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Chapter 1

Simple Linear Regression

1.1 Introduction

Linear regression is used when there is a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s)
with random error terms assumed to be independent and normally distributed with constant variance. The
fitting of linear regression models is very flexible, allowing for fitting curvature and interactions between
factors. In this chapter, the case of a single predictor variable is covered in detail. The methods described
here generalize (for the most part) directly to the case when there are p ≥ 2 predictor variables included in
the model.

1.2 Basic Simple Linear Regression Model

When there is a single numeric predictor, the model is referred to as Simple Regression. The (random)
response variable is denoted as Y and the predictor variable is denoted as X. The basic model is written as
follows.

Y = β0 + β1X + ε ε ∼ N(0, σ2) independent

Here β0 is the intercept (mean of Y when X=0) and β1 is the slope (the change in the mean of Y when X
increases by 1 unit). Of primary concern is whether β1 = 0, which implies the mean of Y is constant (β0),
and thus Y and X are not associated (at least in a linear pattern). In many applications, transformations
of Y and/or X are needed to meet the assumptions of the model.

Example 1.1: Galvonometer Deflection in Experiments with Explosives

An experiment was conducted (McNab and Ristori (1899-1900), [23]), relating the deflection of a galvonome-
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4 CHAPTER 1. SIMPLE LINEAR REGRESSION

obsNum (i) wireArea (Xi) galvDef (Yi) obsNum (i) wireArea (Xi) galvDef (Yi)
1 152 85 12 53 149
2 152 81.5 13 53 149
3 152 83.5 14 53 147
4 125 102 15 35 152.5
5 125 90.5 16 35 158.5
6 125 98.5 17 35 151
7 99 109 18 25 161
8 99 115.5 19 25 170
9 66 131 20 25 166
10 66 128.5 21 17 185.5
11 66 138.5 22 17 192

Table 1.1: Galvonometer Deflection (Y ) and Wire Area (X) in an Explosion Experiment

ter (Y , in mm) as a linear function of the area of the wire (X in 1/100000 in) in explosion research, based
on n = 22 experimental observations. The data are given in Table 1.1 and a plot of the data and the fitted
simple regression line are given in Figure 1.1.

∇

1.3 Estimation of Model Parameters

We obtain a sample of n pairs (Xi, Yi) i = 1, . . . , n. Our goal is to choose estimators of β0 and β1 that
minimize the error sum of squares: Q =

∑n
i=1 ε2i . The resulting estimators are (from calculus) given below

after introducing some useful notation.

Yi = β0 + β1Xi + εi i = 1, . . . , n Q =

n
∑

i=1

ε2i =

n
∑

i=1

[Yi − (β0 + β1Xi)]
2

X =

∑n
i=1 Xi

n
Y =

∑n
i=1 Yi

n
SSXX =

n
∑

i=1

(Xi−X)2 SSXY =

n
∑

i=1

(Xi−X)(Yi−Y ) SSY Y =

n
∑

i=1

(Yi−Y )2

β̂1 =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
=

SSXY

SSXX
=

n
∑

i=1

(

Xi − X
∑n

i=1(Xi − X)2

)

Yi

β̂0 = Y − β̂1X =

n
∑

i=1

[

1

n
+

(

Xi − X
)

X
∑n

i=1(Xi − X)2

]

Yi
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Figure 1.1: Plot of Galvonomer Deflection (Y ) and Wire Area (X) and the fitted regression equation

Once estimates are computed, fitted values and residuals are obtained for each observation. The error
sum of squares (SSE) is obtained as the sum of the squared residuals as follows.

Fitted Values: Ŷi = β̂0 + β̂1Xi Residuals: ei = Yi − Ŷi i = 1, . . . , n

SSE =

n
∑

i=1

(Yi − Ŷi)
2 =

n
∑

i=1

e2
i = SSY Y − (SSXY )2

SSXX

The (unbiased) estimate of the error variance σ2 is s2 = MSE = SSE
n−2 , where MSE is the Mean Square

Error. The subtraction of 2 can be thought of as the fact that two parameters have been estimated : β0

and β1.

The estimators β̂1 and β̂0 are linear functions of Y1, . . . , Yn and thus using basic rules of mathematical
statistics, their sampling distributions are given below. Note first that for constants a1, . . . , an and random
variables Y1, . . . , Yn, the following results are obtained.

E

{

n
∑

i=1

aiYi

}

=

n
∑

i=1

aiE {Yi} V

{

n
∑

i=1

aiYi

}

=

n
∑

i=1

a2
i V {Yi} + 2

n−1
∑

i=1

n
∑

i′=i+1

aiai′COV {Yi, Yi′}
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In the case of the simple linear regression model described above, the following results are used, where the
Xs are assumed to be fixed constants.

E {Yi} = β0 + β1Xi V {Yi} = σ2 i 6= i′ ⇒ COV {Yi, Yi′} = 0

β̂1 =

n
∑

i=1

(

Xi − X
∑n

i=1(Xi − X)2

)

Yi E
{

β̂1

}

=

n
∑

i=1

(

Xi − X
∑n

i=1(Xi − X)2

)

(β0 + β1Xi) = β1

V
{

β̂1

}

=

n
∑

i=1

(

Xi − X
∑n

i=1(Xi − X)2

)2

σ2 =
σ2

∑n
i=1(Xi − X)2

β̂1 ∼ N

(

β1,
σ2

∑n
i=1(Xi − X)2

)

β̂0 ∼ N

(

β0, σ
2

[

1

n
+

X
2

∑n
i=1(Xi − X)2

])

The standard error is the square root of the variance, and the estimated standard error is the standard
error with the unknown σ2 replaced by MSE.

ŜE{β̂1} =

√

MSE
∑n

i=1(Xi − X)2
ŜE{β̂0} =

√

√

√

√MSE

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]

Example 1.2: Galvonometer Deflection in Experiments with Explosives

The computations necessary to obtain the parameter estimates and their estimated standard errors for the
explosion experiment are contained in Table 1.2, they were originally computed in EXCEL.

β̂1 =
−32715.80

47048.36
= −0.6954 β̂0 = 133.864− 72.727(−0.6954) = 184.438

SSE = 1076.63 s2 = MSE =
1076.63

22 − 2
= 53.83

ŜE
{

β̂1

}

=

√

53.83

47048.36
= 0.0338 ŜE

{

β̂0

}

=

√

53.83

[

1

22
+

(72.727)2

47048.36

]

= 2.915

∇
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i Xi Yi Xi − X Yi − Y
(

Xi − X
)2 (

Yi − Y
)2 (

Xi − X
) (

Yi − Y
)

Ŷi ei e2
i

1 152 85 79.273 -48.864 6284.165 2387.655 -3873.55 78.74 6.26 39.184
2 152 81.5 79.273 -52.364 6284.165 2741.95 -4151.01 78.74 2.76 7.616
3 152 83.5 79.273 -50.364 6284.165 2536.496 -3992.46 78.74 4.76 22.655
4 125 102 52.273 -31.864 2732.438 1015.291 -1665.6 97.52 4.48 20.114
5 125 90.5 52.273 -43.364 2732.438 1880.405 -2266.74 97.52 -7.02 49.212
6 125 98.5 52.273 -35.364 2732.438 1250.587 -1848.55 97.52 0.98 0.970
7 99 109 26.273 -24.864 690.256 618.2 -653.236 115.59 -6.59 43.490
8 99 115.5 26.273 -18.364 690.256 337.223 -482.463 115.59 -0.09 0.009
9 66 131 -6.727 -2.864 45.256 8.2 19.264 138.54 -7.54 56.878
10 66 128.5 -6.727 -5.364 45.256 28.769 36.083 138.54 -10.04 100.836
11 66 138.5 -6.727 4.636 45.256 21.496 -31.19 138.54 -0.04 0.002
12 53 149 -19.727 15.136 389.165 229.11 -298.599 147.58 1.42 2.012
13 53 149 -19.727 15.136 389.165 229.11 -298.599 147.58 1.42 2.012
14 53 147 -19.727 13.136 389.165 172.564 -259.145 147.58 -0.58 0.338
15 35 152.5 -37.727 18.636 1423.347 347.314 -703.099 160.10 -7.60 57.730
16 35 158.5 -37.727 24.636 1423.347 606.95 -929.463 160.10 -1.60 2.554
17 35 151 -37.727 17.136 1423.347 293.655 -646.508 160.10 -9.10 82.775
18 25 161 -47.727 27.136 2277.893 736.382 -1295.15 167.05 -6.05 36.623
19 25 170 -47.727 36.136 2277.893 1305.837 -1724.69 167.05 2.95 8.692
20 25 166 -47.727 32.136 2277.893 1032.746 -1533.78 167.05 -1.05 1.106
21 17 185.5 -55.727 51.636 3105.529 2666.314 -2877.55 172.61 12.89 166.033
22 17 192 -55.727 58.136 3105.529 3379.837 -3239.78 172.61 19.39 375.792

Mean 72.727 133.864 133.864 0.00

Sum 1600 2945 0 0 47048.36 23826.09 -32715.8 2945.00 0.00 1076.63

Table 1.2: Galvonomer Deflection (Y ) and Wire Area (X) calculations to obtain parameter estimates
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1.4 Inferences Regarding β1 and β0

Primarily of interest are inferences regarding β1 . Note that if β1 = 0, Y and X are not associated. Hypotheses
can be tested and confidence intervals constructed based on the estimate β1 and its estimated standard error.
The t-test is conducted as follows. Note that the null value β10 is almost always 0, and that software packages
that report these tests always are treating β10 as 0. Here, and in all other tests, TS represents Test Statistic,
and RR represents Rejection Region.

H0 : β1 = β10 HA : β1 6= β10 TS : tobs =
β̂1 − β10

ŜE{β̂1}
RR : |tobs| ≥ tα/2,n−2 P -value : 2P (tn−2 ≥ |tobs|)

One-sided tests use the same test statistic, but the Rejection Region and P -value are changed to reflect
the alternative hypothesis:

H+
A : β1 > β10 RR : tobs ≥ tα,n−2 P -value : P (tn−2 ≥ tobs)

H−
A : β1 < β10 RR : tobs ≤ −tα,n−2 P -value : P (tn−2 ≤ tobs)

A (1 − α)100% Confidence Interval for β1 is obtained as follows.

β̂1 ± tα/2,n−2ŜE{β̂1}

Note that the confidence interval represents the values of β10 that the two-sided test: H0 : β1 = β10 HA :
β1 6= β10 fails to reject the null hypothesis.

Inferences regarding β0 are only of interest when it is meaningful to estimate the mean when X = 0 or
when the data have been centered by subtracting off the mean (xi = Xi −X) where the intercept represents

the mean when X = X. Inference can be conducted in analogous manner, using the estimate β̂0 and its
estimated standard error ŜE{β̂0}.

Example 1.3: Galvonometer Deflection in Experiments with Explosives

A test of whether the mean galvonemeter deflection is (linearly) related to the wire area can be tested as
H0 : β1 = 0 versus HA : β1 6= 0. Based on the plot in Figure 1.1, it appears to be very certain that there is
a negative association. The test, conducted as 2-sided with α = 0.05 and 95% Confidence Intervals for β1

and β0 are given below.

H0 : β1 = 0 HA : β1 6= 0 TS : tobs =
−0.6954− 0

0.0338
= −20.57 RR : |tobs| ≥ t.025,22−2 = 2.086

P -value : 2P (t20 ≥ | − 20.57|) < .0001
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95% CI for β1 : −0.6954± 2.086(0.0338) ≡ −0.6954± 0.0705 ≡ (−0.7659,−0.6249)

95% CI for β0 : 188.438± 2.086(2.915) ≡ 188.438± 6.081 ≡ (182.357, 194.519)

There is strong evidence that as the wire area increases, the mean galvonemeter deflection decreases. As
it would be impossible to have a wire area of 0, there is no physical interpretation of the intercept β0.

∇

1.5 Estimating the Mean and Predicting a New Observation @
X = X∗

In some cases, it is of interest to estimate the mean response at a specific level X∗. The parameter of interest
is µ∗ = β0 +β1X

∗. The point estimate, standard error, and (1−α)100% Confidence Interval are given below.

Ŷ ∗ = β̂0+β̂1X
∗ ŜE

{

Ŷ ∗
}

=

√

√

√

√MSE

[

1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1−α)100% CI : Ŷ ∗±tα/2,n−2ŜE
{

Ŷ ∗
}

To obtain a simultaneous (1 − α)100% Confidence Interval for the entire regression line (not just a single
point), the Working-Hotelling method can be used.

Ŷ ∗ ±
√

2Fα/2,2,n−2SE
{

Ŷ ∗
}

If interest is in predicting a new observation when X = X∗, there is uncertainty with respect to estimating
the mean (as seen by the Confidence Interval above), and the random error for the new case (with standard
deviation σ). The point prediction is the same as for the mean. The estimate, standard error of prediction,
and (1 − α)100% Prediction Interval are given below.

Ŷ ∗
New = β̂0 + β̂1X

∗ ŜE
{

Ŷ ∗
New

}

=

√

√

√

√MSE

[

1 +
1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1 − α)100% PI : Ŷ ∗
New ± tα/2,n−2ŜE

{

Ŷ ∗
New

}

Note that the Prediction Interval can be much wider than the Confidence Interval for the mean, particularly
when MSE is large.
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Example 1.4: Galvonometer Deflection in Experiments with Explosives

Suppose interest is in estimating the mean galvonometer deflection when the wire area is X∗ = 110.
Further, assume that an upcoming experiment will be run at the same level of wire area. Note that the first
case is considering the long run average of all potential experiments at this level, while the second case is for
a single outcome. The prediction is the same for both cases, the estimated standard errors differ.

Ŷ ∗ = Ŷ ∗
New = 184.438− 0.6954(110) = 184.438− 76.494 = 107.944 X = 72.727 MSE = 53.83

1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

=
1

22
+

(110 − 72.727)2

47048.36
= 0.0750

ŜE
{

Ŷ ∗
}

=
√

53.83(0.0750) = 2.009 ŜE
{

Ŷ ∗
New

}

=
√

53.83(1.0750) = 7.607

(1 − α)100% CI : 107.944± 2.086(2.009) ≡ 107.944± 4.191 ≡ (103.753, 112.135)

(1 − α)100% PI : 107.944± 2.086(7.607) ≡ 107.944± 15.868 ≡ (92.076, 123.812)

If the goal was to obtain simultaneous Confidence Intervals for the mean along the entire regression line, the
multiplier of the standard error of the mean would replace t.025,20 = 2.086 with

√

2F.025,2,20 =
√

2(4.461) =
2.987. Thus, the individual confidence intervals would be almost 50% wider (2.987/2.086=1.43). The
pointwise Confidence Interval for the mean and Prediction Interval for an individual observation are given
in Figure 1.2.

∇

1.6 Analysis of Variance

When there is no linear association between Y and X (β1 = 0), the best predictor of each observation is

Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this case, the total variation can
be denoted as TSS = SSY Y =

∑n
i=1(Yi − Y )2, the Total Sum of Squares. Technically it is the Total

(Corrected for the Mean) Sum of Squares.

When there is an association between Y and X (β1 6= 0), the best predictor of each observation is Ŷi =

β̂0 + β̂1Xi (in terms of minimizing the sum of squares of prediction errors). In this case, the error variation
can be denoted as SSE =

∑n
i=1(Yi − Ŷi)

2, the Error Sum of Squares.

The difference between TSS and SSE is the variation “explained” by the regression of Y on X (as
opposed to having ignored X). It represents the difference between the fitted values and the mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2
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Figure 1.2: Plot of data, fitted equation (middle solid line), pointwise confidence intervals for the mean
(inner dashed lines), and pointwise prediction intervals for individual observations - Explosive Experiment
Data
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Source df SS MS Fobs P -value

Regression 1 SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
1

Fobs = MSR
MSE

P (F1,n−2 ≥ Fobs)

Error (Residual) n − 2 SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−2

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 1.3: Analysis of Variance Table for Simple Linear Regression

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − 2 (for simple regression). The
Regression Degrees of Freedom is dfRegression = 1 (for simple regression).

dfTotal = dfError + dfRegression n − 1 = n − 2 + 1

The Error and Regression Sums of Squares each have a Mean Square, which is the Sum of Squares
divided by its corresponding Degrees of Freedom: MSE = SSE/(n − 2) and MSR = SSR/1. It can be
shown that these Mean Squares have the following Expected Values, average values in repeated sampling
at the same observed X levels.

E{MSE} = σ2 E{MSR} = σ2 + β2
1

n
∑

i=1

(Xi − X)2

Note that when β1 = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A second way of
testing whether β1 = 0 is by the F -test.

H0 : β1 = 0 HA : β1 6= 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,1,n−2 P -value : P (F1,n−2 ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 1.3.

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y “explained” by X, divided by the total variation in Y .

r2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ r2 ≤ 1

The interpretation of r2 is the proportion of variation in Y that is “explained” by X, and is often reported
as a percentage (100r2).

Example 1.5: Galvonometer Deflection in Experiments with Explosives
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Source df SS MS Fobs P -value
Regression 1 22749.46 22749.46 422.62 < .0001
Error (Residual) 20 1076.63 53.83
Total (Corrected) 21 23826.09

Table 1.4: Analysis of Variance Table for the Explosives Experiment

For the explosives data, the Total and Error sums of squares were previously computed, and the Regression
sum of squares is obtained by subtraction.

TSS =

n
∑

i=1

(Yi−Y )2 = 23826.09 SSE =

n
∑

i=1

(Yi−Ŷi)
2 = 1076.63 SSR = 23826.09−1076.63 = 22749.46

The F -statistic and test for H0 : β1 = 0 versus HA : β1 6= 0 is given below. The Analysis of Variance is given
in Table 1.4.

MSR =
22749.46

1
= 22749.46 MSE =

1076.63

22 − 2
= 53.83 Fobs =

22749.46

53.83
= 422.62

The coefficient of determination is r2 = 22749.46/23826.09 = .9548. Over 95% of the variation in
galvonometer deflection is “explained” by the amount of wire area.

∇

1.7 Correlation

The regression coefficient β1 depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson
Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and X, and
does not distinguish which is the dependent and which is the independent variable. This makes it a widely
reported measure when researchers are interested in how two (or more) random variables vary together in a
population. The population correlation coefficient is labeled ρ, and the sample correlation is labeled r, and
is computed as follows.

r =

∑n
i=1(Xi − X)(Yi − Y )

√

∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

=
SSXY√

SSXXSSY Y

=

(

sX

sY

)

β̂1

where sX and sY are the standard deviations of X and Y , respectively. While β̂1 can take on any value,
r lies between -1 and +1, taking on the extreme values if all of the points fall on a straight line. The test
of whether ρ = 0 is mathematically equivalent to the t-test for testing whether β1 = 0. The 2-sided test is
given below.

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
r

√

1−r2

n−2

RR : |tobs| ≥ tα/2,n−2 P − value : 2P (tn−2 ≥ |tobs|)
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To construct a large-sample confidence interval, Fisher’s z transform is used to transform r so that it
has an approximately normal sampling distribution. A confidence interval is constructed for the transformed
correlation, then “back transformed” for a Confidence Interval for ρ.

z′ =
1

2
ln

(

1 + r

1 − r

)

(1 − α)100% CI for
1

2
ln

(

1 + ρ

1 − ρ

)

: z′ ± zα/2

√

1

n − 3

Labeling the endpoints of the Confidence Interval as (a, b), the Confidence Interval for ρ is computed.

(1 − α)100% Confidence Interval for ρ :

(

e2a − 1

e2a + 1
,
e2b − 1

e2b + 1

)

Example 1.6: Galvonometer Deflection in Experiments with Explosives

For the explosives experiment, the sample correlation, r, the t-test, and a 95% Confidence Interval for the
population correlation, ρ, are computed below.

SSXY = −32715.80 SSXX = 47048.36 SSY Y = 23826.09 r =
−32715.80

√

47048.36(23826.09)
=

−32715.80

33481.02
= −.9771

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
−.9771

√

1−(−.9771)2

22−2

=
−.9771

.0476
= 20.54

z′ =
1

2
ln

(

1 + (−.9771)

1 − (−.9771)

)

=
1

2
(−4.4582) = −2.2291 z.025

√

1

22 − 3
= 1.96(.2294) = .4497

a = −2.2291− 0.4497 = −2.6788 b = −2.2291 + 0.4497 = −1.7794

95%CI for ρ :

(

e2(−2.6788) − 1

e2(−2.6788) + 1
,
e2(−1.7794) − 1

e2(−1.7794) + 1

)

≡
(−.9953

1.0047
,
−.9715

1.0285

)

≡ (−.9906,−.9446)

∇

1.8 Model Diagnostics

The inferences regarding the simple linear regression model (tests and confidence intervals) are based on the
following assumptions.
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• Relation between Y and X is linear

• Errors are normally distributed

• Errors have constant variance

• Errors are independent

These assumptions can be checked graphically, as well as by statistical tests. Further, models can be
extended to allow for the assumptions not being met.

1.8.1 Assumption of Linearity

A plot of the residuals versus X (or Ŷ ) should be a random cloud of points centered at 0 (they sum to 0).
A “U-shaped”, “inverted U-shaped”, or “J-shaped” pattern is inconsistent with linearity.

A test for linearity can be conducted when there are repeat observations at certain X-levels (methods have
also been developed to “group” X levels). Suppose there are c distinct X-levels, with nj observations at the
jth level. It is useful for the data to be re-labeled as Yij where j represents the X group, and i represents
the individual case within the group (i = 1, . . . , nj). The following quantities are computed.

Y j =

∑nj

i=1 Yij

nj
Ŷj = β̂0 + β̂1Xj

The Error Sum of Squares is decomposed into Pure Error and Lack of Fit.

n
∑

i=1

(Yi − Ŷi)
2 =

c
∑

j=1

nj
∑

i=1

(

Yij − Y j

)2
+

c
∑

j=1

nj

(

Y j − Ŷj

)2

SSE = SSPE + SSLF

Partition the error degrees of freedom (n − 2) into Pure Error (n − c) and Lack of Fit (c − 2). This leads
to an F -test for testing H0: Relation is Linear versus HA: Relation is not Linear.

