STA 6167 - Exam 2 - Spring 2016 - PRTNT Name $\qquad$

## Note: Conduct all individual tests at $\alpha=0.05$ significance level, and all multiple comparisons at an experiment-wise error rate of $\alpha_{E}=0.05$.

Q.1. A study compared antioxidant activity of $t=8$ brands of craft beer in a 1-Way ANOVA. One response reported was DPPH radical scavenging activity. Each brand was had $n=3$ replicates measured.

| Brand | Mean | SD |
| :--- | ---: | ---: |
| L | 794.9 | 27.5 |
| P | 376 | 32.4 |
| W | 706.2 | 30.9 |
| B9 | 586.5 | 17.7 |
| N | 864.6 | 42.4 |
| R | 670.6 | 19.9 |
| T | 1310.3 | 19 |
| E | 679.2 | 25 |

$$
\sum_{i=1}^{t}\left(\bar{y}_{i \bullet}-\bar{y}_{. .}\right)^{2}=508911.8 \quad \sum_{i=1}^{t} s_{i}^{2}=6253.88
$$

p.1.a. Complete the following Analysis of Variance table used to test $\mathrm{H}_{0}: \mu_{1}=\ldots . .=\mu_{8}$

| Source | df | SS | MS | F_obs | F(.05) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Brand |  |  |  |  |  |
| Error |  |  |  |  |  |
| Total |  |  |  |  |  |

p.1.b. Do we reject the null hypothesis, and conclude the population means differ among the brands? Yes or No
p.1.c. Compute Tukey's minimum significant difference and determine which brands are significantly different.
P
B9
R
E
W
L
N
T
Q.2. An experiment had 2 factors, each with 2 levels: Factor A:Instructional Method (Standard and Enhanced), and Factor B: Instructional Medium (Desktop and Mobile Device). There were a total of $\mathrm{N}=88$ subjects, with $\mathrm{n}=22$ receiving each treatment (combination of method and medium). The sample means and standard deviations of scores on a transfer test are given below.

| Mean | Medium |  |  |  | SD | Medium |  |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| Method | Desktop | Mobile | Overall |  | Method | Desktop | Mobile |
| Standard | 2.58 | 2.36 | 2.47 |  | Standard | 1.93 | 1.76 |
| Enhanced | 4.04 | 4.34 | 4.19 |  | Enhanced | 3.04 | 2.67 |
| Overall | 3.31 | 3.35 | 3.33 |  |  |  |  |

The model fit is a 2-Way fixed effects ANOVA with interaction. $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k}$ p.2.a. Compute the sums of squares for: Method, Medium, and complete the following ANOVA table.

| Source | df | SS | MS | F_obs | F(0.05) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Method |  |  |  |  |  |
| Medium |  |  |  |  |  |
| M $^{*}$ M |  | 1.4872 |  |  |  |
| Error |  | 487.053 |  |  |  |
| Total |  |  |  |  |  |

p.2.b. Do you reject the hypothesis: $H_{0}^{A B}:(\alpha \beta)_{11}=(\alpha \beta)_{12}=(\alpha \beta)_{21}=(\alpha \beta)_{22}=0 \quad$ Yes $\quad / \quad$ No
p.2.c. Do you reject the hypothesis: $H_{0}^{A}: \alpha_{1}=\alpha_{2}=0 \quad$ Yes $\quad / \quad$ No
p.2.d. Do you reject the hypothesis: $H_{0}^{B}: \beta_{1}=\beta_{2}=0 \quad$ Yes $\quad / \quad$ No
Q.3. A study compared $t=4$ warm-up protocols in terms of vertical jump ability in dancers. There were $b=10$ dancers, each dancer was measured under each warm-up protocol and the experiment is a Randomized Block Design with dancers as blocks.
$y_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}=\mu_{i}+\beta_{j}+\varepsilon_{i j}$
The treatments and their means are: Static Stretch: 38.0 Dynamic Stretch: 41.4 Static\&Dynamic Stretch: 41.0 Control: 37.8 p.3.a. Complete the following ANOVA table.

| Source | df | SS | MS | F_obs | F(.05) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Treatment (Warm-up) |  |  |  |  |  |
| Block (Dancer) |  | 850.6 |  |  |  |
| Error |  | 42.0 |  |  |  |
| Total |  |  |  |  |  |

p.3.b. Do you reject $H_{0}: \alpha_{1}=\ldots=\alpha_{4}=0 \quad\left(\mu_{1}=\ldots=\mu_{4}\right) ? \quad$ Yes $\quad / \quad$ No
p.3.c. Compute the Relative Efficiency of the RCB to the Completely Randomized Design. How many subjects would be needed per treatment to have the same standard error of a treatment (warm-up protocol) in a CRD?

