$  P-value or < .05

24

Q.5. An experiment was conducted relating energy consumption (Y, in MJ) to fiber space velocity (X, in m/h) in a carbon fiber production process. There were c = 4 distinct fiber space velocity "groups", with varying  $n_j$  runs per group. The lack-of-fit test for a linear relation is:

$$H_0: E\{Y_{ij}\} = \mu_j = \beta_0 + \beta_1 X_j$$
  $i = 1, ..., n_j; j = 1, ..., 4$   $H_A: E\{Y_{ij}\} = \mu_j \neq \beta_0 + \beta_1 X_j$ 

| ANOVA     |              |            |          |          |            |   |     |       |          |          |        |
|-----------|--------------|------------|----------|----------|------------|---|-----|-------|----------|----------|--------|
|           | df           | SS         | MS       | F        | gnificance | F | fsv | n_grp | yhat_grp | ybar_grp | s_grp  |
| Regressio | 1            | 47.1060    | 47.1060  | 809.1265 | 0.0000     |   | 20  | 8     | 7.5625   | 7.7913   | 0.1283 |
| Residual  | 28           | 1.6301     | 0.0582   |          |            |   | 25  | 9     | 6.4686   | 6.2143   | 0.0784 |
| Total     | 29           | 48.7361    |          | ,        |            |   | 30  | 5     | 5.3747   | 5.1922   | 0.0802 |
|           |              |            |          |          |            |   | 35  | 8     | 4,2801   | 4.4523   | 0.0735 |
| (         | Coefficients | andard Err | t Stat   | P-value  |            |   |     |       |          |          |        |
| Intercept | 11.9381      | 0.2135     | 55.9060  | 0.0000   |            |   |     |       |          |          |        |
| fsv       | -0.2188      | 0.0077     | -28.4451 | 0.0000   |            |   |     |       |          |          |        |

p.5.a. Give the fitted value for the linear regression for the  $4^{th}$  group ( $X_4 = 35$ ).

$$\hat{q}_{35} = 11.9381 - .2188(35) = 11.9381 - 7.658 = 4.2801$$

p.5.b. Compute the Pure Error Sum of Squares, degrees of freedom and Mean Square.

$$SSPE = (8-1)(.1283)^{2} + (9-1)(.0784)^{2} + (5-1)(.0802)^{2} + (8-1)(.0735)^{2}$$

$$= .1152 + .0492 + .0257 + .0378 = .7279$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0378 = .0088$$

$$0 + .0492 + .0492 + .0492 + .0378 = .0088$$

p.5.c. Compute the Lack-of-Fit Sum of Squares, degrees of freedom and Mean Square.

$$8(7.5625 - 7.7913)^{2} + 9(6.48866.2143)^{2} + 5(5.3747 - 5.1922)^{2}$$

$$+8(4.2861 - 4.4523)^{2} = ,4187 + ,5820 + .1665 + ,2372 = 1,4045$$

$$clf = 4-2 = 2$$

$$clf = 4-2 = 2$$

$$df_{LF} = 2$$

$$MS_{LF} = 7023$$

p.5.d. Give the Test Statistic, Rejection Region, and P-value relative to .05 for the Lack-of-Fit test.

$$F = \frac{MSLF}{MSPE} = \frac{.7023}{.0081} = 79.81 \qquad F. 05, 2, 26 = 3.369$$
Test Statistic:  $\frac{F}{.0081} = \frac{.7023}{.0081} = 79.81$  Rejection Region:  $\frac{F}{.0081} = \frac{.3.369}{.0081}$  P-value > or  $\frac{.0081}{.0081} = \frac{.0081}{.0081} = \frac$ 

34

Q.6. A study related height (Y, in cm) to foot length (X, in cm) among n = 5195 adult South Koreans of ages 20 to 59. A dummy variable (M = 1 if male, 0 if female) is created to reflect subject's gender. Three models are fit (each assuming independent, normally distributed errors with constant variance).