H0 : E {Yij} = µj = β0 + β1Xj HA : E {Yij} = µj 6= β0 + β1Xj

TS : FLF =
[SSLF/(c − 2)]

[SSPE/(n − c)]
=

MSLF

MSPE
RR : FLF ≥ Fα,c−2,n−c P -Value : P (Fc−2,n−c ≥ FLF )

If the relationship is not linear, polynomial terms can be added to allow for “bends” in the relationship
between Y and X using multiple regression, or a nonlinear regression model (in the parameters) can be fit.

Example 1.7: Galvonometer Deflection in Experiments with Explosives
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Group (j) Xij Yij Y j Ŷj eij Yij − Y j Y j − Ŷj

1 152 85.0 83.3333 78.7372 6.2628 1.6667 4.5961
1 152 81.5 83.3333 78.7372 2.7628 -1.8333 4.5961
1 152 83.5 83.3333 78.7372 4.7628 0.1667 4.5961
2 125 102.0 97.0000 97.5130 4.4870 5.0000 -0.5130
2 125 90.5 97.0000 97.5130 -7.0130 -6.5000 -0.5130
2 125 98.5 97.0000 97.5130 0.9870 1.5000 -0.5130
3 99 109.0 112.2500 115.5934 -6.5934 -3.2500 -3.3434
3 99 115.5 112.2500 115.5934 -0.0934 3.2500 -3.3434
4 66 131.0 132.6667 138.5416 -7.5416 -1.6667 -5.8749
4 66 128.5 132.6667 138.5416 -10.0416 -4.1667 -5.8749
4 66 138.5 132.6667 138.5416 -0.0416 5.8333 -5.8749
5 53 149.0 148.3333 147.5818 1.4182 0.6667 0.7515
5 53 149.0 148.3333 147.5818 1.4182 0.6667 0.7515
5 53 147.0 148.3333 147.5818 -0.5818 -1.3333 0.7515
6 35 152.5 154.0000 160.0990 -7.5990 -1.5000 -6.0990
6 35 158.5 154.0000 160.0990 -1.5990 4.5000 -6.0990
6 35 151.0 154.0000 160.0990 -9.0990 -3.0000 -6.0990
7 25 161.0 165.6667 167.0530 -6.0530 -4.6667 -1.3863
7 25 170.0 165.6667 167.0530 2.9470 4.3333 -1.3863
7 25 166.0 165.6667 167.0530 -1.0530 0.3333 -1.3863
8 17 185.5 188.7500 172.6162 12.8838 -3.2500 16.1338
8 17 192.0 188.7500 172.6162 19.3838 3.2500 16.1338

Sum of Squares 1076.63 246.92 829.72

Table 1.5: Galvonomer Deflection (Y ) and Wire Area (X) calculations to obtain F -test for Lack of Fit

The explosives experiment was conducted at c = 8 distinct levels of wire area (X). The sample sizes were
nj = 3 for 6 of the levels and nj = 2 for the other 2 levels. Table 1.5 contains the data, group means, group
fitted values from the linear regression, and the error decomposition into Pure Error and Lack of Fit. The
sums of squares are obtained in the bottom row, using the SUMSQ function in EXCEL.

n = 22 c = 8 SSPE = 246.92 SSLF = 829.72 MSPE =
246.92

22 − 8
= 17.637 MSLF =

889.72

8 − 2
= 138.287

TS : FLF =
138.287

17.637
= 7.841 RR : FLF ≥ Fα,6,14 = 2.848 P -Value : P (F6,14 ≥ 7.841) = .0008

There is strong evidence that the relation between mean galvonometer deflection and wire area is not
linear. The plot of the residuals versus the fitted values does reveal a “U-shape”, as seen in Figure 1.3. A
polynomial model will be considered later.

∇
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Figure 1.3: Plot of residuals versus fitted values for the Explosives Experiment

1.8.2 Assumption of Normality

A normal probability plot of the ordered residuals versus their predicted values based on a normal distribution
should fall approximately on a straight line. A histogram should be mound-shaped. Neither of these methods
work well with small samples (even data generated from a normal distribution will not necessarily look like
it is normal).

Various tests are computed directly by statistical computing packages. The Shapiro-Wilk and Kolmogorov-
Smirnov tests are commonly reported, with resulting P -values for testing H0: Errors are normally distributed.

Example 1.8: Galvonometer Deflection in Experiments with Explosives

The Shapiro-Wilk statistic based on the residuals (obtained in R), yields a P -value of .0900. The normal
probability plot is given in Figure 1.4. In the plot, the residuals are not particularly close to the straight
line. The sample size is fairly small for checking normality.

∇

When data are not normally distributed, the Box-Cox transformation is often applied. This involves
fitting regression models for various power transformations of Y on X, where:
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Figure 1.4: Normal probability plot for residuals from linear regression model for the Explosives Experiment

Y
(λ)
i =







Y λ
i −1

λ(Ẏ )
(λ−1) λ 6= 0

Ẏ ln(Yi) λ = 0

Here Ẏ is the geometric mean of Y1, . . . , Yn, where all observations are strictly positive (a constant can be
added to all observations to assure this).

Ẏ =

(

n
∏

i=1

Yi

)1/n

= exp

{∑n
i=1 ln(Yi)

n

}

Values of λ between -2 and 2 by small increments are typically run, and the value of λ that has the smallest
Error Sum of Squares (equivalently Maximum Likelihood) is identified. Statistical software packages will
present a confidence interval for λ as well.

Example 1.9: Spread of Shotgun Pellets

A forensic experiment was conducted (Rowe and Hanson, 1985, [30]) to determine the relationship between
the spread of shotgun pellets (Y , square root of area of the rectangle containing the pellet holes) and the
distance of the shot (X, in feet). The study used two shotgun shell brands, this analysis is based on the
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repNum X = 10 X = 20 X = 30 X = 40 X = 50
1 2.60 6.84 6.51 10.28 11.80
2 3.35 6.32 6.72 11.47 13.74
3 3.33 6.96 8.24 14.10 15.18
4 3.06 5.85 7.38 12.54 20.13
5 3.38 5.95 9.84 16.13 16.94
6 3.85 6.29 9.42 11.03 14.09

Mean 3.26 6.37 8.02 12.59 15.31
SD 0.4126 0.4527 1.3929 2.1835 2.9045
Var 0.1702 0.2049 1.9401 4.7677 8.4359

Table 1.6: Shotgun spread data

second (Remington No. 4). The data are given in Table 1.6, there were 5 distinct distances (10 to 50 by 10),
with 6 replicates per distance. A plot of the data and the fitted regression line are given in Figure 1.5. The
result of the model fit is given below (all R programs are given at the end of the chapter).

> sg.mod1 <- lm(spread.Y2 ~ dist.X2)

> summary(sg.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01267 0.75413 0.017 0.987

dist.X2 0.30327 0.02274 13.337 1.18e-13 ***

Residual standard error: 1.761 on 28 degrees of freedom

Multiple R-squared: 0.864, Adjusted R-squared: 0.8591

F-statistic: 177.9 on 1 and 28 DF, p-value: 1.184e-13

> anova(sg.mod1)

Analysis of Variance Table

Response: spread.Y2

Df Sum Sq Mean Sq F value Pr(>F)

dist.X2 1 551.82 551.82 177.89 1.184e-13 ***

Residuals 28 86.86 3.10

The Shapiro-Wilk test for normality yields a P -value of .0579, and the normal probability plot shows
several outlying residuals based on the assumption of normality in Figure 1.6. Clearly, based on Figure 1.5,
there is also non-constant variance which will be considered below.

The Box-Cox transformation was run, with the point estimate of λ being 0.263, with a Confidence Interval
of (-.020,0.586), suggesting a quarter root transformation for Y . The plot of the likelihood function versus
λ and the Confidence Interval are given in Figure 1.7.

Based on the quarter root transformation on Y , the P -value for the Shapiro-Wilk test is .9958, confirming
that the residuals from the transformed model are approximately normal, the normal probability plot (not
shown) conforms to the lack of outliers.

∇
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Figure 1.5: Plot of shotgun spread (Y ) versus distance (X) and fitted regression equation
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Figure 1.6: Normal probability plot of residuals - shotgun spread data
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Figure 1.7: Plot of Box-Cox transformation - shotgun spread data

1.8.3 Assumption of Equal Variance

A plot of the residuals versus the fitted values Ŷ (or X) should be a random cloud of points centered at 0.
When the variances are unequal, the variance tends to increase with the mean, and a funnel-type shape is
often observed.

Two tests for equal variance are the Brown-Forsyth test and the Breusch-Pagan test. When the variance
is not constant, Y can possibly be transformed to obtain approximately constant variance.

Brown-Forsyth Test - Split data into two groups of approximately equal sample sizes based on their
fitted values (any cases with the same fitted values should be in the same group). Then labeling the
residuals e11, . . . , e1n1 and e21, . . . , e2n2, obtain the median residual for each group: ẽ1 and ẽ2, respectively.
Then compute the following quantities.

dij = |eij−ẽi| i = 1, 2; j = 1, . . . , ni di =

∑ni

j=1 dij

ni
s2
i =

∑ni

j=1

(

dij − di

)2

ni − 1
s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

Then, a 2-sample t-test is conducted to test H0: Equal Variances in the 2 groups.
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j e1j Ŷ1j med(e1j) d1j e2j Ŷ2j med(e2j) d2j

1 6.259899 78.7401 0.445271 5.814628 1.418695 147.5813 -0.81642 2.23512
2 2.759899 78.7401 0.445271 2.314628 1.418695 147.5813 -0.81642 2.23512
3 4.759899 78.7401 0.445271 4.314628 -0.58131 147.5813 -0.81642 0.23512
4 4.485025 97.51497 0.445271 4.039754 -7.59789 160.0979 -0.81642 6.781463
5 -7.01497 97.51497 0.445271 7.460246 -1.59789 160.0979 -0.81642 0.781463
6 0.985025 97.51497 0.445271 0.539754 -9.09789 160.0979 -0.81642 8.281463
7 -6.59448 115.5945 0.445271 7.039754 -6.05154 167.0515 -0.81642 5.23512
8 -0.09448 115.5945 0.445271 0.539754 2.948455 167.0515 -0.81642 3.76488
9 -7.54155 138.5416 0.445271 7.986822 -1.05154 167.0515 -0.81642 0.23512
10 -10.0416 138.5416 0.445271 10.48682 12.88553 172.6145 -0.81642 13.70195
11 -0.04155 138.5416 0.445271 0.486822 19.38553 172.6145 -0.81642 20.20195

Mean 4.63851 5.789889

SD 3.423818 6.276751

Table 1.7: Galvonomer Deflection (Y ) and Wire Area (X) calculations to obtain the Brown-Forsythe test

TS : tBF =
d1 − d2

√

s2
p

(

1
n1

+ 1
n2

)

RR : |tBF | ≥ tα/2,n−2 P -value = 2P (tn−2 ≥ |tBF |)

Example 1.10: Galvonometer Deflection in Experiments with Explosives

The Brown-Forsyth test is conducted for the Explosives Experiment, with the data being split into 2 groups
with n1 = n2 = 11 observations based on their fitted values. Calculations were obtained in EXCEL, and are
given in Table 1.7.

d1 = 4.639 d2 = 5.790 s1 = 3.424 s2 = 6.277 s2
p =

(11 − 1)3.4242 + (11 − 1)6.2772

11 + 11 − 2
= 25.562

TS : tBF =
4.639− 5.790

√

25.562
(

1
11 + 1

11

)

=
−1.151

2.156
= −0.534 P -value = 2P (t22−2 ≥ | − 0.534|) = .5992

The test provides no evidence of non-constant error variance.

∇

Breusch-Pagan Test - Fits a regression of the squared residuals on X and tests whether the (natural)
log of the variance is linearly related to X. When the regression of the squared residuals is fit, obtain SSRe2 ,
the regression sum of squares. The test is conducted as follows, where SSE is the Error Sum of Squares for
the original regression of Y on X.
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Figure 1.8: Plot of residuals versus predicted values for the shotgun spread data (original scale)

TS : X2
BP =

(SSRe2/2)

(SSE/n)
2 RR : X2

BP ≥ χ2
α,1 P -value: P

(

χ2
1 ≥ X2

BP

)

Example 1.11: Spread of Shotgun Pellets

A plot of the residuals versus the fitted values of the original regression model relating pellet spread to
distance for the shotgun data is given in Figure 1.8. There is strong evidence of variance increasing with the
mean. A second regression model is fit, relating the squared residuals to distance so the Breusch-Pagan test
can be conducted. Recall that SSE from the original model is 86.86 and n = 30 from Example 1.9.

> sg.mod3 <- lm(I(e1^2) ~ dist.X1)

> anova(sg.mod3)

Analysis of Variance Table

Response: I(e1^2)

Df Sum Sq Mean Sq F value Pr(>F)

dist.X1 1 186.69 186.686 7.6855 0.009786 **

Residuals 28 680.14 24.291

SSRe2 = 186.69 TS : X2
BP =

(186.686/2)

(86.86/30)
2 =

93.343

8.383
= 11.135

RR : X2
BP ≥ χ2

.05,1 = 3.841 P =
(

χ2
1 ≥ 11.135

)

= .0008
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Making use of the bptest function in the lmtest package, the Breusch-Pagan test will be computed
directly. The default is to use studentized residuals (see Section 1.8.5 for the definition). To use the current
version of the test, use the studentize=FALSE option.

> bptest(sg.mod1, studentize=FALSE)

Breusch-Pagan test

data: sg.mod1

BP = 11.135, df = 1, p-value = 0.0008471

There is very strong evidence of non-constant variance. Note that as the Box-Cox transformation cured
the non-normality of errors, it also reduces the non-constant variance (the P -value for the Breusch-Pagan
test is .1713, not shown here). This “combined effect” of the Box-Cox transformation will not work for all
data sets.

∇

Another possibility is to use Estimated Weighted Least Squares by relating the standard deviation
(or a power of it) of the errors to the mean. This is an iterative process, where the weights are re-weighted
at each iteration. The weights are the reciprocal of the estimated variance (or possibly a power of it)as a
function of the mean. Iteration continues until the regression coefficient estimates stabilize.

When data have replicates at the various X levels, the reciprocal of the estimated variance (or possibly a
power of it) of the observations at the various X levels can be used as weights. This gives a higher weight
on the observations with the smaller variation. Most statistical software packages have options for weighting
the data (this can be done directly using the matrix form of the regression model).

Example 1.12: Spread of Shotgun Pellets

From Table 1.6, the sample variances for the five distances range from 0.1702 when X = 10 to 8.4359
when X = 50. The estimated weighted least squares estimates are given below, where the weights of the
observations are the reciprocal of the variance of the measurements at the corresponding X level. For
observations at X = 10, the weight is 1/.1702=5.8754, at X = 50, the weight is 1/8.4359=0.1185.

> sg.mod4 <- lm(spread.Y2 ~ dist.X2, weight=reg.wt)

> summary(sg.mod4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3821 0.2940 1.299 0.204

dist.X2 0.2923 0.0166 17.604 <2e-16

The slope
(

β̂1

)

coefficients are very similar (0.3033 for ordinary least squares versus 0.2923 for weighted

least squares), but the standard error is much smaller for weighted (0.0166) than for ordinary least squares
(0.0227). This implies more precise estimates, with larger t-statistic and narrower Confidence Intervals when
using weighted least squares.

∇
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The variance of the individual measurements may vary as a function of a covariate or the mean. Note
that for the shotgun pellet data, the variance clearly increases with the distance (as well as the mean). For
instance, the variance may be related to the mean by a power function.

V {εi} = σ2
i = σ2µ2δ

i or possibly in terms of a predictor variable X: σ2
i = σ2X2δ

i

For this model, if δ = 0, then the error variance is constant, otherwise the variance is said to be heteroskedas-
tic. Estimated Generalized Least Squares (EGLS) can be used to estimate the parameters σ and δ (as well
as estimated regression coefficients) with various statistical software packages.

Example 1.13: Spread of Shotgun Pellets

Using the gls function in the nlme R package, the variance power model is fit with the following estimates
being obtained for the shotgun spread data. The computer output is given below.

µ̂i = β̂0 + β̂1Xi = 0.3748 + 0.2889Xi σ̂2
i = σ̂2µ̂2δ̂

i =
(

0.0651µ̂1.3882
i

)2

> sg.mod5 <- gls(spread.Y2 ~ dist.X2, weights = varPower(form = ~ fitted(.)), method="ML")

> summary(sg.mod5)

Generalized least squares fit by maximum likelihood

Model: spread.Y2 ~ dist.X2

Data: NULL

AIC BIC logLik

102.123 107.7277 -47.06148

Variance function:

Structure: Power of variance covariate

Formula: ~fitted(.)

Parameter estimates:

power

1.38818

Coefficients:

Value Std.Error t-value p-value

(Intercept) 0.3747855 0.25378056 1.476809 0.1509

dist.X2 0.2888985 0.01644691 17.565515 0.0000

Residual standard error: 0.06514301

Degrees of freedom: 30 total; 28 residual

> intervals(sg.mod5)

Approximate 95\% confidence intervals

Coefficients:

lower est. upper

(Intercept) -0.1450604 0.3747855 0.8946314

dist.X2 0.2552085 0.2888985 0.3225884

Variance function:

lower est. upper

power 0.938246 1.38818 1.838114

Residual standard error:

lower est. upper

0.02475866 0.06514301 0.17139905

∇

When the distribution of Y is a from a known family of a certain type of probability distributions (e.g.
Binomial, Poisson, Gamma), a Generalized Linear Model can be fit, which is covered in a subsequent
chapter.
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1.8.4 Assumption of Independence

When the data are a time (or spatial) series, the errors can be correlated over time (or space), referred to as
being autocorrelated. A plot of residuals versus time should be random, not displaying a trending pattern
(linear or cyclical). If it does show these patterns, autocorrelation may be present. If autocorrelation is
present, the ordinary least squares estimators are still unbiased, however their estimated standard errors
tend to be small, so that t-statistics tend to be too large, and Confidence Intervals tend to be too narrow.

The Durbin-Watson test is used to test for serial autocorrelation in the errors, where the null hypothesis
is that the errors are uncorrelated. Unfortunately, the formal test can end in one of 3 possible outcomes:
reject H0, accept H0, or inconclusive. Statistical software packages can report an approximate P -value. The
test is obtained as follows.

TS : DW =

∑n
t=2 (et − et−1)

2

∑n
t=1 e2

t

Decision Rule: DW < dLReject H0 DW > dUAccept H0 ow Inconclusive

where tables of dL and dU are in standard regression texts and posted on the internet. These values are
indexed by the number of predictor variables (1, in the case of simple regression) and the sample size (n).

A commonly used approach when autocorrelation is present is to use Estimated Generalized Least
Squares (EGLS). This uses the estimated covariance structure of the observations to obtain estimates of
the regression coefficients and their estimated standard errors. There are many possible covariance structures
for autocorrelated residuals. One particularly useful model is the autoregressive model of order 1 (AR(1)).
For this model, the following results are obtained (assuming the errors are labeled ε1, . . . , εn, and that
u2, . . . , un are independent of one another).

εt = ρεt−1 + ut t = 2, . . . , n |ρ| < 1 E {ut} = 0 V {ut} = σ2

This leads to the following variance-covariance structure for the errors with σ2 and ρ as parameters to be
estimated, along with the EGLS estimates of the regression coefficients.

V {εt} =
σ2

1 − ρ2
COV {εt, εt−k} =

σ2ρ|k|

1 − ρ2
k = ±1,±2, . . .

If ρ = 0, the errors are independent (assuming an AR(1) model).

Example 1.14: Annual Mean Temperatures in Minneapolis/St. Paul, Minnesota: 1900-2015

A plot of the annual mean temperature (Y , in degrees Fahrenheit) versus (X, Year-1900) for the years
1900-2015 is given in Figure 1.9, along with the ordinary least squares regression line, as well as a loess line
which fits a smooth curve making use of “local” observations along the X-axis. The model fit is given below.
There is evidence of a positive trend, but there is a large amount of variation around the mean. The fitted
values, residuals, and formulas for obtaining the Durbin-Watson statistic are given below. The residuals
plotted versus time order are displayed in Figure 1.10.

Ŷt = 44.3732 + 0.0160t t = 0, ...., 115 = n − 1 et = Yt − Ŷt

∑n−1
t=1 (et − et−1)

2

∑n−1
t=0 e2

t

=
573.98

364.40
= 1.575
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Figure 1.9: Annual mean temperature versus (Year-1900) for Minneapolis/St. Paul for years 1900-2015,
fitted ordinary least squares regression equation (solid line) and smooth loess curve (dashed line)

For α = 0.05, n = 100, p = 1 predictor variable, the critical values are dL = 1.65 and dU = 1.69, thus there
is evidence of positive autocorrelation in the residuals. The P -value reported by the durbinWatsonTest
function in the R package car is 0.016 (output given below). The autocorrelation parameter ρ is estimated as
.1996. The loess shows that the observations tend to be below the fitted linear regression in early years, then
above for about years 1910-1950, followed by below for about years 1950-1995, then above for 1995-2015.
This is helpful in visualizing the autocorrelation in the residuals.

The generalized least squares fit for the model with an AR(1) error structure is given below. the following
parameter estimates are obtained (note that it uses a different method of estimating ρ as the previous method
used).