Relative Efficiency $\qquad$ \# of Subjects per treatment $\qquad$ p.3.d. Compute Bonferroni's minimum significant difference and determine which treatments are significantly different.
Q.4. An engineering experiment was conducted to measure variation in semiconductors for a particular measurement. A sample of 5 lots (batches) of semiconductors was selected. Within each lot, 2 wafers were sampled. Each wafer was measured at 9 random sites (these are replicates). Note that the wafers are nested within lots. Both lots and wafers are random effects.
$Y_{i j k}=\mu+\alpha_{i}+\beta_{j(i)}+\varepsilon_{i j k} \quad \alpha_{i} \sim N\left(0, \sigma_{a}^{2}\right) \quad \beta_{j(i)} \sim N\left(0, \sigma_{b}^{2}\right) \quad \varepsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$
p.4.a. Complete the following Analysis of Variance table.

| Source | df | SS | MS | F_obs | F(.05) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Lot |  | 1698.5 |  |  |  |
| Wafer(Lot) |  | 272.2 |  |  |  |
| Error |  | 1803.8 |  |  |  |
| Total |  |  |  |  |  |

p.4.c. Do you reject the hypothesis: $H_{0}^{A}: \sigma_{a}^{2}=0$ ? Yes / No
p.4.d. Do you reject the hypothesis: $H_{0}^{B}: \sigma_{b}^{2}=0$ ? Yes / No
p.4.e. For the nested design, with random factors A , and $\mathrm{B}(\mathrm{A})$, we have:
$E\{M S E\}=\sigma^{2} \quad E\{\operatorname{MSB}(A)\}=\sigma^{2}+n \sigma_{b}^{2} \quad E\{M S A\}=\sigma^{2}+n \sigma_{b}^{2}+b n \sigma_{a}^{2}$
Obtain unbiased estimates for the 3 variances:
$\hat{\sigma}^{2}=$ $\qquad$
$\qquad$ ^ 2
$\qquad$ $\sigma_{a}=$ $\qquad$
Q.5. For the following problems, identify the factor(s), state whether they are fixed or random, give the analysis of variance table, with sources of variation and degrees of freedom, symbolic F-ratios and critical values for $\alpha=0.05$ significance level tests.
p.5.a. An experiment was conducted to determine the effects of 2 factors on growth of cucumbers in a greenhouse. Factor A was irrigation method (Furrow and Subsurface Drip) and Factor B was post-irrigation aereation level $(0,0.50,0.75,1)$. Due to the nature of the experimental set-up, the experiment was conducted as a Split-Plot Design with irrigation method as the Whole-plot factor, and aereation level as the Sub-plot factor. The experiment was conducted in 5 blocks. The response was cucumber length.
p.5.b. A steel experiment was conducted to compare 3 levels of titanium carbon content. Two blocking factors were included: sliding velocity and applied load (each with 3 levels). Each titanium carbon content was applied to each sliding velocity and to each applied load once. The response was wear rate.
p.5.c. A study compared the swimming speeds of male and female zebra-fish at 4 rearing temperatures. The experimenters raised 48 males and 48 females, 12 of each gender at each of the 4 temperatures ( $22 \mathrm{C}, 25,28$, and 31 ). The response is relative critical swimming speed.
Q.6. For each of the following scenarios compute the appropriate minimum significant difference for comparing (fixed) treatment means:
p.6.a. Two-way ANOVA: Factor A Fixed, $a=4$, Factor $B$ Random, $b=5, n=3$ replicates per combination of factors A and $B$.
$S S A=600 \quad S S B=1000 \quad S S A B=600 \quad S S E=1600$
Compute Tukey's HSD for comparing levels of factor A.
p.6.b. Nested 2-Way ANOVA: Factor A Fixed, $a=3$, Factor B Fixed, $b=3, n=5$ replicates cell.

$$
S S A=120 \quad S S B(A)=180 \quad S S E=144
$$

Compute Bonferroni's MSD for comparing levels of factor A.
Q.7. A study classified a sample of French Ski resorts into 3 classifications (large, medium, and small) based on their volume of business. The researchers obtained a measure of each resort's Luenberger Productivity Index (LPI) was obtained. The authors conducted a Kruskal-Wallis test to test whether population median LPI scores differ by resort size group. The numbers and rank sums for each resort size group are given below.

| Size | n | RankSum |
| :--- | ---: | ---: |
| Large | 16 | 428 |
| Medium | 31 | 932 |
| Small | 17 | 720 |

Test Statistic: $\qquad$ Rejection Region $\qquad$ P -value is $>\mathbf{0 . 0 5}$ or $<\mathbf{0 . 0 5}$