Model 1: 
$$E\{Y\} = \beta_0 + \beta_1 X$$
  $\hat{Y}^1 = 45.609 + 4.947 X$   $SSE_1 = 116921$   $SSR_1 = 313347$ 

Model 2: 
$$E\{Y\} = \beta_0 + \beta_1 X + \gamma_1 M$$
  $\hat{Y}^2 = 65.574 + 4.031X + 3.857M$   $SSE_2 = 108416.5$   $SSR_2 = 321851.5$ 

Model 3: 
$$E\{Y\} = \beta_0 + \beta_1 X + \gamma_1 M + \delta_1 XM$$
  $\hat{Y} = 66.910 + 3.972 X + 1.577 M + 0.096 XM$   $SSE_3 = 108404$   $SSR_3 = 321864$ 

p.6.a. Give the predicted heights for females and males with foot lengths of 23 and 25 cm based on model 3.

$$F/23$$
:  $66.910 + 3.972(23) = 66.910 + 91.356 = 158.266$ 
 $P/25$ :  $158.266 + 2(3.972) = 157.266 + 7.944 = 166.210$ 
 $M/23$ :  $(66.910 + 1.577) + (3.972 + 0.096)(22) (8.487 + 4.068(23))$ 
 $= 68.487 + 93.564 = 162.051$   $M/25$ :  $162.051 + 2(4.068) = 170.187$ 
 $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 158.266$   $= 15$ 

p.6.b. Based on models 1 and 2 test whether males and females differ in mean height, controlling for foot length.

H<sub>0</sub>: 
$$\gamma_1 = 0$$
 H<sub>A</sub>:  $\gamma_1 \neq 0$ 

$$SSE_1 - SSE_2$$

$$\frac{116921 - 10846.5}{20.88} = \frac{8504.5}{20.88} = \frac{407.28}{20.88}$$
F. oS<sub>1</sub>1,3192
$$F = 407.28$$
Rejection Region:  $F \geq 3.841$ 
P-value  $\geq \text{ or } (8).05$ 

p.6.c. Based on models 2 and 3 test whether the slopes with respect to foot length differ for males and females.

$$H_0: \delta_1 = 0$$
  $H_A: \delta_1 \neq 0$  /08416.5 - 108404

$$T = \frac{108404}{5195-4} = \frac{12.5}{20.88} = 0.60$$

Test Statistic: 
$$\frac{\mathcal{E}}{0.60}$$
 Rejection Region:  $\frac{\mathcal{E}}{23.84}$  P-value or < .0.

42

Q.7. A regression model is fit, relating mobility (Y) to six predictor variables: GDP ( $X_1$ ), vehicles/km of road ( $X_2$ ), population density ( $X_3$ ), percent urban population ( $X_4$ ), land area ( $X_5$ ), and population ( $X_6$ ) for n = 38 island nations. The Analysis of Variance for the multiple linear regression model is given below.

| ANOVA     | and a second or a second contract. |      |       |    |      | 1  |      |    |           |
|-----------|------------------------------------|------|-------|----|------|----|------|----|-----------|
|           | df                                 | 10.0 | SS    |    | MS   | :  | F    | gı | nificance |
| Regressio | (                                  | 6    | 87.5  | 57 | 14.6 |    | 28.8 | 33 | 0.0000    |
| Residual  | 3:                                 | 1    | 15.6  | 59 | 0.5  | 51 |      | 1  |           |
| Total     | 3                                  | 7    | 103.2 |    |      |    |      |    |           |

p.7.a. A plot of the residuals versus predicted values is given below. It demonstrates which possible violations of assumptions (circle all that apply).


Non-normal Errors

Unequal Variance

Serial Correlation of Errors

Non-linear Relation between Y and X

2 each



p.7.b. A second regression model is fit, relating the squared residuals (Y) to the 6 predictors  $(X_1,...,X_6)$ . Conduct the Breusch-Pagan test to test whether the equal variance assumption is reasonable. The sums of squares are given below.

| ANOVA     |    |            |        | ~ . I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ė           |         |
|-----------|----|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
|           | df | SS         | . 2    | 33 Reg /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 269.47/2    | 134,735 |
| Regressio | 6  | 269.47     | V -    | and the second of the second o |             |         |
| Residual  | 31 | 166.87     | ^BP    | 6001 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (15.69 /38) | 1705    |
| Total     | 37 | 436.34     | ¥ •    | (276\V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (13.61/30)  |         |
|           |    |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |
|           |    |            |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |         |
|           |    | terrinario | 410.32 | X 05 6 = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 592         |         |

Test Statistic:  $\chi_{\beta \rho}^{2} = 790.32$ 

Rejection Region:

XBP = 12.592

e-value > or < 0.0