ρ̂ = 0.2247 σ̂ = 1.7972 β̂0 = 44.3805 β̂1 = 0.0160 V̂ {εt} =
1.79722

1 − 0.22472
=

3.2299

0.9495
= 3.4016

∇

### Ordinary Least Squares Model Fit

> msw.mod1 <- lm(yrMean ~ yrYear)

> summary(msw.mod1)

Coefficients:
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Figure 1.10: Line plot of residuals versus time order for Minneapolis/St. Paul annual mean temperature
model
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.373176 0.329864 134.520 < 2e-16 ***

yrYear 0.015967 0.004957 3.221 0.00167 **

Residual standard error: 1.788 on 114 degrees of freedom

Multiple R-squared: 0.08341, Adjusted R-squared: 0.07537

F-statistic: 10.37 on 1 and 114 DF, p-value: 0.001666

> anova(msw.mod1)

Analysis of Variance Table

Response: yrMean

Df Sum Sq Mean Sq F value Pr(>F)

yrYear 1 33.16 33.159 10.374 0.001666 **

Residuals 114 364.40 3.196

### Direct computation of Durbin-Watson statistic

> cbind(DW1, DW2, DW)

DW1 DW2 DW

2 573.9759 364.3984 1.575133

### durbinWatsonTest function applied to OLS model fit

> library(car)

> durbinWatsonTest(msw.mod1)

lag Autocorrelation D-W Statistic p-value

1 0.1996232 1.575133 0.016

Alternative hypothesis: rho != 0

### Generalized Least Squares Model Fit w/ AR(1) errors

> msw.mod3 <- gls(yrMean ~ yrYear, correlation=corAR1(), method="ML")

> summary(msw.mod3)

Generalized least squares fit by maximum likelihood

Model: yrMean ~ yrYear

Data: NULL

AIC BIC logLik

465.1704 476.1848 -228.5852

Correlation Structure: AR(1)

Formula: ~1

Parameter estimate(s):

Phi

0.2031676

Coefficients:

Value Std.Error t-value p-value

(Intercept) 44.37957 0.4032028 110.06763 0.0000

yrYear 0.01602 0.0060529 2.64654 0.0093

Residual standard error: 1.772726

Degrees of freedom: 116 total; 114 residual

> intervals(msw.mod3)

Approximate 95\% confidence intervals

Coefficients:

lower est. upper

(Intercept) 43.580833187 44.37957476 45.17831633

yrYear 0.004028463 0.01601912 0.02800978

Correlation structure:

lower est. upper

Phi 0.0187394 0.2031676 0.3742249

Residual standard error:

lower est. upper

1.550264 1.772726 2.027112
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1.8.5 Detecting Outliers and Influential Observations

These measures are widely used in multiple regression, as well, when there are p predictors, and p′ = p + 1
parameters (including intercept, β0). Many of the ”rules of thumb” are based on p′, which is 1+1=2 for
simple regression. Most of these methods involve matrix algebra, but are obtained from statistical software
packages. Their matrix forms are not given here (see references).

Also, many of these methods make use of the estimated variance when the ith case was removed (to remove
its effect if it is an outlier):

MSE(i) =
SSE(i)

n − p′ − 1
=

SSE − e2
i

n − p′ − 1
for simple regression p′ = 2

Studentized Residuals - Residuals divided by their estimated standard error, with their contribution
to SSE having been removed (see above). Since residuals have mean 0, the studentized residuals are like
t-statistics. Since we are simultaneously checking whether n of these are outliers, we conclude any cases are
outliers if the absolute value of their studentized residuals exceed tα/2n,n−p′−1, where p′ is the number of
independent variables plus one (for simple regression, p′=2).

Leverage Values (Hat Values) - These measure each case’s potential to influence the regression due to
its X levels. Cases with high leverage values (often denoted vii or hii) have X levels “away” from the center
of the distribution. The leverage values sum to p′ (2 for simple regression), and cases with leverage values
greater than 2p′/n (twice the average) are considered to be potentially influential due to their X-levels. Note
that R flags cases with leverage values greater than 3p′/n as being potentially influential.

DFFITS - These measure how much an individual case’s fitted value shifts when it is included in the
regression fit, and when it is excluded. The shift is divided by its standard error, so we are measuring how
many standard errors a fitted value shifts, due to its being included in the regression model. Cases with the
DFFITS values greater than 2

√

p′/n in absolute value are considered influential on their own fitted values.

Note that R flags cases with DFFITS greater than 3
√

p′/n in absolute value.

DFBETAS - One of these is computed for each case, for each regression coefficient (including the inter-
cept). DFBETAS measures how much the estimated regression coefficient shifts when that case is included
and excluded from the model, in units of standard errors. Cases with DFBETAS values larger than 2/

√
n

in absolute value are considered to be influential on the estimated regression coefficient. Note that R flags
cases with DFBETAS greater than 1 in absolute value.

Cook’s D - A measure that represents each case’s aggregate influence on all regression coefficients, and
all cases’ fitted values. Cases with Cook’s D larger than F.50,p′,n−p′ are considered influential.

COVRATIO - This measures each case’s influence on the estimated standard errors of the regression
coefficients (inflating or deflating them). Cases with COVRATIO outside of 1 ± 3p′/n are considered influ-
ential.

Example 1.15: Spring Migration of trans-Saharan Bird Species

A biology study considered the spring migrations of n = 38 bird species in trans-Saharan Africa (Rubolini,
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Spina, and Saino, 2005, [31]). The dependent variable was median migration date (Y =Days from April
1) and the independent variable was mean wintering latitude (X = degrees latitude). Note that these are
obtained across many birds within the species. The data are given in Table 1.8 and a plot of the data and
fitted equation are given in Figure 1.11. Note that this example should probably use weighted least squares
with weights being the number of birds per species, but will use Ordinary Least Squares for this example.

The fitted equation is Ŷ = 29.9918 − 0.2467X with r2 = .3119 (R output given below). The “rules of
thumb” for influential cases are computed below, based on n = 38 and p′ = 1 + 1 = 2.

Studentized Residuals: t.05/2(38),38−2−1 = t.00066,35 = 3.4925 Hat:
2(2)

38
= 0.1053

3(2)

38
= 0.1579

DFFITS: 2

√

2

38
= 0.4588 3

√

2

38
= 0.6882 DFBETAS:

2√
38

= 0.3244

Cook’s D: F.50,2,38−2 = F.50,2,36 = 0.7067 COVRATIO: 1±3(2)

38
≡ 1±0.1579 ≡ (0.8421, 1.1579)

The results of the studentized residuals and influence measures are given in Table 1.9. Based on the original
criteria, species’ 3 for β̂0, 10, 13, and 18 for β̂1, 14 and 8 for Hat have values above the “critical value,” all
being very close. No species exceed any of the R criteria (there would be asterisks in the influence column).
Either way, there is no evidence of any highly influential cases.

∇

1.9 Repeated Sampling From a Population of (X,Y ) Pairs when

X is Random

So far, we have treated the X variable as fixed, which particularly holds for the Explosives and Shot Gun
pellet experiments, not so much for the bird migrations example. As long as the X and ε are “generated”
independently, there is no problem, and the estimated standard errors of β̂1 and β̂0 are said to be conditional
on the observed X values in the sample. Coverage rates for Confidence Intervals should be as expected if
the error terms are independent and normally distributed with constant variance.

Example 1.16: Predicted Over/Under and Total Points in NBA Games

Oddsmakers provide an Over/Under score for the combined total points in many sporting events. Gamblers
can choose to bet that the combined score will be above (over) or below (under) the posted score. In this
example, we consider the N = 1154 games from the 2014-2015 NBA regular season that finished in regulation
(48 minutes), removing games that went into overtime. The oddsmakers’ final Over/Under score (as reported
by covers.com) is treated as X, as it is posted in advance (although there is randomness in its chosen level).
The response is the total points in the game, and is Y . For this “population” of games, we have the following
model and “parameters.” Note that due to estimation issues, centered X values are used with x = X − µX ,
and both X and Y are measured in 100s (a typical combined score is 200 points).
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speciesID species1 species2 migDate (Y ) latBreed latWntr (X)

1 Acrocephalus arundinaceus 33 46 -10.3
2 Acrocephalus schoenobaenus 35 57.5 -7.5
3 Acrocephalus scirpaceus 38 48 0
4 Anthus campestris 32 43.5 6
5 Anthus trivialis 27 55.3 -10
6 Calandrella brachydactyla 27.5 39.5 15.5
7 Caprimulgus europaeus 35 47.5 -7.5
8 Coturnix coturnix 30 50.3 18.5
9 Cuculus canorus 31 51 -15
10 Delichon urbica 29 48.5 -15
11 Emberiza hortulana 30.8 51.5 7.5
12 Ficedula albicollis 30 48.8 -10
13 Ficedula hypoleuca 28 59 7.5
14 Hippolais icterina 39 56 -19
15 Hirundo rustica 27 49 -10
16 Jynx torquilla 23 49 9
17 Lanius senator 30 39 9.5
18 Locustella naevia 31.2 54.5 13
19 Luscinia megarhynchos 25 42.5 7.5
20 Merops apiaster 33 42.5 -2.5
21 Monticola saxatilis 25.7 40.5 2.5
22 Motacilla flava 28 49 -7.5
23 Muscicapa striata 36 49 -13
24 Oenanthe hispanica 23 37 13
25 Oenanthe oenanthe 26 49 4.5
26 Oriolus oriolus 35 45.5 -12
27 Otus scops 25 44 6
28 Phoenicurus phoenicurus 29 49 7.5
29 Phylloscopus sibilatrix 31 53.8 1.5
30 Phylloscopus trochilus 27 56.5 -9
31 Riparia riparia 34 52.5 -2.5
32 Saxicola rubetra 31 56 0
33 Streptopelia turtur 31 45.5 12.5
34 Sylvia atricapilla 22 48 11
35 Sylvia borin 38 52.5 -10
36 Sylvia cantillans 23 37 13
37 Sylvia communis 34 48 -2.5
38 Upupa epops 22 44 16

Table 1.8: Median migration date (Y ) and mean wintering latitude (X) for n=38 trans-Saharan bird species



1.9. REPEATED SAMPLING FROM A POPULATION OF (X, Y ) PAIRS WHEN X IS RANDOM 33

−20 −10 0 10 20

2
5

3
0

3
5

latWntr

m
ig

D
a
te

Figure 1.11: Plot of Median migration date (Y ) and mean wintering latitude (X) for n=38 trans-Saharan
bird species and fitted OLS regression equation
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speciesID Std. Resid dfb.1 dfb.ltWn dffit cov.r cook.d hat inf

1 0.1227 0.0215 -0.0215 0.0297 1.1190 0.0005 0.0553
2 0.8310 0.1426 -0.1070 0.1744 1.0620 0.0153 0.0422
3 2.2091 0.3636 -0.0169 0.3636 0.8370 0.0597 0.0264
4 0.9157 0.1472 0.0812 0.1716 1.0440 0.0148 0.0339
5 -1.4746 -0.2573 0.2509 -0.3513 0.9910 0.0597 0.0537
6 0.3551 0.0560 0.0879 0.1065 1.1450 0.0058 0.0826
7 0.8310 0.1426 -0.1070 0.1744 1.0620 0.0153 0.0422
8 1.2615 0.1987 0.3800 0.4374 1.0840 0.0941 0.1073
9 -0.7233 -0.1312 0.1850 -0.2220 1.1240 0.0250 0.0861
10 -1.2804 -0.2323 0.3274 -0.3929 1.0560 0.0759 0.0861
11 0.6961 0.1114 0.0787 0.1395 1.0710 0.0099 0.0386
12 -0.6483 -0.1131 0.1103 -0.1544 1.0920 0.0121 0.0537
13 -0.0369 -0.0059 -0.0042 -0.0074 1.1000 0.0000 0.0386
14 1.1993 0.2256 -0.3935 0.4448 1.1100 0.0978 0.1209
15 -1.4746 -0.2573 0.2509 -0.3513 0.9910 0.0597 0.0537
16 -1.2733 -0.2029 -0.1753 -0.2745 1.0110 0.0370 0.0444
17 0.6174 0.0983 0.0901 0.1365 1.0860 0.0095 0.0466
18 1.1877 0.1878 0.2429 0.3142 1.0460 0.0488 0.0654
19 -0.8250 -0.1320 -0.0933 -0.1653 1.0590 0.0138 0.0386
20 0.6221 0.1037 -0.0297 0.1066 1.0650 0.0058 0.0285
21 -0.9627 -0.1567 -0.0312 -0.1614 1.0320 0.0131 0.0273
22 -1.0156 -0.1743 0.1308 -0.2132 1.0420 0.0227 0.0422
23 0.7473 0.1334 -0.1651 0.2076 1.1040 0.0218 0.0716
24 -1.0130 -0.1601 -0.2072 -0.2680 1.0680 0.0359 0.0654
25 -0.7523 -0.1215 -0.0485 -0.1331 1.0570 0.0090 0.0303
26 0.5425 0.0961 -0.1106 0.1432 1.1130 0.0105 0.0652
27 -0.9221 -0.1482 -0.0818 -0.1728 1.0440 0.0150 0.0339
28 0.2233 0.0357 0.0253 0.0448 1.0970 0.0010 0.0386
29 0.3568 0.0583 0.0058 0.0590 1.0790 0.0018 0.0266
30 -1.4002 -0.2426 0.2149 -0.3169 0.9970 0.0489 0.0487
31 0.8872 0.1478 -0.0424 0.1520 1.0420 0.0116 0.0285
32 0.2608 0.0429 -0.0020 0.0429 1.0820 0.0009 0.0264
33 1.0957 0.1734 0.2148 0.2826 1.0550 0.0397 0.0624
34 -1.4233 -0.2258 -0.2431 -0.3398 0.9990 0.0561 0.0539
35 1.4985 0.2615 -0.2549 0.3570 0.9870 0.0616 0.0537
36 -1.0130 -0.1601 -0.2072 -0.2680 1.0680 0.0359 0.0654
37 0.8872 0.1478 -0.0424 0.1520 1.0420 0.0116 0.0285
38 -1.0976 -0.1730 -0.2815 -0.3375 1.0820 0.0566 0.0864

Rule 1 3.4925 0.3244 0.3244 0.4588 .842-1.158 0.7067 0.1053

R Rule 3.4925 1.0000 1.0000 0.6882 .842-1.159 0.7067 0.1579

Table 1.9: Studentized Residuals and influence measures for n=38 trans-Saharan bird species
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Figure 1.12: Plots of Total Points versus Over/Under and Errors versus Expected Values - NBA Oddsmaker
population data

Y = β0 + β1x + ε ε ∼ NID
(

0, σ2
)

E {X} = µX V {X} = σ2
X COV {Xi, εi} = 0

β0 = 1.9871 β1 = 0.9328 σ2 = 0.0263 σ = 0.1622 µX = 2.0004 σX = 0.838

Total points (Y ) plotted versus Over/Under (X) as well as a plot of errors versus expected values are given
in Figure 1.12. Histograms of the un-centered X values and the error terms are given in Figure 1.13. The
model assumptions seem reasonable.

100000 random samples, each with 25 games were obtained, and for each sample β̂0 , β̂1, s2, and ŜE
{

β̂1

}

were obtained. Further 95% Confidence Intervals were obtained to observe the overall coverage rate. Among
the 100000 95% Confidence Intervals for β1, 94.85% contained the true value. The empirical sampling
distributions for β̂0 and β̂1 are given in Figure 1.14, both are mound shaped and centered at the true
parameter values (lines at center of plots).

∇
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Figure 1.13: Histograms of Over/Under and Errors - NBA Oddsmaker population data
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Figure 1.14: Empirical Sampling distributions for β̂0 and β̂1 - NBA Oddsmaker population data
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1.10 R Programs for Chapter 1 Examples

1.10.1 Explosives Experiment

## Read in explosives data

explosives <- read.table("http://www.stat.ufl.edu/~winner/data/explosives1.dat",

header=F, col.names=c("coupling", "wireArea", "galvDef"))

attach(explosives)

##### Example 1.1

explosives ## prints data frame

plot(galvDef ~ wireArea) ## Plot Y ~ X

abline(lm(galvDef ~ wireArea)) ## Add Fitted Equation

##### Example 1.2

explo.mod1 <- lm(galvDef ~ wireArea) ## Fit model using lm(Y ~ X) function

summary(explo.mod1) ## Print results of regression

Yhat.mod1 <- predict(explo.mod1) ## Predicted values with predict(model) function

e.mod1 <- resid(explo.mod1) ## Residuals with resid(model) function

(df_E.mod1 <- df.residual(explo.mod1)) ## Error df with df.residual(model) function

(SSE.mod1 <- deviance(explo.mod1)) ## Error SS with deviance(model) function

(MSE.mod1 <- sigma(explo.mod1)^2) ## Obtain (s)^2 = MSE

(b0.mod1 <- coef(explo.mod1)[1]) ## Obtain b0 with coef(model) function

(b1.mod1 <- coef(explo.mod1)[2]) ## " b1 " " " "

## Direct computations

(n <- length(galvDef)) ## Obtain sample size with length(Y) function

(Xbar <- mean(wireArea)) ## Obtain X-bar

(Ybar <- mean(galvDef)) ## Obtain Y-bar

(SS_XX <- sum((wireArea - mean(wireArea))^2)) ## Obtain SS_XX

(SS_YY <- sum((galvDef - mean(galvDef))^2)) ## Obtain SS_YY

(SS_XY <- sum((wireArea - mean(wireArea)) *

(galvDef - mean(galvDef)))) ## Obtain SS_XY

(beta.hat1 <- SS_XY / SS_XX ) ## Obtain beta.hat1

(beta.hat0 <- Ybar - beta.hat1 * Xbar) ## Obtain beta.hat0

Y.hat <- beta.hat0 + beta.hat1 * wireArea ## Obtain Y.hat

e <- galvDef - Y.hat ## Obtain e (residuals)

(df_E <- n-2) ## Obtain Error df

(SSE <- sum(e^2)) ## Obtain SSE

(MSE <- SSE / df_E) ## Obtain s^2 = MSE

(se.b0 <- sqrt(MSE*(1/n + Xbar^2/SS_XX))) ## Obtain SE{beta.hat0}

(se.b1 <- sqrt(MSE/SS_XX)) ## Obtain SE{beta.hat1}

##### Example 1.3

summary(explo.mod1) ## Print results of regression (t-tests)

confint(explo.mod1) ## Confidence Intervals for beta0, beta1

## Direct Calculations

t_025 <- qt(.975,df_E) ## Obtain t_(.025,df_E)

t.b0 <- beta.hat0 / se.b0; p.t.b0 <- 2*(1-pt(abs(t.b0),df_E)) ## t-test for beta0

t.b1 <- beta.hat1 / se.b1; p.t.b1 <- 2*(1-pt(abs(t.b1),df_E)) ## t-test for beta1

b0.lo <- beta.hat0 - t_025*se.b0; b0.hi <- beta.hat0 + t_025*se.b0 ## 95%CI for beta0

b1.lo <- beta.hat1 - t_025*se.b1; b1.hi <- beta.hat1 + t_025*se.b1 ## 95%CI for beta1

## Set-up for printing

## rbind "stacks" Variables on top of each other; cbind places them side-by-side

beta.hat <- rbind(beta.hat0, beta.hat1)

se.b <- rbind(se.b0, se.b1)
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t.b <- rbind(t.b0, t.b1)

p.t.b <- rbind(p.t.b0, p.t.b1)

b.lo <- rbind(b0.lo, b1.lo)

b.hi <- rbind(b0.hi, b1.hi)

beta.est <- cbind(beta.hat, se.b, t.b, p.t.b, b.lo, b.hi)

colnames(beta.est) <- c("Estimate", "Std. Error", "t", "Pr(>|t|)","LL","UL")

rownames(beta.est) <- c("Intercept","wireArea")

round(beta.est,4)

##### Example 1.4

Xstar <- 110 ## Assign X* = 110

predict(explo.mod1, list(wireArea=Xstar)) ## Obtain predicted value

predict(explo.mod1, list(wireArea=Xstar),int="c") ## Obtain CI for mean

predict(explo.mod1, list(wireArea=Xstar),int="p") ## Obtain PI for individual

## Direct Calculations

Ystar <- beta.hat0 + beta.hat1 * Xstar ## Yhat.star

SE_Ystar <- sqrt(MSE * (1/n + (Xstar - Xbar)^2/SS_XX)) ## SE{Mean}

SE_Ystar_New <- sqrt(MSE * (1 + 1/n + (Xstar - Xbar)^2/SS_XX)) ## SE{Individual}

t_025 <- qt(.975,df_E) ## t_{.025, df_E}

CI_LB <- Ystar - t_025 * SE_Ystar; CI_UB <- Ystar + t_025 * SE_Ystar ## CI for mean

PI_LB <- Ystar - t_025 * SE_Ystar_New; PI_UB <- Ystar + t_025 * SE_Ystar_New ## PI for individual

## Print Results"

ci.pi.out <- cbind(Xstar, Ystar, SE_Ystar, SE_Ystar_New, CI_LB, CI_UB, PI_LB, PI_UB)

colnames(ci.pi.out) <-

cbind("X*", "Y*", "SE{Mean}", "SE{Indiv}", "CI LL", "CI UL", "PI LL", "PI UL")

round(ci.pi.out,4)

## Plot Data, fitted equation, Pointwise CI and PI

Xstar1 <- seq(15, 155, 0.10) ## Range of X* values

Ystar1 <- predict(explo.mod1, list(wireArea=Xstar1)) ## Obtain predicted values

Ystar_CI <- predict(explo.mod1, list(wireArea=Xstar1), int="c") ## Obtain CI’s

Ystar_PI <- predict(explo.mod1, list(wireArea=Xstar1), int="p") ## Obtain PI’s

plot(galvDef ~ wireArea, xlim=c(15,155), ylim=c(50,250)) ## Plot raw data and set plot ranges

lines(Xstar1, Ystar1) ## Plot fitted equation

lines(Xstar1, Ystar_CI[,2], lty=2) ## Plot CI Lower Bound (Column 2 of Ystar_CI)

lines(Xstar1, Ystar_CI[,3], lty=2) ## Plot CI Upper Bound (Column 3 of Ystar_CI)

lines(Xstar1, Ystar_PI[,2], lty=3) ## Plot PI Lower Bound (Column 2 of Ystar_PI)

lines(Xstar1, Ystar_PI[,3], lty=3) ## Plot PI Upper Bound (Column 3 of Ystar_PI)

##### Example 1.5

anova(explo.mod1) ## Analysis of Variance and F-test based on anova(model)

## Direct Calculations

TSS <- SS_YY

SSR <- SS_YY - SSE; df_R <- 1; MSR <- SSR / df_R ## Regression SS, df, MS

F_obs <- MSR / MSE; p.F <- 1 - pf(F_obs, df_R, df_E) ## F-test

round(cbind(MSR, MSE, F_obs, p.F), 4)

(r2 <- SSR / TSS) ## R-square

##### Example 1.6

cor.test(galvDef, wireArea) ## Correlation t-test and CI based on cor.test(X, Y) function

##### Example 1.7

## Fit 1-Way ANOVA model with X as factor variable

explo.mod2 <- lm(galvDef ~ factor(wireArea))
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anova(explo.mod2) ## Error Sum of Squares is SSPE Error df is df_PE

anova(explo.mod1, explo.mod2) ## Compares Regression and 1-Way ANOVA - difference is F_LF

## Direct Calculations

SSPE <- deviance(explo.mod2); df_PE <- df.residual(explo.mod2); MSPE <- SSPE / df_PE

SSLF <- SSE - SSPE; df_LF <- df_E - df_PE; MSLF <- SSLF / df_LF

F_LF <- MSLF / MSPE; p.F.LF <- 1 - pf(F_LF, df_LF, df_PE)

round(cbind(MSLF, MSPE, F_LF, p.F.LF), 4)

## Plot of residuals versus predicted for linear regression model

plot(resid(explo.mod1) ~ predict(explo.mod1), xlab="fitted values",

ylab="residuals")

abline(h=0)

##### Example 1.8

shapiroTest(resid(explo.mod1)) ## Shapiro-Wilk Test for residuals from linear model

qqnorm(resid(explo.mod1)); qqline(resid(explo.mod1)) ## Normal probability plot

1.10.2 Shotgun Pellet Spread Experiment

## Read in shotgun spread data

sg1 <- read.table("http://www.stat.ufl.edu/~winner/data/shotgun_spread.dat",

header=F, col.names=c("crtrdg","dist.X","spread.Y","sd.sprd"))

attach(sg1)

## Select only cases where Cartridge is brand 2

spread.Y2 <- spread.Y[crtrdg == 2] ## Y = spread (spread.Y2)

dist.X2 <- dist.X[crtrdg == 2] ## X = distance (dist.X2)

sd.sprd2 <- sd.sprd[crtrdg == 2] ## Std. Dev. of spreads at the X levels

##### Example 1.9

cbind(spread.Y2, dist.X2, sd.sprd2) ## Prints the data

plot(spread.Y2 ~ dist.X2) ## Scatterplot of Y vs X

abline(lm(spread.Y2 ~ dist.X2)) ## Adds fitted equation - OLS

sg.mod1 <- lm(spread.Y2 ~ dist.X2) ## Fits OLS regression

summary(sg.mod1) ## Summary of model

anova(sg.mod1) ## ANOVA of model

e1 <- resid(sg.mod1) ## Save model residuals

yhat1 <- predict(sg.mod1) ## Save model fitted values

plot(e1 ~ yhat1) ## Plot residuals versus fitted values

abline(h=0) ## Add horizontal line at e = 0

shapiro.test(e1) ## Shapiro-Wilk test for normaility of residuals

qqnorm(e1); qqline(e1) ## Normal Probability Plot of residuals

library(MASS)

bc.mod1 <- boxcox(sg.mod1,plotit=T) ## Run Box-Cox transformation on sg.mod1

print(cbind(bc.mod1$x,bc.mod1$y)) ## Print out results (lambda,log-like)

print(bc.mod1$x[which.max(bc.mod1$y)]) ## Print out "best" lambda

ci.bc <- max(bc.mod1$y)-0.5*qchisq(0.95,1) ## Obtain cut-off for 95% CI (in log-like)

print(bc.mod1$x[bc.mod1$y>= ci.bc]) ## Print Values of lambda in 95% CI

## Fit model suggested by Box-Cox transformation and perform residual analysis

sg.mod2 <- lm(I(spread.Y2^(1/4)) ~ dist.X2)

summary(sg.mod2)

e2 <- resid(sg.mod2)
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yhat2 <- predict(sg.mod2)

shapiro.test(e2)

qqnorm(e2); qqline(e2)

##### Example 1.11

plot(e1 ~ yhat1) ## Plot residuals vs fitted values for model 1

sg.mod3 <- lm(I(e1^2) ~ dist.X2) ## Fit model relating e^2 vs X from model 1

anova(sg.mod3) ## Obtain ANOVA for SSReg_{e^2} for "manual test"

## Use lmtest package and bptest function for direct test (default is studentized residuals)

library(lmtest)

bptest(sg.mod1, studentize=FALSE)

## Conduct Breusch-Pagan test for Model 2 from Box-Cox transformation

library(lmtest)

bptest(sg.mod2, studentize=FALSE)

##### Example 1.12

reg.wt <- 1/(sd.sprd2^2) ## Assign weights to individual cases = 1/(Group var)

sg.mod4 <- lm(spread.Y2 ~ dist.X2, weight=reg.wt) ## Run weighted least squares

summary(sg.mod4) ## Obtain model summary

anova(sg.mod4) ## Obtain model ANOVA

e4 <- resid(sg.mod4) ## Save residual values

yhat4 <- predict(sg.mod4) ## Save fitted values

plot(e4 ~ yhat4) ## Plot residuals vs fitted values

##### Example 1.13

### GLS - Power variance model - Variance is power of mean

## sigma_i = sigma*(mu_i^delta)

library(nlme)

sg.mod5 <- gls(spread.Y2 ~ dist.X2, weights = varPower(form = ~ fitted(.)), method="ML")

summary(sg.mod5)

intervals(sg.mod5)

e5 <- resid(sg.mod5, type="p") ## Save the Pearson (studentized) residuals

yhat5 <- predict(sg.mod5) ## Save the fitted values

plot(e5 ~ yhat5) ## Plot studentized residuals vs fitted values

## Re-fit the original model using the gls function and ML estimation for comparison

sg.mod1a <- gls(spread.Y2 ~ dist.X2, method="ML")

summary(sg.mod1a)

anova(sg.mod1a, sg.mod5) ## Compare Power Variance model with constant var model (delta=0)

1.10.3 Minneapolis/St. Paul Annual Temperature Data 1900-2015

## Read in Minneapolis/St. Paul Temperature Data

minnspw <- read.csv("http://www.stat.ufl.edu/~winner/data/minn_stp_weather.csv")

attach(minnspw); names(minnspw)

## Obtain year mean temperatures (data are given by month) = yrMean

## Convert years so that first year is 0 and last is n-1 = yrYear

(yrMean <- as.numeric(tapply(meanTemp,Year,mean)))

(yrMin <- min(Year))
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(yrMax <- max(Year))

(yrYear <- seq((yrMin-yrMin),(yrMax-yrMin)))

##### Example 1.14

plot(yrYear, yrMean) ## Plot(X=year, Y=mean temp)

abline(lm(yrMean ~ yrYear)) ## Add fitted line relating temp to year

mod1.lo <- loess(yrMean ~ yrYear) ## Fit smooth loess model

xv <- 0:115 ## Assign X-values for fitted

yv <- predict(mod1.lo, data.frame(yrYear=xv)) ## Obtain fitted values

lines(xv, yv, lty=2) ## Add loess fit to original plot

msw.mod1 <- lm(yrMean ~ yrYear) ## Fit OLS model

summary(msw.mod1) ## Summary of model

anova(msw.mod1) ## ANOVA of model

e1 <- resid(msw.mod1) ## Save residuals

plot(e1, type="l") ## Line plot of residuals

## Direct Calculation of Durbin-Watson statistic

DW1 <- 0

for (i in 2:length(yrMean)) DW1 <- DW1 + (e1[i]-e1[i-1])^2

DW2 <- sum(e1^2)

DW <- DW1 / DW2

cbind(DW1, DW2, DW)

## durbinWatsonTest function in car package

library(car)

durbinWatsonTest(msw.mod1)

## gls function used to fit EGLS with AR(1) and ARMA(0,1)=MA(1) errors

library(nlme)

msw.mod2 <- gls(yrMean ~ yrYear, method="ML")

msw.mod3 <- gls(yrMean ~ yrYear, correlation=corAR1(), method="ML")

summary(msw.mod3)

intervals(msw.mod3)

msw.mod4 <- gls(yrMean ~ yrYear, correlation=corARMA(p=0,q=1), method="ML")

anova(msw.mod2, msw.mod3) ## Compares OLS w/ AR(1)

anova(msw.mod3, msw.mod4) ## Compares AR(1) w/ MA(1)

## Plot of autocorrelation function - leads to MA(1) as possible model

plot(ACF(msw.mod2, maxLag=15), alpha=0.05)

1.10.4 Bird Migration in trans-Sahara

## Read in bird migration data

bird.mig <- read.csv("http://www.stat.ufl.edu/~winner/data/bird_migration.csv")

attach(bird.mig); names(bird.mig)

##### Exercise 1.15

bird.mod1 <- lm(migDate ~ latWntr) ## Linear regression model

summary(bird.mod1)

anova(bird.mod1)

e1 <- resid(bird.mod1)

yhat1 <- predict(bird.mod1)

plot(migDate ~ latWntr)

abline(bird.mod1)

plot(e1 ~ yhat1)

abline(h=0)

rstudent(bird.mod1)

influence.measures(bird.mod1)
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qt(1-.05/76,35) ## Critical value for Studentized Residuals

qf(.50,2,38-2) ## Critical value for Cook’s D

1.10.5 NBA Over/Under and Total Points

## Read in NBA data

nba1415 <- read.csv("http://www.stat.ufl.edu/~winner/data/nbaodds201415.csv",

header=T)

attach(nba1415); names(nba1415)

## Exercise 1.16

## Keep only non-Overtime games

(N.pop <- length(TotalPts[OT==0])) ## Population Size

Y <- TotalPts[OT==0]/100 ## Y = Total Points / 100

X1a <- OvrUndr[OT==0]/100 ## X1a = OvrUndr / 100

X1 <- X1a - mean(X1a) ## X1 = X1a - mean(X1a)

nba.mod1 <- lm(Y ~ X1) ## Fit population model

(beta0 <- coef(nba.mod1)[1]) ## Obtain beta0

(beta1 <- coef(nba.mod1)[2]) ## Obtain beta1

(sigma2 <- sigma(nba.mod1)^2) ## Obtain sigma^2

mean(X1a); var(X1a); sd(X1a) ## Obtain mean, var, SD of X

eps <- resid(nba.mod1) ## Obtain epsilons

E.Y <- predict(nba.mod1) ## Obtain Expected Values

## Various plots

plot(X1a,eps) ## X=X1a, Y = eps

lines(lowess(eps ~ X1a))

par(mfrow=c(2,1))

plot(X1a,Y,main="Total Points (Y) vs Over/Under (X) - NBA 2014/15",

xlab="Over/Under",ylab="Total Points")

abline(lm(Y ~ X1a))

plot(E.Y,eps,main="Errors versus Expected Value")

hist(X1a,breaks=30,main="Over/Under")

hist(eps,breaks=30,main=expression(paste(epsilon)))

mean(X1); sd(X1); mean(eps); sd(eps); cor(X1,eps)

par(mfrow=c(1,1))

## Take n.sim samples, each of size n.sample and save estimates, SE’s

## Program uses matrix form for quicker computation

set.seed(135678)

n.sim <- 100000

n.sample <- 25

beta.hat <- matrix(rep(0,2*n.sim),ncol=2)

s2 <- numeric(n.sim)

s2.beta <- matrix(rep(0,2*n.sim),ncol=2)

for (i in 1:n.sim) {

nba.sample <- sample(1:N.pop,n.sample,replace=F)

X.s <- cbind(rep(1,n.sample), X1[nba.sample])

Y.s <- Y[nba.sample]

eps.s <- eps[nba.sample]

XPX.s <- t(X.s) %*% X.s

beta.hat.s <- solve(XPX.s) %*% t(X.s) %*% Y.s

beta.hat[i,] <- t(beta.hat.s)

e.s <- Y.s - X.s%*%beta.hat.s

s2[i] <- (t(e.s) %*% (e.s))/(n.sample-2)
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s2.b <- s2[i] * solve(XPX.s)

s2.beta[i,1] <- s2.b[1,1]; s2.beta[i,2] <- s2.b[2,2]

}

## Summarize Results

mean(s2)

mean(beta.hat[,1]); mean(beta.hat[,2])

beta1.CI.lo <- beta.hat[,2] + qt(.025,n.sample-2) * sqrt(s2.beta[,2])

beta1.CI.hi <- beta.hat[,2] + qt(.975,n.sample-2) * sqrt(s2.beta[,2])

## Empirical coverage rate of 95% CI’s for Beta_1

sum(beta1.CI.lo <= beta1 & beta1.CI.hi >= beta1) / n.sim

par(mfrow=c(2,1))

hist(beta.hat[,1],breaks=50,main="Histogram of OLS Estmates of B0")

abline(v=beta[1])

hist(beta.hat[,2],breaks=50,main="Histogram of OLS Estmates of B1")

abline(v=beta[2])

par(mfrow=c(1,1))

plot(beta.hat[,1],beta.hat[,2],pch=16,cex=.4,

main="Scatterplot of Estimates of B1 vs B0",xlab="B0",ylab="B1")
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Chapter 2

Multiple Linear Regression

Typically, there is a group of more than one potential predictor variable, and the model generalizes to
multiple linear regression. The calculations become more complex and make use of matrix algebra, but
conceptually, the ideas remain the same. The notation used here will use p as the number of predictors, and
p′ = p + 1 as the number of parameters in the model (including the intercept). Note that the matrix form
of the models are identical, they just differ in terms of the dimensions of the matrices used in computations.
The model can be written as follows

Y = β0 + β1X1 + · · ·+ βpXp + ε ε ∼ N(0, σ2) independent

Computer packages are used to obtain least squares (and maximum likelihood) estimates β̂0, β̂1, . . . , β̂p that
minimize the error sum of squares. The fitted values, residuals, and error sum of squares are obtained as
follow.

Ŷi = β̂0 + β̂1Xi1 + · · · β̂pXip ei = Yi − Ŷi SSE =

n
∑

i=1

e2
i

The degrees of freedom for error are now n − p′ = n − (p + 1), as there are p′ = p + 1 estimated parameters
(regression coefficients), and the degrees of freedom for regression is p. In the multiple linear regression
model, βj represents the change in E{Y } when Xj increases by 1 unit, with all other predictor variables
being held constant. It is referred to as the partial regression coefficient.

The model is flexible, allowing polynomial terms, indicator variables for categorical predictors, and cross-
product terms to allow for interactions among predictors. These situations will be covered in this chapter.

Example 2.1: Recycling Program in Scotland

A study was conducted in Scotland to determine whether local authority differences in recycling policies
were associated with amount of recycling (Baird, Curry, and Reid, 2013, [7]). There were three predictor
variables (each at the household level) for n = 31 local authority districts. They were: recycling capacity
(X1, litres/week/hhold), residual waste capacity (X2, litres/week/hhold), and number of extended recycling
materials collected (X3). The response was the yield of extended materials collected (Y , kg/week/hhold).
The data are given in Table 2.1 and a scatterplot matrix of the data is given in Figure 2.1.

∇
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recArea recycCap residCap extMat extYld

Aberdeen City 62.5 240 5 2.11
Angus 55 120 4 1.87

Argyll and Bute 120 120 5 2.8
Clackmannanshire 147.5 120 8 4.17

Dumfries and Galloway 40 240 1 0.88
Dundee City 87.5 240 6 2.35
East Ayrshire 147.5 120 4 3.68

East Dunbartonshire 110 240 5 2.65
East Lothian 50 240 5 2.81

East Renfrewshire 75 240 6 2.36
Edinburgh, City of 92.5 240 6 2.04

Eileen Siar 120 120 5 2.97
Falkirk 147.5 120 9 3.89

Fife 90 90 3 3.02
Glasgow City 60 240 3 1.79

Highland 27.5 240 2 1.63
Inverclyde 120 120 4 3.44
Midlothian 88 120 5 3.85

Moray 80 120 6 2.66
North Ayrshire 133.75 120 7 4.16

North Lanarkshire 155 120 8 4.37
Orkney 27.5 240 3 1.35

Perth and Kinross 120 120 4 2.75
Renfrewshire 145 120 6 3.1

Scottish Borders 70 180 7 2.88
Shetland Islands 74 240 4 1.24
South Ayrshire 87.5 120 6 3.58

South Lanarkshire 155 120 7 3.84
Stirling 55 120 8 3.27

West Dunbartonshire 82.5 240 6 2.22
West Lothian 120 120 5 3.03

Table 2.1: Recycling Capacity (X1), Residual (non-recycling) capacity (X2), number of extended materials
recycled (X3) and Yield of extended materials recycled (Y ) for 31 Scottish localities

2.1 Testing and Estimation for Partial Regression Coefficients

Once the model is fit, the estimated regression coefficients and the standard errors for each coefficient are
also computed. Actually, the estimated variance-covariance matrix for the coefficients is obtained which is
used to obtain variances and standard errors of linear functions of regression coefficients.

To test whether Y is associated with Xj , after controlling for the remaining p − 1 predictors, is to test
whether βj = 0. This is equivalent to the t-test from simple regression (in general, the test can be whether
a regression coefficient is any specific number, although software packages are testing whether it is 0 by
default).

H0 : βj = βj0 HA : βj 6= βj0 TS : tobs =
β̂j − βj0

ŜE{β̂j}
RR : |tobs| ≥ tα/2,n−p′ P -value : 2P (tn−p′ ≥ |tobs|)
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Figure 2.1: Scatterplot matrix for Scottish recycling study



48 CHAPTER 2. MULTIPLE LINEAR REGRESSION

One-sided tests make the same adjustments as in simple linear regression.

H+
A : βj > βj0 RR : tobs ≥ tα,n−p′ P -value : P (tn−p′ ≥ tobs)

H−
A : βj < βj0 RR : tobs ≤ −tα,n−p′ P -value : P (tn−p′ ≤ tobs)

A (1 − α)100% confidence interval for βj is obtained as follows.

β̂j ± tα/2,n−p′ŜE{β̂j}

Note that the Confidence Interval represents the values of βj0 for which the two-sided test: H0 : βj =
βj0 HA : βj 6= βj0 fails to reject the null hypothesis.

Example 2.2: Recycling Program in Scotland

The tests for whether yield is associated with each predictor, controlling for all other predictors are all
significant with t-values of t1 = 2.573 for recycling capacity, t2 = −3.848 for residual capacity and t3 = 3.775
for number of extra materials. All else being equal, as recycling capacity and number of extra materials
increase, yield of extra materials being recycled increases. As residual capacity increases, yield of extra
materials being recycled decreases. A plot of residuals versus fitted values is given in Figure 2.2, it shows no
evidence of non-constant error variance. The P -value for the Shapiro-Wilk test of normality of error terms
is .6705, providing no concern about non-normality of errors.

∇

> recycle.mod1 <- lm(yldExtMat ~ recCap + resCap + extMat)

> summary(recycle.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.176991 0.496792 4.382 0.000160 ***

recCap 0.007360 0.002860 2.573 0.015887 *

resCap -0.006347 0.001650 -3.848 0.000661 ***

extMat 0.187319 0.049617 3.775 0.000799 ***

Residual standard error: 0.4207 on 27 degrees of freedom

Multiple R-squared: 0.8097, Adjusted R-squared: 0.7885

F-statistic: 38.29 on 3 and 27 DF, p-value: 7.253e-10

> confint(recycle.mod1)

2.5 % 97.5 %

(Intercept) 1.157657813 3.196325143

recCap 0.001491434 0.013229452

resCap -0.009731842 -0.002962482

extMat 0.085514199 0.289123976

> e1 <- resid(recycle.mod1)

> yhat1 <- predict(recycle.mod1)

> plot(e1 ~ yhat1)

> abline(h=0)

> shapiro.test(e1)

Shapiro-Wilk normality test

data: e1

W = 0.97519, p-value = 0.6705
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Figure 2.2: Plot of residuals versus fitted values for Scottish recycling study

2.2 Analysis of Variance

When there is no association between Y and the set of predictors X1, . . . , Xp (β1 = · · · = βp = 0), the best

predictor of each observation is Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this
case, the total variation can be denoted as TSS =

∑n
i=1(Yi −Y )2, the Total Sum of Squares, just as with

simple regression.

When there is an association between Y and at least one of X1, . . . , Xp (not all βi = 0), the best predictor

of each observation is Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip (in terms of minimizing sum of squares of prediction

errors). In this case, the error variation can be denoted as SSE =
∑n

i=1(Yi − Ŷi)
2, the Error Sum of

Squares.

The difference between TSS and SSE is the variation ”explained” by the regression of Y on X1, . . . , Xp

(as opposed to having ignored X1, . . . , Xp). It represents the difference between the fitted values and the

mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2

Each sum of squares has a Degrees of Freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − p′. The Regression Degrees of
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Source df SS MS Fobs P -value

Regression (Model) p SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
p Fobs = MSR

MSE P (Fp,n−p′ ≥ Fobs)

Error (Residual) n − p′ SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−p′

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 2.2: Analysis of Variance Table for Multiple Linear Regression

Freedom is dfRegression = p. Note that when there is p = 1 predictor, this generalizes to simple regression.

dfTotal = dfError + dfRegression n − 1 = n − p′ + p

Error and Regression Sums of Squares have Mean Squares, which are the Sums of Squares divided by
their corresponding Degrees of Freedom: MSE = SSE/(n − p′) and MSR = SSR/p. It can be shown that
these mean squares have the following Expected Values, average values in repeated sampling at the same
observed X levels.

E{MSE} = σ2 E{MSR} = σ2 +

n
∑

i=1





p
∑

j=1

Xijβj





2

≥ σ2

Note that when β1 = · · · = βp = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way
of testing whether β1 = · · · = βp = 0 is by the F -test.

H0 : β1 = · · ·βp = 0 HA : Not all βj = 0

TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,p,n−p′ P -value : P (Fp,n−p′ ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 2.2.

A measure often reported from a regression analysis is the Coefficient of Determination or R2. This
represents the variation in Y “explained” by X1, . . . , Xp, divided by the total variation in Y .

R2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ R2 ≤ 1

The interpretation of R2 is the proportion of variation in Y that is “explained” by X1, . . . , Xp, and is often
reported as a percentage (100R2).

Example 2.3: Recycling Program in Scotland
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Referring back to Example 2.2, the F -statistic for testing H0 : β1 = β2 = β3 = 0 is Fobs = 38.29, based
on 3 and 27 degrees of freedom. There is strong evidence that β1 6= 0 and/or β2 6= 0 and/or β3 6= 0, which
is not surprising given that all of the partial t-tests were significant. The coefficient of determination is
R2 = 0.8097, thus the model explains a fairly large fraction of variation in yield. R doesn’t explicitly give
SSR, it gives sums of squares attributable to the various predictor variables, as described below.

∇

2.2.1 Sequential and Partial Sums of Squares

The Sequential Sums of Squares are the regression sums of squares for each independent variable as
they are added to a model one-at-a-time. If there are p variables, and in the model fit are entered in order
X1, X2, . . . , Xp, then the sequential sums of squares are computed as follow.

• Fit the simple regression model: Ŷ1 = β̂0 + β̂1X1 and obtain SSR (X1), its regression sum of squares

• Fit the 2 variable model: Ŷ2 = β̂0 + β̂1X1 + β̂2X2 and obtain SSR (X1, X2), the regression sum of
squares

• Continue until the p variable model: Ŷp = β̂0+β̂1X1+β̂2X2+· · ·+β̂pXp and obtain SSR (X1, X2, . . . , Xp)

X1 : SSR (X1) X2 : SSR (X2|X1) = SSR (X1, X2) − SSR (X1) . . .

Xp : SSR (Xp|X1, X2, . . . , Xp−1) = SSR (X1, X2, . . . , Xp) − SSR (X1, X2, . . . , Xp−1)

The Partial Sums of Squares are the regression sum of squares for each independent variable as each
is added to a model containing the remaining p − 1 predictors. For X1 and Xp for instance, there are the
following definitions.

X1 : SSR (X1, X2, . . . , Xp)−SSR (X2, X2, . . . , Xp) Xp : SSR (X1, X2, . . . , Xp)−SSR (X1, X2, . . . , Xp−1)

The sequential sums of squares add up to the regression sum of squares for the model. Only if the X
variables are uncorrelated in a controlled experiment will the partial sums of squares sum to the regression
sum of squares.

Software packages will compute F -tests for each independent variable by taking each sum of squares divided
by MSE for the model. The F -tests based on the partial sums of squares are identical to the 2-sided t-tests
for the corresponding partial regression coefficients.

Example 2.4: Recycling Program in Scotland

The sequential and partial sums of squares for the recycling data are given below. The sequential sums
of squares are obtained from the anova function and the partial sums of squares are given by the drop1
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function, the F -tests are not default and must be selected as an option for the drop1 function. Note that the
last variable in the model by definition has the same sequential and partial sums of squares. The F -statistics
for the partial sums of squares are the square of the t-statistics for the corresponding partial regression
coefficients: 6.6216 = (2.573)2, 14.8050 = (−3.848)2 and 14.2531 = (3.775)2.

∇

> anova(recycle.mod1)

Analysis of Variance Table

Response: yldExtMat

Df Sum Sq Mean Sq F value Pr(>F)

recCap 1 15.1165 15.1165 85.396 7.508e-10 ***

resCap 1 2.6918 2.6918 15.206 0.0005770 ***

extMat 1 2.5230 2.5230 14.253 0.0007994 ***

Residuals 27 4.7794 0.1770

> drop1(recycle.mod1,test="F")

Single term deletions

Model:

yldExtMat ~ recCap + resCap + extMat

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 4.7794 -49.960

recCap 1 1.1721 5.9516 -45.160 6.6216 0.0158873 *

resCap 1 2.6207 7.4001 -38.407 14.8050 0.0006612 ***

extMat 1 2.5230 7.3025 -38.819 14.2531 0.0007994 ***

The sequential sums of squares for the p variables sum to the regression sum of squares for the model. In
many cases, it is useful to obtain the sum of squares for a group of p − g predictors. For instance if there
are p = 5 predictors and interest is in the contribution of the last p − g = 3 predictors, given the first g = 2
predictors were included in a model, obtain the following sums of squares. These can be computed directly
in R by fitting separate models, see examples below. The second equality holds since if there are two models,
based on the same dataset, then TSS = SSR1 + SSE1 = SSR2 + SSE2 .

SSR (X3, X4, X5|X1, X2) = SSR (X1, X2, X3, X4, X5)−SSR (X1, X2) = SSE (X1, X2)−SSE (X1, X2, X3, X4, X5)

2.2.2 Coefficients of Partial Determination

Just as R2 describes the predictive ability of a set of predictors, the amount of variation explained by
subsequent predictor variables can be measured. Suppose the variables have been entered into the model
in order X1, X2, . . . , Xp. Then consider the following sequence of coefficients of partial determination with
TSS representing the Total sum of squares.

R2
Y 1 =

SSR (X1)

TSS
R2

Y 2|1 =
SSR (X1, X2) − SSR (X1)

TSS − SSR (X1)
· · ·

R2
Y p|1...p−1 =

SSR (X1, . . . , Xp) − SSR (X1, . . . , Xp−1)

TSS − SSR (X1, . . . , Xp−1)
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Each coefficient measures the fraction of the variation that was not explained by the previous predictor(s)
that is explained by the current predictor.

Example 2.5: Recycling Program in Scotland

For the Scottish recycling study, when the sequential and error sums of squares are added up, the Total
sum of squares is TSS = 25.1107. The coefficients of partial determination (for the order of the independent
variables used here) are given below.

SSR (X1) = 15.1165 SSR (X1, X2) = 15.1165 + 2.6918 = 17.8083

SSR (X1, X2, X3) = 17.8083 + 2.5230 = 20.3313

R2
Y 1 =

15.1165

25.1107
= .6020 R2

Y 2|1 =
17.8083− 15.1165

25.1107− 15.1165
=

2.6918

9.9942
= .2693

R2
Y 3|12 =

20.3313− 17.8083

25.1107− 17.8083
=

2.5230

7.3024
= .3455

Recycling capacity explains about 60% of the variation in yield. Residual capacity explains about 27% of
the variation in yield that is not explained by recycling capacity. Finally, the extra number of recyclable
materials explains about 34.5% of the variation not explained by recycling and residual capacity.

∇

2.3 Testing a Subset of βs = 0

The F -test from the Analysis of Variance and the t-tests represent extremes as far as model testing (all
variables simultaneously versus one-at-a-time). Often interest is in testing whether a group of predictors do
not improve prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, the goal is to test whether the remaining p − g predictors
are associated with Y . That is, to test between the following hypotheses.

H0 : βg+1 = · · ·βp = 0 HA : Not all of βg+1 , . . . , βp = 0

Note that, the t-tests control for all other predictors, while here, the purpose is to control for only
X1, . . . , Xg. To do this, fit two models: the Complete or Full Model with all p predictors, and the
Reduced Model with only the g “control” variables. For each model, compute the Regression and Error
sums of squares, as well as R2. This leads to the test statistic, rejection region, and P -value.

TS : Fobs =

[

SSE(R)−SSE(F )
(n−g′)−(n−p′)

]

[

SSE(F )
n−p′

] =

[

SSR(F )−SSR(R)
p−g

]

[

SSE(F )
n−p′

] =

[

R2
F −R2

R

p−g

]

[

1−R2
F

n−p′

]
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RR : Fobs ≥ Fα,p−g,n−p′ P -value : P (Fp−g,n−p′ ≥ Fobs)

Example 2.6: LPGA Prize Winnings and Performance Measures - 2009

A multiple regression model is fit, relating prize money won (Y =log(winnings/tournaments)) to p = 7
performance variables for n = 146 golfers for the Ladies Professional Golf Association 2009 season. The
predictors are: drive (X1, average drive distance, yards), frwy (X2, percent of fairways hit), grnReg (X3,
percent of greens in regulation), putts, (X4, average putts per round), sandSave (X5, percent of saves
from sand), pctile (X6, average percentile in tournaments, higher is better), and strksRnd (X7, average
strokes per round). Note that in particular that the expected signs for putts and strokes per round should
be negative as fewer putts and strokes per round are better in golf. A scatterplot matrix of the data is given
in Figure 2.3. The summary of the regression model is given below.

Note that log of winnings per round was used because winnings per round is highly skewed. A Box-Cox
transformation (not shown here) leads to the choice. The model explains 86.6% of the variance in the
(transformed) winnings. The variables drive distance, fairway percent, percentile, and strokes per round
all have significant partial regression coefficients at the α = 0.05 significance level. Keep in mind that
the predictors are highly correlated among themselves. This issue will be discussed in a later section on
multicollinearity.

Consider testing whether β3 = β4 = β5 = 0. That is whether, controlling the four significant predictors
given above are in the model that neither greens in regulation, putts per round, or sand save percent are
associated with winnings. This test is different from the t-tests, in that the t-tests for the individual predictors
control for all of the other predictors. The second model contains only the g = 4 control variables: drive,
frwy, pctile, and strksRnd. The F -test is directly computed below. The R anova function can be used to
compute the F -statistic and P -value by giving both model fits as inputs, see the R output below).

H0 : β3 = β4 = β5 = 0 SSE(F ) = 29.948 p = 7 n − p′ = 138 SSE(R) = 30.171 g = 4 n − g′ = 141

TS : Fobs =

[

30.171−29.948
141−138

]

[

29.948
138

] =
0.0743

0.2170
= 0.3424 P (F3,138 ≥ 0.3424) = .7947

Fail to reject the null hypothesis. The reduced model is a “better” fit in terms of being more parsimonious,
without losing predictive ability.

∇

### Full Model (p=7)

> lpga.mod1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

> summary(lpga.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.875511 14.615851 4.302 3.19e-05 ***

drive -0.015586 0.007131 -2.186 0.030533 *

frwy -0.032081 0.009554 -3.358 0.001015 **

grnReg -0.011984 0.034657 -0.346 0.730025

putts 0.117793 0.152163 0.774 0.440181
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Figure 2.3: Scatterplot matrix for LPGA Performance data

sandSave -0.000756 0.005560 -0.136 0.892038

pctile 0.033704 0.010689 3.153 0.001982 **

strksRnd -0.720633 0.205876 -3.500 0.000626 ***

Residual standard error: 0.4658 on 138 degrees of freedom

Multiple R-squared: 0.8658, Adjusted R-squared: 0.859

F-statistic: 127.2 on 7 and 138 DF, p-value: < 2.2e-16

> anova(lpga.mod1)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

drive 1 42.049 42.049 193.7629 < 2.2e-16 ***

frwy 1 20.919 20.919 96.3948 < 2.2e-16 ***

grnReg 1 59.657 59.657 274.9007 < 2.2e-16 ***

putts 1 54.432 54.432 250.8273 < 2.2e-16 ***

sandSave 1 1.021 1.021 4.7059 0.0317719 *

pctile 1 12.462 12.462 57.4263 4.611e-12 ***

strksRnd 1 2.659 2.659 12.2523 0.0006262 ***

Residuals 138 29.948 0.217

### Reduced Model (g=4)

> lpga.mod2 <- lm(Y ~ drive+frwy+pctile+strksRnd)

> summary(lpga.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.108691 11.430003 4.996 1.70e-06 ***

drive -0.012210 0.006001 -2.035 0.043743 *

frwy -0.028932 0.008589 -3.369 0.000974 ***

pctile 0.035226 0.010475 3.363 0.000993 ***

strksRnd -0.619578 0.142332 -4.353 2.56e-05 ***
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Residual standard error: 0.4626 on 141 degrees of freedom

Multiple R-squared: 0.8648, Adjusted R-squared: 0.861

F-statistic: 225.5 on 4 and 141 DF, p-value: < 2.2e-16

> anova(lpga.mod2)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

drive 1 42.049 42.049 196.512 < 2.2e-16 ***

frwy 1 20.919 20.919 97.762 < 2.2e-16 ***

pctile 1 125.954 125.954 588.635 < 2.2e-16 ***

strksRnd 1 4.055 4.055 18.949 2.563e-05 ***

Residuals 141 30.171 0.214

> anova(lpga.mod2, lpga.mod1)

Analysis of Variance Table

Model 1: Y ~ drive + frwy + pctile + strksRnd

Model 2: Y ~ drive + frwy + grnReg + putts + sandSave + pctile + strksRnd

Res.Df RSS Df Sum of Sq F Pr(>F)

1 141 30.171

2 138 29.948 3 0.22303 0.3426 0.7946

2.4 Models with Categorical Predictors, Interaction, and Polyno-

mial Terms

In this section, three generalizations of the multiple regression model are considered. These models are fit in
the exact same manner, and tests are conducted as in the case where the model contains p distinct numeric
predictors. The first case allows for categorical predictors and makes use of dummy or indicator variables
to represent the levels of the variable(s). The second case includes interaction terms which allows for the
slope with respect to predictor variables to depend on level(s) that the other predictor(s) take on. The third
case allows for polynomial terms which represent levels of a numeric variable raised to powers. Note that
many models make use of two or more of these generalizations.

2.4.1 Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If there is a categorical variable with m
levels, m − 1 dummy or indicator variables will need to be created. The variable will take on 1 if the
ith observation is in that level of the variable, 0 otherwise. Note that one level of the variable will have 0s

for all m − 1 dummy variables, making it the reference group. The βs for the other groups (levels of the
qualitative variable) reflect the difference in the mean for that group with the reference group, controlling
for all other predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and the test for
differences in the effects of the 2 levels will be a t-test, controlling for all other predictors. If there are
m − 1 ≥ 2 dummy variables associated with the predictor, the F -test is used to test whether all m − 1 βs

are 0, controlling for all other predictors.

Example 2.7: Crop Subsidence and Water Table Level in 3 Crop Varieties
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A study in the Florida Everglades related annual subsidence (Y , in cm) to Water Table (X1, in cm) for 3
crop varieties: Pasture, Truck Crop, and Sugarcane (Stephens and Johnson, 1951, [35]; Shih and Shih, 1978,
[33]). The data are given in Table 2.3 and displayed in Figure 2.4. The crop variable is categorical with
m = 3 levels, so m− 1 = 2 dummy variables are generated: X2 = 1 if Pasture, 0 otherwise; X3 = 1 if Truck
Crop, 0 otherwise. The choice of “reference group” is arbitrary (Sugarcane in this case), and all relevant
estimates are the same, regardless of which level is chosen. The model is given below.

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi i = 1, . . . , 24

The model fits with (wr.mod1) and without (wr.mod2) the two crop dummy variables are given below,
with the full model displayed in Figure 2.5.

With Crop Dummys: Ŷ1 = −1.1818+0.0639X1+1.4965X2+1.3291X3 SSE1 = 1.8534 dfE1 = 24−4 = 20

Without Crop Dummys: Ŷ2 = 0.1930 + 0.0572X1 SSE2 = 12.293 dfE2 = 24 − 2 = 22

Model 1: Pasture: Ŷ = 0.3147+0.0639X1 Truck Crop: Ŷ = 0.1473+0.0639X1 Sugarcane: Ŷ = −1.1818+0.0639X1

The F -test for crop effects, controlling for water table level is testing H0 : β2 = β3 = 0, with p = 3
independent variables in the full model, and g = 1 predictor in the reduced model. The F -test is given
below. There is strong evidence of crop variety differences.

TS : Fobs =

[

12.293−1.8534
22−20

]

[

1.8534
20

] =
5.2198

0.0927
= 56.31 P (F2,20 ≥ 56.31) < .0001

∇

### Model 1 (Full Model)

> wr.mod1 <- lm(subsidence ~ waterTbl + pasture + truckCrop)

> summary(wr.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.181172 0.274270 -4.307 0.000344 ***

waterTbl 0.063882 0.003655 17.476 1.39e-13 ***

pasture 1.496518 0.154130 9.709 5.18e-09 ***

truckCrop 1.329058 0.153716 8.646 3.44e-08 ***

Residual standard error: 0.3044 on 20 degrees of freedom

Multiple R-squared: 0.9481, Adjusted R-squared: 0.9403

F-statistic: 121.7 on 3 and 20 DF, p-value: 5.157e-13

> anova(wr.mod1)

Analysis of Variance Table

Response: subsidence

Df Sum Sq Mean Sq F value Pr(>F)

waterTbl 1 23.3931 23.3931 252.436 8.292e-13 ***

pasture 1 3.5119 3.5119 37.898 5.150e-06 ***
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crop subsidence waterTbl crop subsidence waterTbl crop subsidence waterTbl

1 1.90 30.5 2 1.94 32.1 3 1.48 35.7
1 2.88 43.0 2 2.76 46.3 3 2.35 51.5
1 4.08 56.7 2 4.00 58.2 3 3.12 62.5
1 4.16 57.6 2 4.12 60.4 3 2.97 67.4
1 5.23 71.9 2 5.03 70.4 3 3.50 78.3
1 5.15 77.7 2 4.98 78.9 3 4.49 83.8
1 5.56 80.8 2 5.64 78.9 3 4.00 86.9
1 5.44 80.8 2 4.98 79.9 3 3.91 86.0

Table 2.3: Subsidence and Water Table Levels for 3 Crop Varieties: 1=Pasture, 2=Truck Crop, 3=Sugarcane

truckCrop 1 6.9277 6.9277 74.757 3.440e-08 ***

Residuals 20 1.8534 0.0927

### Model 2 (Reduced Model)

> wr.mod2 <- lm(subsidence ~ waterTbl)

> summary(wr.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.193047 0.593322 0.325 0.748

waterTbl 0.057214 0.008843 6.470 1.65e-06 ***

Residual standard error: 0.7475 on 22 degrees of freedom

Multiple R-squared: 0.6555, Adjusted R-squared: 0.6399

F-statistic: 41.87 on 1 and 22 DF, p-value: 1.649e-06

> anova(wr.mod2)

Analysis of Variance Table

Response: subsidence

Df Sum Sq Mean Sq F value Pr(>F)

waterTbl 1 23.393 23.3931 41.865 1.649e-06 ***

Residuals 22 12.293 0.5588

### Comparison of Models 1 and 2

> anova(wr.mod2, wr.mod1)

Analysis of Variance Table

Model 1: subsidence ~ waterTbl

Model 2: subsidence ~ waterTbl + pasture + truckCrop

Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 12.2930

2 20 1.8534 2 10.44 56.327 6.068e-09 ***

2.4.2 Models With Interaction Terms

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way to model interaction(s) is to create a new variable that is the product of the
2 predictors (higher order interactions can also be included). Suppose the model contains Y , and 2 numeric
predictors: X1 and X2. Create a new predictor X3 = X1X2, and consider the following model.

E {Y } = β0 + β1X1 + β2X2 + β3X3 = β0 + β1X1 + β2X2 + β3X1X2 = β0 + β2X2 + (β1 + β3X2)X1
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Figure 2.4: Plot of Subsidence by Water Table level by Crop Type

Thus, the slope with respect to X1 depends on the level of X2, unless β3 = 0, which can be tested with a
t-test. This logic extends to qualitative variables as well. Cross-product terms are obtained between numeric
(or other categorical) predictors with the m − 1 dummy variables representing the qualitative predictor.
Then t-test (m − 1 = 1) or F -test (m − 1 ≥ 2) can be conducted to test for interactions among predictors.

Example 2.8: Crop Subsidence and Water Table Level in 3 Crop Varieties

The interaction model allows the slopes relating subsidence to water table level to vary across the three
crops. Two interaction terms are added to the additive model in Example 2.6: X4 = X1X2 and X5 = X1X3.
The model is given below.

E {Y } = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 Sugarcane: E {Y } = β0 + β1X1

Pasture: E {Y } = (β0 + β2) + (β1 + β4)X1 Truck Crop: E {Y } = (β0 + β3) + (β1 + β5)X1

The test for interaction between water table level and crop type with respect to subsidence is of the form
H0 : β4 = β5 = 0. The (full) model containing the two interaction terms has SSE(F ) = 1.2607 with
n − p′ = 24 − 6 = 18. It will be compared with the additive (reduced) model with SSE(R) = 1.8534 and
n − g′ = 24 − 4 = 20. There is evidence of differences in slopes among the crop types.

TS : Fobs =

[

1.8534−1.2607
20−18

]

[

1.2607
18

] =
0.2964

0.0700
= 4.234 P (F2,18 ≥ 4.234) = .0311
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Figure 2.5: Fitted equations relating subsidence to water table level, separately by crop type - Additive
model
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The R output is given below and the fitted model is given in Figure 2.6. The plot reveals that the lines are
very similar for the pasture and truck crop. Consider a model that forces the lines to be the same for these
two crops and have a different intercept and slope than sugarcane. This can be done simply by creating a
new dummy variable for the combined pasture and truck crop category, say X23 = X2 + X3, and fitting the
following model (labeled Model 4 below).

E {Y } = β0 + β1X1 + β2X23 + β3X1X23

The test comparing Models 3 and 4 is testing whether H0 : β2 = β3 , β4 = β5 in Model 3. Based on Model
4, SSE(R) = 1.3804 with n − g′ = 24− 4 = 20. The F -test and fitted models are given below. The simpler
model is appropriate.

TS : Fobs =

[

1.3804−1.2607
20−18

]

[

1.2607
18

] =
0.0599

0.0700
= 0.856 P (F2,18 ≥ 0.856) = .4414

Sugarcane: Ŷ = −0.2976 + 0.0511X Pasture/Truck Crop: Ŷ = −0.1795 + 0.0705X

∇

## Model 3 (Interaction Model}

> wr.mod3 <- lm(subsidence ~ waterTbl + pasture + truckCrop +

+ I(waterTbl*pasture) + I(waterTbl*truckCrop))

> summary(wr.mod3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.297627 0.386286 -0.770 0.4510

waterTbl 0.051080 0.005431 9.406 2.27e-08 ***

pasture 0.219489 0.518799 0.423 0.6773

truckCrop -0.001777 0.538829 -0.003 0.9974

I(waterTbl * pasture) 0.019111 0.007620 2.508 0.0219 *

I(waterTbl * truckCrop) 0.019887 0.007918 2.512 0.0218 *

Residual standard error: 0.2647 on 18 degrees of freedom

Multiple R-squared: 0.9647, Adjusted R-squared: 0.9549

F-statistic: 98.3 on 5 and 18 DF, p-value: 2.014e-12

> anova(wr.mod3)

Analysis of Variance Table

Response: subsidence

Df Sum Sq Mean Sq F value Pr(>F)

waterTbl 1 23.3931 23.3931 333.9966 4.541e-13 ***

pasture 1 3.5119 3.5119 50.1421 1.331e-06 ***

truckCrop 1 6.9277 6.9277 98.9103 9.716e-09 ***

I(waterTbl * pasture) 1 0.1508 0.1508 2.1537 0.15948

I(waterTbl * truckCrop) 1 0.4418 0.4418 6.3081 0.02178 *

Residuals 18 1.2607 0.0700

> anova(wr.mod1, wr.mod3)

Analysis of Variance Table

Model 1: subsidence ~ waterTbl + pasture + truckCrop

Model 2: subsidence ~ waterTbl + pasture + truckCrop + I(waterTbl * pasture) +
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I(waterTbl * truckCrop)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 1.8534

2 18 1.2607 2 0.59267 4.2309 0.03118 *

### Model 4 (Common Lines for Pasture and Truck Crop)

> p.tC <- pasture + truckCrop

> wr.mod4 <- lm(subsidence ~ waterTbl + p.tC + I(waterTbl*p.tC))

> summary(wr.mod4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.297627 0.383467 -0.776 0.44674

waterTbl 0.051080 0.005391 9.475 7.77e-09 ***

p.tC 0.118066 0.459280 0.257 0.79975

I(waterTbl * p.tC) 0.019355 0.006648 2.912 0.00863 **

Residual standard error: 0.2627 on 20 degrees of freedom

Multiple R-squared: 0.9613, Adjusted R-squared: 0.9555

F-statistic: 165.7 on 3 and 20 DF, p-value: 2.726e-14

> anova(wr.mod4)

Analysis of Variance Table

Response: subsidence

Df Sum Sq Mean Sq F value Pr(>F)

waterTbl 1 23.3931 23.3931 338.926 5.218e-14 ***

p.tC 1 10.3275 10.3275 149.627 9.682e-11 ***

I(waterTbl * p.tC) 1 0.5851 0.5851 8.477 0.008629 **

Residuals 20 1.3804 0.0690

> anova(wr.mod4, wr.mod3)

Analysis of Variance Table

Model 1: subsidence ~ waterTbl + p.tC + I(waterTbl * p.tC)

Model 2: subsidence ~ waterTbl + pasture + truckCrop + I(waterTbl * pasture) +

I(waterTbl * truckCrop)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 1.3804

2 18 1.2607 2 0.11971 0.8546 0.442

2.4.3 Models With Curvature

When a plot of Y versus one or more of the predictors displays curvature, polynomial terms can be included
to “bend” the regression line. Often, to avoid multicollinearity, predictor(s) are centered, by subtracting off
their mean(s). If the data show k bends, k + 1 polynomial terms should be included. Suppose there is a
single predictor variable, with 2 “bends” appearing in a scatterplot. Then, the model should include terms
up to the a third order (cubic). Note that even if lower order terms are not significant, when a higher order
term is significant, the lower order terms should be kept in the model (unless there is some physical reason
not to). The following (cubic, with a single predictor variable, in this case) model could be fit.

E{Y } = β0 + β1X + β2X
2 + β3X

3

If the goal is to test whether the fit is linear, as opposed to “not linear,” the test H0 : β2 = β3 = 0, using
the F -test to compare the two model fits would be used.
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Figure 2.6: Subsidence versus Water Table level - Interaction Model

Example 2.9: Galvonometer Deflection in Experiments with Explosives

In Example 1.7, it was determined that there was evidence of a non-linearity in the relation between
mean galvonometer deflection and wire area. There was evidence of a “single bend” so consider adding
a quadratic term to the original linear model. Many researchers center the independent variable X when
fitting polynomial models, however it is fit in the original units here which makes plotting results easier.
The fitted linear and quadratic equations are given below, along with the t-test for the quadratic term. A
plot of the data and the linear and quadratic models is given in Figure 2.7. There is strong evidence that
β2 6= 0. A cubic model was considered, but the t-statistic was not significant (P=.1783, not shown here).

Linear:ŶL = 184.4− 0.695X Quadratic: ŶQ = 196.6− 1.119X + 0.00251X2

H0 : β2 = 0 HA : β2 6= 0 β̂2 = 0.002510 ŜE
{

β̂2

}

= 0.0008162

tobs =
0.002510

0.0008162
= 3.075 P = 2P (t19 ≥ |3.075|) = .0062

∇

## Linear Model (n=22, p’=2)
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Figure 2.7: Plot of galvonometer deflection versus wire area with linear (solid) and quadratic (dashed) fitted
equations.
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> summary(explo.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 184.43569 2.91526 63.27 < 2e-16 ***

wireArea -0.69537 0.03383 -20.56 6.39e-15 ***

Residual standard error: 7.337 on 20 degrees of freedom

Multiple R-squared: 0.9548, Adjusted R-squared: 0.9526

F-statistic: 422.6 on 1 and 20 DF, p-value: 6.386e-15

## Quadratic Model (n=22, p’=3)

> explo.mod2 <- lm(galvDef ~ wireArea + I(wireArea^2))

> summary(explo.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.966e+02 4.655e+00 42.239 < 2e-16 ***

wireArea -1.119e+00 1.407e-01 -7.954 1.83e-07 ***

I(wireArea^2) 2.510e-03 8.162e-04 3.075 0.00623 **

Residual standard error: 6.151 on 19 degrees of freedom

Multiple R-squared: 0.9698, Adjusted R-squared: 0.9667

F-statistic: 305.4 on 2 and 19 DF, p-value: 3.596e-15

2.4.4 Response Surface Models

Response surfaces are often fit when there are 2 or more numeric predictors, and include “linear effects,”
“quadratic effects,” and “interaction effects.” The goal is to choose levels of the predictors that optimize
(maximize or minimize) the response. In the case of 3 predictors, a full (second order) model would be of
the following form.

E{Y } = β0 + β1X1 + β2X2 + β3X3 + β11X
2
1 + β22X

2
2 + β33X

2
3 + β12X1X2 + β13X1X3 + β23X2X3

Tests are used to remove unnecessary terms, to make the model more parsimonious when possible. Gener-
ally multiple runs are made at the “center points” so that a goodness-of-fit test can be conducted (a direct
extension of the Lack-of-Fit test in Chapter 1).

Example 2.10: Optimization of 3 Factors Producing Cordyceps Rice Wine

An experiment was conducted (Yang, Gu, and Gu, 2016, [38]) using a response surface design with 3
factors: Liquid-to-solid-ratio (X1 , mL/g), Koji addition (X2, percent), and Temperature (X3, degrees C) in
cordyceps rice wine formulations. There were two response variables, Cordycepin production (mg/L) and
Total acids (g/L). The response considered here is the Cordycepin measurement. There were n = 17 runs in
a Box-Behnken design. The data are given in Table 2.4. The table includes both coded and actual levels
for the factors. Begin by fitting the following full second-order response surface, and then consider a reduced
model, removing non-significant second order terms (and any main effects not included in the remaining
second order terms).

Model 1: E{Y } = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11X
2
1 + β22X

2
2 + β33X

2
3

Model 2: E{Y } = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β11X
2
1 + β22X

2
2 + β33X

2
3
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RunID liqSol.C koji.C tempC.C liqSol koji tempC cordycepin totAcid

1 -1 -1 0 1.5 6 26 44.2 7.8
2 1 -1 0 2.5 6 26 36.31 7.2
3 -1 1 0 1.5 10 26 32.34 8.1
4 -1 1 0 2.5 10 26 32.62 7.5
5 -1 0 -1 1.5 8 24 38.27 7.7
6 1 0 -1 2.5 8 24 34.84 7.1
7 -1 0 1 1.5 8 28 40.99 7.7
8 1 0 1 2.5 8 28 34.22 7.3
9 0 -1 -1 2 6 24 38.42 6.6
10 0 1 -1 2 10 24 32.56 7.4
11 0 -1 1 2 6 28 37.61 7.1
12 0 1 1 2 10 28 31.68 7.4
13 0 0 0 2 8 26 41.55 7.1
14 0 0 0 2 8 26 40.12 7.2
15 0 0 0 2 8 26 42.15 7.3
16 0 0 0 2 8 26 42 7.1
17 0 0 0 2 8 26 39.87 7.2

Table 2.4: Liquid-to-Solid Ratio, Koji percent, Temperature and Output variables - Cordyceps Rice Wine
Experiment

SSE1 = 8.9823 dfE1 = 17− 10 = 7 SSE2 = 11.7724 dfE2 = 17 − 8 = 9

H0 : β13 = β23 = 0 TS : Fobs =

[

11.7724−8.9823
9−7

]

[

8.9823
7

] =
1.3951

1.2832
= 1.087 P (F2,7 ≥ 1.087) = .3880

The R output is given below, as well as results from the rsm function in the rsm package of R. It gives
the values of the input factors that optimize (maximize in this case) the response surface. For this data,
the estimated optimal inputs are X∗

1 = 1.188, X∗
2 = 6.013, X∗

3 = 26.532. Also included are contour plots of
predicted cordyceps output for each pair of predictor variables at the optimal level of the other predictor in
Figure 2.8.

The goodness-of-fit test, based on model 1, has an F -statistic of FLOF = 1.2810 based on 3 numerator and
4 denominator degrees of freedom has P -value of .3946. There is no evidence that the second order model is
inappropriate. Output from “brute force” and rsm fits are given below.

∇

### Model 1

> crw.mod1 <- lm(cordycepin ~ liqSol + koji + tempC + I(liqSol*koji) +

+ I(liqSol*tempC) + I(koji*tempC) + I(liqSol^2) + I(koji^2) +

+ I(tempC^2))

> summary(crw.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.777e+02 1.024e+02 -4.667 0.002296 **

liqSol 2.298e+01 1.778e+01 1.293 0.237141

koji 7.886e+00 4.444e+00 1.774 0.119276

tempC 3.656e+01 7.356e+00 4.970 0.001620 **
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Figure 2.8: Contour plots of predicted Cordycepin production across pairs of predictor variables at the
optimum level of the third variable
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I(liqSol * koji) 2.042e+00 5.664e-01 3.606 0.008668 **

I(liqSol * tempC) -8.350e-01 5.664e-01 -1.474 0.183910

I(koji * tempC) -4.375e-03 1.416e-01 -0.031 0.976214

I(liqSol^2) -5.516e+00 2.208e+00 -2.498 0.041114 *

I(koji^2) -8.479e-01 1.380e-01 -6.143 0.000471 ***

I(tempC^2) -6.697e-01 1.380e-01 -4.853 0.001850 **

Residual standard error: 1.133 on 7 degrees of freedom

Multiple R-squared: 0.965, Adjusted R-squared: 0.9201

F-statistic: 21.47 on 9 and 7 DF, p-value: 0.0002702

### Model 2

> crw.mod2 <- lm(cordycepin ~ liqSol + koji + tempC + I(liqSol*koji) +

+ I(liqSol^2) + I(koji^2) + I(tempC^2))

> summary(crw.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -433.3523 94.3975 -4.591 0.001308 **

liqSol 1.2715 10.0555 0.126 0.902157

koji 7.7722 2.5139 3.092 0.012893 *

tempC 34.8526 7.2486 4.808 0.000963 ***

I(liqSol * koji) 2.0425 0.5718 3.572 0.006008 **

I(liqSol^2) -5.5160 2.2295 -2.474 0.035331 *

I(koji^2) -0.8479 0.1393 -6.085 0.000183 ***

I(tempC^2) -0.6698 0.1393 -4.807 0.000965 ***

Residual standard error: 1.144 on 9 degrees of freedom

Multiple R-squared: 0.9542, Adjusted R-squared: 0.9185

F-statistic: 26.78 on 7 and 9 DF, p-value: 2.484e-05

> anova(crw.mod2, crw.mod1)

Analysis of Variance Table

Model 1: cordycepin ~ liqSol + koji + tempC + I(liqSol * koji) + I(liqSol^2) +

I(koji^2) + I(tempC^2)

Model 2: cordycepin ~ liqSol + koji + tempC + I(liqSol * koji) + I(liqSol *

tempC) + I(koji * tempC) + I(liqSol^2) + I(koji^2) + I(tempC^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 11.7724

2 7 8.9823 2 2.7901 1.0872 0.388

### rsm model fit

> crw.rsm1 <- rsm(cordycepin ~ SO(liqSol,koji,tempC))

> summary(crw.rsm1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -477.682250 102.354283 -4.6669 0.0022957 **

liqSol 22.981500 17.777762 1.2927 0.2371413

koji 7.886000 4.444440 1.7744 0.1192756

tempC 36.557625 7.355975 4.9698 0.0016196 **

liqSol:koji 2.042500 0.566389 3.6062 0.0086682 **

liqSol:tempC -0.835000 0.566389 -1.4743 0.1839101

koji:tempC -0.004375 0.141597 -0.0309 0.9762138

liqSol^2 -5.516000 2.208191 -2.4980 0.0411140 *

koji^2 -0.847875 0.138012 -6.1435 0.0004705 ***

tempC^2 -0.669750 0.138012 -4.8528 0.0018503 **

Multiple R-squared: 0.965, Adjusted R-squared: 0.9201

F-statistic: 21.47 on 9 and 7 DF, p-value: 0.0002702

Analysis of Variance Table

Response: cordycepin

Df Sum Sq Mean Sq F value Pr(>F)

FO(liqSol, koji, tempC) 3 133.105 44.368 34.5767 0.0001442

TWI(liqSol, koji, tempC) 3 19.477 6.492 5.0596 0.0356962

PQ(liqSol, koji, tempC) 3 95.381 31.794 24.7772 0.0004206
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Residuals 7 8.982 1.283

Lack of fit 3 4.401 1.467 1.2810 0.3946206

Pure error 4 4.581 1.145

Stationary point of response surface:

liqSol koji tempC

1.188352 6.013347 26.531574

2.5 Model Building

When there are many predictors, algorithms can be used to determine which variables to include in the
model. These variables can be main effects, interactions, and polynomial terms. Note that there are two
common approaches. One method involves testing variables based on t-tests, or equivalently F -tests for
partial regression coefficients. An alternative method involves comparing models based on model based
measures, such as Akaike Information Criterion (AIC), or Schwartz Bayesian Information criterion (BIC
or SBC). These measures can be written as follows (note that different software packages print different
versions, as some parts are constant for all potential models). The goal is to minimize the measures.

AIC(Model) = n ln(SSE(Model))+2p′ −n ln(n) BIC(Model) = n ln(SSE(Model))+ [ln(n)]p′−n ln(n)

Note that SSE(Model) depends on the variables included in the current model. The measures put a
penalty on excess predictor variables, with BIC placing a higher penalty when ln(n) > 2. Note that p′ is the
number of parameters in the model (including the intercept), and n is the sample size.

2.5.1 Backward Elimination

This is a “top-down” method, which begins with a “Complete” Model, with all potential predictors. The
analyst then chooses a significance level to stay in the model (SLS). The model is fit, and the predictor
with the lowest t-statistic in absolute value (largest P -value) is identified. If the P -value is larger than SLS,
the variable is dropped from the model. Then the model is re-fit with all other predictors (this will change
all regression coefficients, standard errors, and P -values). The process continues until all variables have
P -values below SLS.

The model based approach fits the full model, with all predictors and computes AIC (or BIC). Then,
each variable is dropped one-at-a-time, and AIC (or BIC) is obtained for each model. If none of the models
with one dropped variable has AIC (or BIC) below that for the full model, the full model is kept, otherwise
the model with the lowest AIC (or BIC) is kept as the new full model. The process continues until no
variables should be dropped (none of the “drop one variable models” has a lower AIC (or BIC) than the
“full model”).
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2.5.2 Forward Selection

This is a “bottom-up” approach, which begins with all “Simple” Models, each with one predictor. The
analyst then chooses a significance level to enter into the model (SLE). Each model is fit, and the predictor
with the highest t-statistic in absolute value (smallest P -value) is identified. If the P -value is smaller than
SLE, the variable is entered into the model. Then all two variable models including the best predictor in
the first round are fit. The best second variable is identified, and its P -value is compared with SLE. If its
P -value is below SLE, the variable is added to the model. The process continues until no potential added
variables have P -values below SLE.

The model based approach fits each simple model, with one predictor and computes AIC (or BIC). The
best variable is identified (assuming its AIC (or BIC) is smaller than that for the null model, with no
predictors). Then, each potential variable is added one-at-a-time, and AIC (or BIC) is obtained for each
model. If none of the models with one added variable has AIC (or BIC) below that for the best simple
model, the simple model is kept, otherwise the model with the lowest AIC (or BIC) is kept as the new full
model. The process continues until no variables should be added (none of the “add one variable models” has
a lower AIC (or BIC) than the “reduced model”).

2.5.3 Stepwise Regression

This approach is a hybrid of forward selection and backward elimination. It begins like forward selection,
but then applies backward elimination at each step. In forward selection, once a variable is entered, it stays
in the model. In stepwise regression, once a new variable is entered, all previously entered variables are
tested, to confirm they should stay in the model, after controlling for the new entrant, as well as the other
previous entrants.

Example 2.11: LPGA Predictors of Prize Winnings

The LPGA 2009 data with Y as the log of prize winnings per tournament is used as an example of model
building. The stepAIC function in the MASS library is used. It will fit Backward Elimination, Forward
Selection and Stepwise Regression. The output for the three methods is given below. Note that fit1 is
the full model with all predictors and fit2 is the intercept only model. In some confirmatory studies, the
reduced model may contain a set of predictors that are “forced” to be in a model. The output for Stepwise
Regression is not included, as it is identical to Forward Selection (no variables are ever removed after entering
the model). All methods fit the same model with predictors: drive distance, fairway percent, percentile, and
strokes per round. These methods will not always be in agreement.

∇

> library(MASS)

> fit1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

> fit2 <- lm(Y ~ 1)

### Backward Elimination

> stepAIC(fit1,direction="backward")

Start: AIC=-215.29

Y ~ drive + frwy + grnReg + putts + sandSave + pctile + strksRnd

Df Sum of Sq RSS AIC
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- sandSave 1 0.00401 29.952 -217.27

- grnReg 1 0.02595 29.974 -217.16

- putts 1 0.13005 30.078 -216.65

<none> 29.948 -215.29

- drive 1 1.03661 30.984 -212.32

- pctile 1 2.15756 32.105 -207.13

- frwy 1 2.44707 32.395 -205.82

- strksRnd 1 2.65889 32.606 -204.87

Step: AIC=-217.27

Y ~ drive + frwy + grnReg + putts + pctile + strksRnd

Df Sum of Sq RSS AIC

- grnReg 1 0.02274 29.974 -219.16

- putts 1 0.12628 30.078 -218.65

<none> 29.952 -217.27

- drive 1 1.06354 31.015 -214.17

- pctile 1 2.16280 32.114 -209.09

- frwy 1 2.47367 32.425 -207.68

- strksRnd 1 2.75837 32.710 -206.41

Step: AIC=-219.16

Y ~ drive + frwy + putts + pctile + strksRnd

Df Sum of Sq RSS AIC

- putts 1 0.1963 30.171 -220.20

<none> 29.974 -219.16

- drive 1 1.0765 31.051 -216.00

- pctile 1 2.1513 32.126 -211.04

- frwy 1 2.5910 32.565 -209.05

- strksRnd 1 4.1502 34.124 -202.22

Step: AIC=-220.2

Y ~ drive + frwy + pctile + strksRnd

Df Sum of Sq RSS AIC

<none> 30.171 -220.20

- drive 1 0.8860 31.057 -217.98

- pctile 1 2.4198 32.590 -210.94

- frwy 1 2.4281 32.599 -210.90

- strksRnd 1 4.0546 34.225 -203.79

Call:

lm(formula = Y ~ drive + frwy + pctile + strksRnd)

Coefficients:

(Intercept) drive frwy pctile strksRnd

57.10869 -0.01221 -0.02893 0.03523 -0.61958

### Forward Selection

> stepAIC(fit2,direction="forward",scope=list(upper=fit1,lower=fit2))

Start: AIC=63.94

Y ~ 1

Df Sum of Sq RSS AIC

+ pctile 1 187.706 35.441 -202.699

+ strksRnd 1 187.628 35.518 -202.380

+ grnReg 1 121.166 101.980 -48.389

+ drive 1 42.049 181.098 35.453

+ putts 1 31.774 191.373 43.510

+ sandSave 1 10.485 212.661 58.910

+ frwy 1 3.147 219.999 63.862

<none> 223.146 63.936

Step: AIC=-202.7

Y ~ pctile

Df Sum of Sq RSS AIC

+ strksRnd 1 2.83652 32.604 -212.88

+ frwy 1 0.87845 34.562 -204.36

<none> 35.441 -202.70

+ putts 1 0.33926 35.101 -202.10

+ sandSave 1 0.20866 35.232 -201.56

+ grnReg 1 0.00080 35.440 -200.70
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+ drive 1 0.00063 35.440 -200.70

Step: AIC=-212.88

Y ~ pctile + strksRnd

Df Sum of Sq RSS AIC

+ frwy 1 1.54752 31.057 -217.98

<none> 32.604 -212.88

+ grnReg 1 0.11883 32.485 -211.41

+ sandSave 1 0.08992 32.514 -211.28

+ putts 1 0.03870 32.565 -211.05

+ drive 1 0.00543 32.599 -210.90

Step: AIC=-217.98

Y ~ pctile + strksRnd + frwy

Df Sum of Sq RSS AIC

+ drive 1 0.88596 30.171 -220.20

<none> 31.057 -217.98

+ sandSave 1 0.05108 31.006 -216.22

+ grnReg 1 0.02351 31.033 -216.09

+ putts 1 0.00573 31.051 -216.00

Step: AIC=-220.2

Y ~ pctile + strksRnd + frwy + drive

Df Sum of Sq RSS AIC

<none> 30.171 -220.20

+ putts 1 0.196276 29.974 -219.16

+ grnReg 1 0.092734 30.078 -218.65

+ sandSave 1 0.006446 30.164 -218.24

Call:

lm(formula = Y ~ pctile + strksRnd + frwy + drive)

Coefficients:

(Intercept) pctile strksRnd frwy drive

57.10869 0.03523 -0.61958 -0.02893 -0.01221

2.5.4 All Possible Regressions

All possible regression models can be fit, and model based measures used to choose the “best” model.
Commonly used measures are: Adjusted-R2 (equivalently MSE), Mallow’s Cp statistic, AIC, and BIC.
The formulas, and decision criteria are given below (where p′ is the number of parameters in the “current”
model being fit.

R2-Adjusted - 1 −
(

n−1
n−p′

)

SSE
TSS

- Goal is to maximize

Cp - Cp = SSE(Model)
MSE(Complete)

+ 2p′ − n - Goal is to have Cp ≤ p′

AIC - AIC(Model) = n ln(SSE(Model)) + 2p′ − n ln(n) - Goal is to minimize

BIC - BIC(Model) = n ln(SSE(Model)) + [ln(n)]p′ − n ln(n) - Goal is to minimize

Example 2.12: LPGA Predictors of Prize Winnings

All possible regressions are run on the LPGA 2009 data using the regsubsets function in the leaps
package. Note that a data frame must be given that contains Y and all possible predictors. AIC is not
computed in the function, but can be computed from BIC. The following output prints the quantities for
the best 4 models with each number of predictor variables. Based on BIC, which places a higher penalty
on extra predictor variables, the 3 variable model with fairway percent, percentile, and strokes per round is
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selected. Based on Cp and AIC, the 4 variable model which also includes drive distance is selected. Note
that BIC is very close for the two models.

∇

> with(aprout,round(cbind(which,rsq,adjr2,cp,bic,aic),3)) ## Prints "readable" results

(Intercept) drive frwy grnReg putts sandSave pctile strksRnd rsq adjr2 cp bic aic

1 1 0 0 0 0 0 1 0 0.841 0.840 21.312 -258.668 -264.636

1 1 0 0 0 0 0 0 1 0.841 0.840 21.669 -258.349 -264.317

1 1 0 0 1 0 0 0 0 0.543 0.540 327.930 -104.358 -110.325

1 1 1 0 0 0 0 0 0 0.188 0.183 692.507 -20.516 -26.484

2 1 0 0 0 0 0 1 1 0.854 0.852 10.241 -265.864 -274.815

2 1 0 1 0 0 0 0 1 0.850 0.848 14.155 -262.109 -271.060

2 1 0 1 0 0 0 1 0 0.845 0.843 19.264 -257.349 -266.300

2 1 0 0 0 1 0 1 0 0.843 0.840 21.749 -255.089 -264.040

3 1 0 1 0 0 0 1 1 0.861 0.858 5.110 -267.980 -279.915

3 1 0 0 1 0 0 1 1 0.854 0.851 11.694 -261.414 -273.348

3 1 0 0 0 0 1 1 1 0.854 0.851 11.827 -261.284 -273.218

3 1 0 0 0 1 0 1 1 0.854 0.851 12.063 -261.054 -272.988

4 1 1 1 0 0 0 1 1 0.865 0.861 3.028 -267.222 -282.140

4 1 0 1 0 0 1 1 1 0.861 0.857 6.875 -263.237 -278.155

4 1 0 1 1 0 0 1 1 0.861 0.857 7.002 -263.107 -278.025

4 1 0 1 0 1 0 1 1 0.861 0.857 7.084 -263.023 -277.942

5 1 1 1 0 1 0 1 1 0.866 0.861 4.123 -263.191 -281.093

5 1 1 1 1 0 0 1 1 0.865 0.860 4.600 -262.688 -280.590

5 1 1 1 0 0 1 1 1 0.865 0.860 4.998 -262.270 -280.171

5 1 0 1 1 0 1 1 1 0.861 0.856 8.842 -258.287 -276.188

6 1 1 1 1 1 0 1 1 0.866 0.860 6.018 -258.319 -279.204

6 1 1 1 0 1 1 1 1 0.866 0.860 6.120 -258.212 -279.097

6 1 1 1 1 0 1 1 1 0.865 0.859 6.599 -257.706 -278.591

6 1 0 1 1 1 1 1 1 0.861 0.855 10.777 -253.370 -274.255

7 1 1 1 1 1 1 1 1 0.866 0.859 8.000 -253.355 -277.223

2.5.5 Cross-Validation

Regression models tend to “over-fit” to the current dataset and may not apply as well to data not used to fit
the model. Cross-Validation is used to fit the model based on one set of observations, referred to as the
“training sample,” and is then used to predict outcomes for an external or “validation sample.” In k-fold
cross-validation, the full set of data is randomly split into k subsamples. The model is fit k times, with
each subsample being “left out” and the prediction error is obtained for each possible model. Models can be
compared by their mean square prediction error for the “left out” observations. Note that different splits of
the data into the k folds will give different results.

Example 2.13: LPGA Predictors of Prize Winnings

The all possible regressions suggested two models: one based on BIC with 3 predictors and one based
on AIC and Cp which added a 4th predictor. Making use of CVlm function in the R package DAAG,
a 10-fold cross-validation is run. The output is long, containing the results for observations within all 10
folds for each model. A subset of the output is given below. The 3 variable model has a slightly smaller
mean square prediction error (0.224) than the 4 variable model (0.228), suggesting the more parsimonious 3
variable model is better.
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∇

>

> lpgacv.mod1 <- lm(Y ~ drive+frwy+pctile+strksRnd,

+ data=lpga2)

> CVlm(lpga2, lpgacv.mod1, m=10)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

drive 1 42.0 42.0 196.5 < 2e-16 ***

frwy 1 20.9 20.9 97.8 < 2e-16 ***

pctile 1 126.0 126.0 588.6 < 2e-16 ***

strksRnd 1 4.1 4.1 18.9 2.6e-05 ***

Residuals 141 30.2 0.2

fold 1

Observations in test set: 14

49 56 59 64 65 102 103 120 123 125 136 138 140 145

Predicted 7.905 9.358 8.480 8.813 8.927 7.756 10.8063 9.088 11.1040 8.944 10.181 11.165 7.58 7.046

cvpred 7.986 9.399 8.529 8.863 9.053 7.763 10.8207 9.102 11.1158 8.935 10.237 11.232 7.67 7.057

Y 8.315 9.008 8.476 9.270 8.583 7.621 10.8451 8.605 11.1885 8.775 9.700 10.786 6.43 6.532

CV residual 0.328 -0.391 -0.053 0.407 -0.469 -0.142 0.0244 -0.497 0.0726 -0.159 -0.537 -0.446 -1.24 -0.525

Sum of squares = 3.24 Mean square = 0.23 n = 14

...

fold 10

Observations in test set: 14

16 20 23 27 30 33 61 82 86 89 91 108 111 116

Predicted 8.667 10.8948 8.5314 8.302 7.419 6.948 7.288 9.350 8.2780 9.019 9.267 9.520 9.212 10.2031

cvpred 8.679 10.8937 8.5469 8.279 7.421 6.945 7.299 9.366 8.3134 9.006 9.250 9.505 9.208 10.2197

Y 9.007 10.9124 8.5991 8.745 6.725 7.392 7.023 8.747 8.3356 9.263 9.082 9.834 9.375 10.1759

CV residual 0.328 0.0187 0.0522 0.466 -0.696 0.447 -0.276 -0.619 0.0222 0.258 -0.169 0.329 0.168 -0.0438

Sum of squares = 1.71 Mean square = 0.12 n = 14

Overall (Sum over all 14 folds)

ms

0.228

> lpgacv.mod2 <- lm(Y ~ frwy+pctile+strksRnd,

+ data=lpga2)

> CVlm(lpga2, lpgacv.mod2, m=10)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

frwy 1 3.1 3.1 14.4 0.00022 ***

pctile 1 185.4 185.4 847.9 < 2e-16 ***

strksRnd 1 3.5 3.5 16.0 0.00010 ***

Residuals 142 31.1 0.2

fold 1

Observations in test set: 14

49 56 59 64 65 102 103 120 123 125 136 138 140 145

Predicted 7.91 9.18 8.4768 8.732 8.910 7.729 10.71 9.14 11.049 9.089 10.091 11.162 7.47 7.080

cvpred 7.98 9.19 8.5203 8.764 9.020 7.732 10.70 9.16 11.043 9.102 10.123 11.216 7.54 7.096

Y 8.31 9.01 8.4762 9.270 8.583 7.621 10.85 8.61 11.188 8.775 9.700 10.786 6.43 6.532

CV residual 0.33 -0.18 -0.0441 0.506 -0.436 -0.111 0.14 -0.55 0.145 -0.326 -0.423 -0.429 -1.11 -0.565

Sum of squares = 2.97 Mean square = 0.21 n = 14

...

fold 10

Observations in test set: 14

16 20 23 27 30 33 61 82 86 89 91 108 111 116

Predicted 8.596 10.8684 8.392 8.399 7.415 6.967 7.213 9.228 8.080 9.069 9.342 9.592 9.202 10.0855
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cvpred 8.591 10.8675 8.371 8.386 7.410 6.959 7.204 9.215 8.081 9.062 9.337 9.585 9.188 10.0836

Y 9.007 10.9124 8.599 8.745 6.725 7.392 7.023 8.747 8.336 9.263 9.082 9.834 9.375 10.1759

CV residual 0.415 0.0449 0.228 0.358 -0.686 0.433 -0.182 -0.469 0.254 0.202 -0.255 0.249 0.187 0.0924

Sum of squares = 1.54 Mean square = 0.11 n = 14

Overall (Sum over all 14 folds)

ms

0.224

2.6 Issues of Collinearity

When the predictor variables are highly correlated among themselves, the regression coefficients become
unstable, with increased standard errors. This leads to smaller t-statistics for tests regarding the partial
regression coefficients and wider confidence intervals. At its most extreme case, the sign of a regression
coefficient can change when a new predictor variable is included. One widely reported measure of collinearity
is the Variance Inflation Factor (VIF). This is computed for each predictor variable, by regressing it
on the remaining p − 1 predictors. Then V IFJ = 1

1−R2
j

where R2
j is the coefficent of determination of the

regression of Xj on the remaining predictors. Values of V IFj greater than 10 are considered problematic.
Collinearity is not problematic when the primary goal of the model is for prediction.

Various remedies exist. One is determining which variable(s) make the most sense theoretically for the
model, and removing other variables, which are correlated with the other more meaningful predictors. A
second method involves generating uncorrelated predictor variables from the original set of predictors. While
this method based on principal components removes the collinearity problem, the new variables may lose
their meaning, thus making it harder to describe the process. A third method, ridge regression, introduces
a bias factor into the regression that reduces the inflated variance due to collinearity, and through that reduces
the Mean Square Error of the regression coefficients. Unfortunately, there is no simple rule on choosing the
bias factor.

Example 2.14: LPGA Predictors of Prize Winnings

For the full LPGA 2009 data (with all 7 predictors), the vif function in the DAAG package is used to
obtain the variance inflation factors among the 7 predictors. It is seen that there is high collinearity among
the predictors with highest VIF’s for strksRnd (37.0), pctile (17.5), and greenReg (15.4).

∇

> Y <- log(prize/tourneys)

> lpga.mod1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

> lpga.vif <- vif(lpga.mod1)

> lpga.vif

drive frwy grnReg putts sandSave pctile strksRnd

2.6402 1.9206 15.3700 6.4040 1.2559 17.5170 37.0050

>
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2.7 R Programs for Chapter 2 Examples

2.7.1 Scottish Recycling Study

### Read in Scottish Recycling Data

sr1 <- read.fwf("http://www.stat.ufl.edu/~winner/data/scottish_recycle.dat",

header=F, width=c(25,8,8,8,8), col.names=c("locAuth","recCap",

"resCap","extMat","yldExtMat"))

attach(sr1)

##### Example 2.1

plot(sr1[,2:5])

##### Example 2.2-2.4

recycle.mod1 <- lm(yldExtMat ~ recCap + resCap + extMat)

summary(recycle.mod1)

confint(recycle.mod1)

anova(recycle.mod1)

drop1(recycle.mod1,test="F")

e1 <- resid(recycle.mod1)

yhat1 <- predict(recycle.mod1)

plot(e1 ~ yhat1)

abline(h=0)

shapiro.test(e1)

2.7.2 LPGA 2009 Data

lpga1 <- read.table("http://www.stat.ufl.edu/~winner/data/lpga2009.dat",

header=F, col.names=c("glfrID","drive","frwy","grnReg",

"putts","sandSave","prize","logPrize","tourneys","grpph",

"compTrn","pctile","rounds","strksRnd"))

attach(lpga1)

##### Example 2.5

Y <- log(prize/tourneys)

lpga2 <- data.frame(Y,drive,frwy,grnReg,putts,sandSave,pctile,strksRnd)

# install.packages("GGally")

GGally::ggpairs(lpga2)

lpga.mod1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

summary(lpga.mod1)

anova(lpga.mod1)

lpga.mod2 <- lm(Y ~ drive+frwy+pctile+strksRnd)

summary(lpga.mod2)

anova(lpga.mod2)

anova(lpga.mod2, lpga.mod1) ## Complete vs Reduced Model Comparison

##### Example 2.11

######### Perform Backward Elimination, Forward Selection, and Stepwise Regression

######### Based on Model AIC (not individual regression coefficients)

######### fit1 and fit2 represent "extreme" models

library(MASS)
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fit1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

fit2 <- lm(Y ~ 1)

stepAIC(fit1,direction="backward")

stepAIC(fit2,direction="forward",scope=list(upper=fit1,lower=fit2))

stepAIC(fit2,direction="both",scope=list(upper=fit1,lower=fit2))

##### Example 2.12

########## Perform all possible regressions (aka all subset regressions)

########## Prints out best 4 models of each # of predictors

install.packages("leaps")

library(leaps)

all_lpga <- regsubsets(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd,

nbest=4,data=lpga2)

aprout <- summary(all_lpga)

n <- length(lpga2$Y)

p <- apply(aprout$which, 1, sum) ### p includes intercept

aprout$aic <- aprout$bic - log(n) * p + 2 * p ### Compute AIC from BIC

with(aprout,round(cbind(which,rsq,adjr2,cp,bic,aic),3)) ## Prints "readable" results

##### Example 2.13

#install.packages("DAAG")

library(DAAG)

set.seed(12345)

lpgacv.mod1 <- lm(Y ~ drive+frwy+pctile+strksRnd,

data=lpga2)

CVlm(lpga2, lpgacv.mod1, m=10)

lpgacv.mod2 <- lm(Y ~ frwy+pctile+strksRnd,

data=lpga2)

CVlm(lpga2, lpgacv.mod2, m=10)

##### Example 2.14

library(DAAG)

lpga.mod1 <- lm(Y ~ drive+frwy+grnReg+putts+sandSave+pctile+strksRnd)

lpga.vif <- vif(lpga.mod1)

lpga.vif

2.7.3 Subsidence and Water Table Study

## Read in water resource data

wr1 <- read.csv("http://www.stat.ufl.edu/~winner/data/water_resource.csv")

attach(wr1); names(wr1)

crop.f <- factor(crop, labels=c("pasture","truck crop","sugarcane"))

##### Example 2.6

library(lattice)

xyplot(subsidence ~ waterTbl | crop.f, layout=c(3,1))

wr.mod1 <- lm(subsidence ~ waterTbl + pasture + truckCrop)

summary(wr.mod1)

anova(wr.mod1)

wr.mod2 <- lm(subsidence ~ waterTbl)

summary(wr.mod2)

anova(wr.mod2)

anova(wr.mod2, wr.mod1)
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wt.seq <- seq(30,90,.01)

yhat_p <- coef(wr.mod1)[1] + coef(wr.mod1)[2]*wt.seq + coef(wr.mod1)[3]

yhat_t <- coef(wr.mod1)[1] + coef(wr.mod1)[2]*wt.seq + coef(wr.mod1)[4]

yhat_s <- coef(wr.mod1)[1] + coef(wr.mod1)[2]*wt.seq

plot(subsidence ~ waterTbl, pch=crop, xlim=c(30,90),ylim=c(0,7))

lines(wt.seq,yhat_p, lty=1)

lines(wt.seq,yhat_t, lty=2)

lines(wt.seq,yhat_s, lty=5)

legend(35,6.5,c("Pasture","Truck Crop","Sugarcane"),pch=c(1,2,3),lty=c(1,2,5))

##### Example 2.7

wr.mod3 <- lm(subsidence ~ waterTbl + pasture + truckCrop +

I(waterTbl*pasture) + I(waterTbl*truckCrop))

summary(wr.mod3)

anova(wr.mod3)

anova(wr.mod1, wr.mod3)

wt.seq <- seq(30,90,.01)

yhat_p <- coef(wr.mod3)[1] + coef(wr.mod3)[2]*wt.seq + coef(wr.mod3)[3] +

coef(wr.mod3)[5]*wt.seq

yhat_t <- coef(wr.mod3)[1] + coef(wr.mod3)[2]*wt.seq + coef(wr.mod3)[4] +

coef(wr.mod3)[6]*wt.seq

yhat_s <- coef(wr.mod3)[1] + coef(wr.mod3)[2]*wt.seq

plot(subsidence ~ waterTbl, pch=crop, xlim=c(30,90),ylim=c(0,7))

lines(wt.seq,yhat_p, lty=1)

lines(wt.seq,yhat_t, lty=2)

lines(wt.seq,yhat_s, lty=5)

legend(35,6.5,c("Pasture","Truck Crop","Sugarcane"),pch=c(1,2,3),lty=c(1,2,5))

p.tC <- pasture + truckCrop

wr.mod4 <- lm(subsidence ~ waterTbl + p.tC + I(waterTbl*p.tC))

summary(wr.mod4)

anova(wr.mod4)

anova(wr.mod4, wr.mod3)

2.7.4 Explosives Experiment

## Read in explosives data

explosives <- read.table("http://www.stat.ufl.edu/~winner/data/explosives1.dat",

header=F, col.names=c("coupling", "wireArea", "galvDef"))

attach(explosives)

##### Example 2.7

## Fit linear model

explo.mod1 <- lm(galvDef ~ wireArea)

summary(explo.mod1)

## Fit quadratic model

explo.mod2 <- lm(galvDef ~ wireArea + I(wireArea^2))

summary(explo.mod2)

x.seq <- seq(0,160,0.1)

yhat2 <- coef(explo.mod2)[1] + coef(explo.mod2)[2]*x.seq +

coef(explo.mod2)[3]*x.seq^2

plot(galvDef ~ wireArea, xlim=c(0,160))

abline(explo.mod1)
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lines(x.seq,yhat2, lty=3)

## Fit cubic model

explo.mod3 <- lm(galvDef ~ wireArea + I(wireArea^2) + I(wireArea^3))

summary(explo.mod3)

2.7.5 Cordyceps Rice Wine Experiment

crw1 <- read.csv("http://www.stat.ufl.edu/~winner/data/cordyceps_ricewine.csv")

attach(crw1); names(crw1)

##### Example 2.10

crw.mod1 <- lm(cordycepin ~ liqSol + koji + tempC + I(liqSol*koji) +

I(liqSol*tempC) + I(koji*tempC) + I(liqSol^2) + I(koji^2) +

I(tempC^2))

summary(crw.mod1)

crw.mod2 <- lm(cordycepin ~ liqSol + koji + tempC + I(liqSol*koji) +

I(liqSol^2) + I(koji^2) + I(tempC^2))

summary(crw.mod2)

anova(crw.mod2, crw.mod1)

# install.packages("rsm")

library(rsm)

crw.rsm1 <- rsm(cordycepin ~ SO(liqSol,koji,tempC))

summary(crw.rsm1)

par(mfrow=c(1,3))

contour(crw.rsm1, ~ liqSol + koji + tempC,

at=summary(crw.rsm1)$canonical$xs)
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Chapter 3

Factorial Designs

In STA 6166, methods to compare a set of treatments were covered for the Completely Randomized Design
(independent samples) and the Randomized Block Design (paired/matched samples). Many times there
are more than one set of treatments that are to be compared simultaneously. For instance, drug trials are
generally run at different medical centers. In this case, the drug a subject receives would be factor A (active
or placebo), while the center he/she is located at would be factor B. Then tests for drug effects and center
effects can be conducted.

An interaction would exist if the drug effects differ among centers. That is an undesirable situation, but
one that should be tested for. If interest is to measure the interaction there will have to be more than one
measurement (replicate) corresponding to each combination of levels of the 2 factors. In this situation, that
would mean having multiple subjects receiving each treatment at each center.

Models can have two or more factors. Factors can be fixed or random. Fixed factors have all levels of
interest for the factor included in the experiment or observational study. The effects of the fixed factor levels
are unknown parameters to be estimated. Random factors have a sample of levels from a larger population
included, their effects are unobservable random variables. For random factors, inference is typically in the
variance of the effects. In the drug example given above, the drug would be considered a fixed factor, while
the medical center would be a random factor.

Factors can be crossed or nested. Crossed factors have treatments that are the combinations of the
levels of the individual factors. Nested factors have a hierarchy, with levels of one factor being different than
those within different levels of another factor. In the drug example, if within each medical center, both the
drug and placebo were given in a random manner, with individual patients receiving only drug or placebo,
the experiment would be crossed. If, on the other hand, centers were randomly assigned to either drug or
placebo, and patients within a center received whichever the center had been assigned to, the experiment
would be nested. This second scenario would be a poor design, it is only given as an example of a nested
design.

81
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3.1 Multiple-Factor Analysis of Variance - Crossed Factors

In this section, models with two or more factors are considered. The description begins with 2-factor models.
Denoting the kth measurement (replicate) observed under the ith level of factor A and the jth level of factor
B, the model is written as follows.

Yijk = µij + εijk = µ + αi + βj + (αβ)ij + εijk i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n εijk ∼ N
(

0, σ2
)

Here µ is the overall mean, αi is the effect of the ith level of factor A, βj is the effect of the jth level of
factor B, (αβ)ij is the effect of the interaction of the ith level of factor A and the jth level of factor B,
and εijk is the random error term representing the fact that units within each treatment combination will
vary. Here,the model where both factors A and B are fixed, with all levels of interest present in the study
is considered. As before, the assumption is that εijk is normally distributed with mean 0 and variance σ2.

When factors A and B are fixed, the effects are unknown parameters to be estimated. One common way
of parameterizing the model is as follows.

E {Yijk} = µ + αi + βj + (αβ)ij V {Yijk} = σ2
a
∑

i=1

αi =

b
∑

j=1

βj =

a
∑

i=1

(αβ)ij =

b
∑

j=1

(αβ)ij = 0∀j, i

Some interesting hypotheses to test are as follow.

1. H0 : (αβ)11 = · · · = (αβ)ab = 0 (No interaction effect).

2. H0 : α1 = · · · = αa = 0 (No effects among the levels of factor A)

3. H0 : β1 = · · · = βb = 0 (No effects among the levels of factor B)

The total variation in the set of observed measurements can be decomposed into four parts: variation in
the means of the levels of factor A, variation in the means of the levels of factor B, variation due to the
interaction of factors A and B, and error variation. The formulas for the means and sums of squares are
given here.

yij. =

∑n
k=1 yijk

n

yi.. =

∑b
j=1

∑n
k=1 yijk

bn

y.j. =

∑a
i=1

∑n
k=1 yijk

an

y... =

∑a
i=1

∑b
j=1

∑n
k=1 yijk

abn
n.. = abn

s2
ij =

∑n
k=1

(

yijk − yij.

)2

n − 1

TSS =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − y...)
2
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SSA = bn

a
∑

i=1

(yi.. − y...)
2

SSB = an

b
∑

j=1

(y.j. − y...)
2

SSAB = n

a
∑

i=1

b
∑

j=1

(yij. − yi.. − y.j. + y...)
2

SSE =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − yij.)
2

The error sum of squares can also be computed from the within cell standard deviations, which is helpful
as many research articles provide the treatment means and standard deviations.

SSE =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − yij.)
2 = (n − 1)

a
∑

i=1

b
∑

j=1

s2
ij

Note that this type of analysis is almost always done on a computer (either a statistical package or
spreadsheet). The analysis of variance can be set up as shown in Table 3.1, assuming that n measurements
are made at each combination of levels of the two factors.

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

A a − 1 SSA MSA = SSA
a−1

FA = MSA
MSE

P
(

Fa−1,ab(n−1) ≥ FA

)

B b − 1 SSB MSB = SSB
b−1

FB = MSB
MSE

P
(

Fb−1,ab(n−1) ≥ FB

)

AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1)

FAB = MSAB
MSE

P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

ERROR ab(n − 1) SSE MSE = SSE
ab(n−1)

TOTAL abn − 1 TSS

Table 3.1: The Analysis of Variance Table for a Balanced 2-Factor Factorial Design with Fixed Effects

The expectations of the mean squares for the fixed effects model are given below.

E {MSA} = σ2 +
bn
∑a

i=1 α2
i

a − 1
E {MSB} = σ2 +

an
∑b

j=1 β2
j

b − 1

E {MSAB} = σ2 +
n
∑a

i=1

∑b
j=1 (αβ)

2
ij

(a − 1)(b − 1)
E {MSE} = σ2
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The tests for interactions and the main effects of factors A and B involve the three F –statistics, and can
be conducted as follow. Note that under each of the three null hypotheses, the corresponding expected mean
square in the numerator simplifies to σ2 = E {MSE}.

1. HAB
0 : (αβ)11 = · · · = (αβ)ab = 0 (No interaction effect).

2. HAB
A : Not all (αβ)ij = 0 (Interaction effects exist)

3. T.S. FAB = MSAB
MSE

4. R.R.: FAB ≥ Fα,(a−1)(b−1),ab(n−1)

5. P -value: P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

Assuming no interaction effects exist, the test for differences among the effects of the levels of factor A as
follows.

1. HA
0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA
A : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSE

4. R.R.: FA ≥ Fα,(a−1),ab(n−1)

5. P -value: P
(

Fa−1,ab(n−1) ≥ FA

)

Assuming no interaction effects exist, the test for differences among the effects of the levels of factor B as
follows.

1. HB
0 : β1 = · · · = βb = 0 (No factor B effect).

2. HB
A : Not all βj = 0 (Factor B effects exist)

3. T.S. FB = MSB
MSE

4. R.R.: FB ≥ Fα,(b−1),ab(n−1)

5. P -value: P
(

F(b−1),ab(n−1) ≥ Fobs

)

Note that if interaction effects exist, comparisons are made among the ab individual combinations of factors
A and B separately (as in the Completely Randomized Design), and don’t interpret the tests for main effects
among levels of factors A and B.

Example 3.1: Halo Effect - Essay Evaluation

A study was conducted to observe evidence of the “halo effect,” the fact that people tend to judge items
in one dimension, given they have evidence of quality in other (irrelevant) dimensions (Landy and Sigall,
1974, [17]). There were two factors, A: Essay Quality (a = 2 levels: good and poor), and B: Appearance of
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the student who had written the essay (b = 3 levels: attractive photo, no photo (control), and unattractive
photo). There were a total of abn = 60 subjects who rated the essays, with n = 10 subjects per treatment.
The model can be written as follows, and data that were generated to reproduce the cell means and standard
deviations are given in Table 3.2. An interaction plot of the treatment means is given in Figure 3.1.

Yijk = µ + αi + βj + (αβ)ij + εijk,

where µ is the overall mean, αi is the effect of the ith level of factor A (essay quality 1=Good, 2=Poor), βj is
the effect of the jth level of factor B (photo of essay writer: 1=attractive, 2=none, 3=unattractive), (αβ)ij

is the effect of the interaction of the ith level of essay quality and the jth level of photo of essay writer. The
sums of squares are computed below.

SSA = 3(10)
[

(17.10− 14.72)2 + (12.33− 14.72)2
]

= 340.77 dfA = 2 − 1 = 1

SSB = 2(10)
[

(16.40− 14.72)2 + (15.65− 14.72)2 + (12.10− 14.72)2
]

= 211.00 dfB = 3 − 1 = 2

SSAB = 10
[

(17.90− 17.10− 16.40 + 14.72)2 + · · ·+ (8.70− 12.33− 12.10 + 14.72)2
]

= 36.58 dfAB = 1(2) = 2

SSE = (10 − 1)
[

4.822 + 3.602 + 4.702 + 3.312 + 5.992 + 3.682
]

= 1067.92 dfE = 3(2)(10 − 1) = 54

MSA =
340.77

1
= 340.77 MSB =

211.00

2
= 105.50 MSAB =

36.58

2
= 18.29 MSE =

1067.92

54
= 19.78

The F -tests for the interaction between essay quality and student’s photograph condition and for the main
effects are given below. Note that F.05,1,54 = 4.020 and F.05,2,54 = 3.168.

HAB
0 : (αβ)11 = · · · = (αβ)23 = 0 TS : FAB =

18.29

19.78
= 0.9247 P (F2,54 ≥ .9247) = .4028

HA
0 : α1 = α2 = 0 TS : FA =

340.77

19.78
= 17.2312 P (F1,54 ≥ 17.2312) = .0001

HB
0 : β1 = β2 = β3 = 0 TS : FB =

105.50

19.78
= 5.3347 P (F2,54 ≥ 5.3347) = .0077

The interaction effect is not significant, a more parsimonious model would combine the interaction and
error sums of squares and degrees of freedom and form an additive model. Some practitioners suggest against
doing this when the error degrees of freedom are small, but given the rather large number here (54), the test
for interaction certainly has reasonable power. The additive Analysis of Variance Table is given in Table 3.3.
The R output for the additive and interaction model, as well as a Complete versus Reduced F -test are given
below.

∇

> options(contrasts=c("contr.sum","contr.poly"))

> halo.mod3 <- aov(grade ~ essayqual + picture)

> anova(halo.mod3)

Analysis of Variance Table

Response: grade
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Essay Quality Good (i = 1) Good (i = 1) Good (i = 1) Poor (i = 2) Poor (i = 2) Poor (i = 2)

Photograph Att (j = 1) None (j = 2) Unatt (j = 3) Att (j = 1) None (j = 2) Unatt (j = 3)

k=1 8.76 18.51 18.54 14.05 23.13 4.58
k=2 24.26 26.09 12.49 18.47 14.76 2.29
k=3 13.38 14.41 23.81 15.47 20.09 14.49
k=4 25.30 19.90 15.36 10.26 4.63 4.94
k=5 16.62 18.28 21.79 19.45 17.15 8.73
k=6 16.19 16.83 12.82 10.75 6.97 10.17
k=7 17.25 19.79 16.47 19.42 16.87 11.07
k=8 19.67 13.65 9.10 13.11 8.50 11.02
k=9 19.08 15.06 11.24 13.71 10.13 10.25
k=10 18.49 16.48 13.37 14.30 11.77 9.47

Mean 17.90 17.90 15.50 14.90 13.40 8.70

Std. Dev. 4.82 3.60 4.70 3.31 5.99 3.68

Factor A Means y1.. = 17.10 y2.. = 12.33

Factor B (and Overall) y.1. = 16.40 y.2. = 15.65 y.3. = 12.10 y... = 14.72

Table 3.2: Essay evaluations in Beauty is Talent Study
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Figure 3.1: Essay evaluation means for the Beauty is Talent study
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ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

Essay Quality (A) 1 340.77 340.77
1 = 340.77 340.77

19.72 = 17.278 .0001

Photo Condition (B) 2 211.00 211.00
2

= 105.50 105.50
19.72

= 5.349 .0075

ERROR 56 1104.49 1104.49
56

= 19.72

TOTAL 59 1656.264

Table 3.3: Additive Analysis of Variance Table for Beauty and Talent study

Df Sum Sq Mean Sq F value Pr(>F)

essayqual 1 340.77 340.77 17.278 0.0001117 ***

picture 2 211.00 105.50 5.349 0.0074832 **

Residuals 56 1104.49 19.72

> summary.lm(halo.mod3)

Call:

aov(formula = grade ~ essayqual + picture)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.7165 0.5733 25.668 < 2e-16 ***

essayqual1 2.3832 0.5733 4.157 0.000112 ***

picture1 1.6830 0.8108 2.076 0.042529 *

picture2 0.9335 0.8108 1.151 0.254502

Residual standard error: 4.441 on 56 degrees of freedom

Multiple R-squared: 0.3331, Adjusted R-squared: 0.2974

F-statistic: 9.325 on 3 and 56 DF, p-value: 4.269e-05

>

> halo.mod4 <- aov(grade ~ essayqual*picture)

> anova(halo.mod4)

Analysis of Variance Table

Response: grade

Df Sum Sq Mean Sq F value Pr(>F)

essayqual 1 340.77 340.77 17.2312 0.0001182 ***

picture 2 211.00 105.50 5.3347 0.0076873 **

essayqual:picture 2 36.58 18.29 0.9247 0.4028316

Residuals 54 1067.92 19.78

> summary.lm(halo.mod4)

Call:

aov(formula = grade ~ essayqual * picture)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.7165 0.5741 25.633 < 2e-16 ***

essayqual1 2.3832 0.5741 4.151 0.000118 ***

picture1 1.6830 0.8119 2.073 0.042971 *

picture2 0.9335 0.8119 1.150 0.255314

essayqual1:picture1 -0.8827 0.8119 -1.087 0.281804

essayqual1:picture2 -0.1332 0.8119 -0.164 0.870332

Residual standard error: 4.447 on 54 degrees of freedom

Multiple R-squared: 0.3552, Adjusted R-squared: 0.2955

F-statistic: 5.95 on 5 and 54 DF, p-value: 0.000188
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>

> anova(halo.mod3, halo.mod4)

Analysis of Variance Table

Model 1: grade ~ essayqual + picture

Model 2: grade ~ essayqual * picture

Res.Df RSS Df Sum of Sq F Pr(>F)

1 56 1104.5

2 54 1067.9 2 36.575 0.9247 0.4028

Example 3.2: Penetration of Arrowheads by Clothing Fit and Type

A forensic science experiment was conducted to determine penetration of 4 arrowhead types on two clothing
fits and types (MacPhee, et al, 2018, [21]). This analysis considers only the first arrowhead type (bullet style)
with two factors: Clothing Fit (Tight (i = 1) and Loose (i = 2)) and Clothing Type (T-Shirt/95% Cotton
(j = 1), Jeans/65% Cotton (j = 2), and Jeans/95% Cotton (j = 3)). The response was penetration
(centimeters), with n = 4 replicates per combination of Clothing Fit and Type. The data are given in
Table 3.4. The Analysis of Variance is given in Table 3.5 and an interaction plot is given in Figure 3.2.
Due to the small amount of variation within treatments, both main effects and the interaction are highly
significant. The R output is given below.

∇

Clothing Fit i = 1 i = 1 i = 1 i = 2 i = 2 i = 2

Clothing Type j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

k=1 17.5 14.5 15.9 16.7 11.2 13.4
k=2 17.6 14.4 15.4 16.2 11 13.5
k=3 17.1 14.6 15.9 16.6 11.1 12.9
k=4 17.2 14.7 15.7 16.4 11.2 13.4

Mean 17.35 14.55 15.725 16.475 11.125 13.3

SD 0.238 0.129 0.236 0.222 0.096 0.271

Factor A Means y1.. = 15.875 y2.. = 13.633

Factor B (and Overall) y.1. = 16.913 y.2. = 12.838 y.3. = 14.513 y... = 14.754

Table 3.4: Arrowhead penetration by Clothing Fit and Type (Bullet style arrow)

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

Clothing Fit (A) 1 30.150 30.150
1 = 30.150 30.150

0.043 = 693.556 < .0001

Clothing Type (B) 2 67.123 67.123
2 = 33.562 33.562

0.043 = 772.026 < .0001

Interaction (AB) 2 6.603 6.603
2 = 3.302 3.302

0.043 = 75.949 < .0001

ERROR 18 0.783 0.783
18 = 0.043

TOTAL 23 104.660

Table 3.5: Analysis of Variance Table for Arrowhead penetration experiment
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Figure 3.2: Arrowhead penetration by Clothing Fit and Type (Bullet style)

> arrow.mod1 <- aov(Y1 ~ clothFit1 * clothType1)

> anova(arrow.mod1)

Analysis of Variance Table

Response: Y1

Df Sum Sq Mean Sq F value Pr(>F)

clothFit1 1 30.150 30.150 693.556 7.959e-16 ***

clothType1 2 67.123 33.562 772.026 < 2.2e-16 ***

clothFit1:clothType1 2 6.603 3.302 75.949 1.682e-09 ***

Residuals 18 0.783 0.043

> summary.lm(arrow.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.75417 0.04256 346.67 < 2e-16 ***

clothFit11 1.12083 0.04256 26.34 7.96e-16 ***

clothType11 2.15833 0.06019 35.86 < 2e-16 ***

clothType12 -1.91667 0.06019 -31.84 < 2e-16 ***

clothFit11:clothType11 -0.68333 0.06019 -11.35 1.22e-09 ***

clothFit11:clothType12 0.59167 0.06019 9.83 1.16e-08 ***

Residual standard error: 0.2085 on 18 degrees of freedom

3.1.1 Contrasts and Post-Hoc Comparisons

When there is no interaction, contrasts and pairwise comparisons can be made among levels of Factor A and
Factor B, respectively. In the case of general contrasts among the levels of Factors A and B, the following
results are the same as those that are used with the 1-Way ANOVA. Recall that the coefficients for contrasts
{ai} and {bj} must sum to zero.
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CA =

a
∑

i=1

aiµi. =

a
∑

i=1

ai

(

µ + αi + β.

)

=

a
∑

i=1

aiαi s.t.

a
∑

i=1

ai = 0

CB =
b
∑

j=1

bjµ.j =
b
∑

j=1

bj (µ + α. + βj) =
b
∑

j=1

bjβj s.t.
b
∑

j=1

bj = 0

ĈA =
a
∑

i=1

aiY i.. V
{

ĈA

}

=
σ2

bn

a
∑

i=1

a2
i ŜE

{

ĈA

}

=

√

√

√

√

MSE

bn

a
∑

i=1

a2
i

ĈB =

b
∑

j=1

bjY .j. V
{

ĈB

}

=
σ2

an

b
∑

j=1

b2
j ŜE

{

ĈB

}

=

√

√

√

√

MSE

an

b
∑

j=1

b2
j

Sums of Squares for the contrasts are also computed as in the 1-Way ANOVA.

SSCA
=

(

ĈA

)2

1
bn

∑a
i=1 a2

i

=
bn
(

ĈA

)2

∑a
i=1 a2

i

SSCB
=

(

ĈB

)2

1
an

∑b
j=1 b2

j

=
an
(

ĈB

)2

∑b
j=1 b2

j

Tests of whether CA = 0 or CB = 0 can be conducted via t-tests or F -tests. Further, Confidence Intervals
of CA and CB can be obtained from the estimates and their estimated standard errors. The degrees of
freedom will be based on whether or not the interaction term is included or excluded from the Analysis of
Variance. If the interaction is included, dfE = ab(n − 1), if it is removed, dfE = abn − a − b + 1. The rules
for the F -test, t-test and Confidence Intervals are given below for CA, with obvious changes for CB.

HCA

0 : CA = 0 TS : FCA
=

SSCA

MSE
RR : FCA

≥ Fα,1,dfE
P = P (F1,dfE

≥ FCA
)

HCA

0 : CA = 0 TS : tCA
=

ĈA

ŜE
{

ĈA

} RR : |tCA
| ≥ tα/2,dfE

P = 2P (tdfE
≥ |tCA

|)

(1 − α)100% CI for CA: ĈA ± tα/2,dfE
ŜE

{

ĈA

}

Example 3.3: Halo Effect - Essay Evaluation
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Suppose for the Beauty is Talent study, the researchers were interested in contrasting the Attractive and
Control Photograph conditions with the Unattractive condition. For this contrast, b1 = b2 = 1 and b3 = −2,
and will make use of the additive model.

a = 2 b = 3 n = 10 MSE = 19.72 dfE = 56 y.1. = 16.40 y.2. = 15.65 y.3. = 12.10

ĈB = 16.40 + 15.65− 2(12.10) = 7.85
1

2(10)

(

12 + 12 + (−2)2
)

= 0.30 SSCB
=

7.852

0.30
= 205.408

ŜE
{

ĈB

}

=
√

19.72(0.30) = 2.432

HCB

0 : CB = 0 TS : FCB
=

205.408

19.72
= 10.416 RR : FCB

≥ F.05,1,56 = 4.013 P = P (F1,56 ≥ 10.416) = .0021

HCB

0 : CB = 0 TS : tCB
=

7.85

2.432
= 3.228 RR : |tCB

| ≥ tα/2,56 = 2.003 P = 2P (t56 ≥ |3.228|) = .0021

(1 − α)100% CI for CB: 7.85± 2.003(2.432) ≡ 7.85± 4.87 ≡ (3.98, 12.72)

∇

When interactions are present, contrasts are often made among the cell means. The results based on Factor
level means generalize to cell means.

CAB =

a
∑

i=1

b
∑

j=1

abijµij =

a
∑

i=1

b
∑

j=1

abij (µ + αi + βj + (αβ)ij) s.t.

a
∑

i=1

b
∑

j=1

abij = 0

ĈAB =

a
∑

i=1

b
∑

j=1

abijY ij. SSCAB
=

(

ĈAB

)2

1
n

∑a
i=1

∑b
j=1 ab2

ij

ŜE
{

ĈAB

}

=

√

√

√

√

MSE

n

a
∑

i=1

b
∑

j=1

ab2
ij

The F -test and t-test as well as Confidence Intervals are obtained as for main effects described above.

Example 3.4: Penetration of Arrowheads by Clothing Fit and Type

Suppose interest is in comparing the Tight (i = 1) versus Loose (i = 2) fit for the two types of jeans (j =
2, 3). That is, CAB = (µ12 − µ22) − (µ13 − µ23) so that ab11 = ab21 = 0, ab12 = ab23 = 1, ab22 = ab13 = −1.

a = 2 b = 3 n = 4 MSE = 0.043 dfE = 18 y12. = 14.550 y13. = 15.725 y22. = 11.125 y23. = 13.300

ĈAB = (14.550−11.125)−(15.725−13.300) = 3.425−2.425 = 1.000
1

4

(

02 + 02 + 12 + (−1)2 + (−1)2 + 12
)

= 1.000

SSCAB
=

12

1
= 1 ŜE

{

ĈAB

}

=

√

0.043

4
4 = 0.207
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HCAB

0 CAB = 0 TS : FCAB
=

1

0.043
= 23.26 RR : FCAB

≥ F.05,1,18 = 4.414 P = P (F1,18 ≥ 23.26) < .0001

HCAB

0 CAB = 0 TS : tCAB
=

1

0.207
= 4.831 RR : |tCAB

| ≥ t.025,18 = 2.101 P = 2P (t18 ≥ 4.831) < .0001

(1 − α)100% CI for CAB: 1.000± 2.101(0.207) ≡ 1.000± 0.435 ≡ (0.565, 1.435)

Due to the very small within treatment variance, conclude that there is evidence of an interaction between
jeans type and the fit of the jean in terms of arrow penetration.

∇

Special cases of contrasts are pairwise comparisons among means. For Factor A, Bonferroni’s or Tukey’s
method (among many others) can be used to obtain simultaneous confidence intervals of the following forms.
If the additive form of the Analysis of Variance is used, dfE = abn − a− b + 1, if the interaction is included
(even if not significant) dfE = ab(n − 1).

Bonferroni (with c∗A = a(a − 1)/2 comparisons):

(yi.. − yi′..) ± tα/2c∗
A

,dfE

√

MSE

(

2

bn

)

Tukey

(yi.. − yi′..) ± qα,a,dfE

√

MSE

(

1

bn

)

≡ (yi.. − yi′..) ±
qα,a,dfE√

2

√

MSE

(

2

bn

)

For Factor B, the following formulas are used.

Bonferroni (with c∗B = b(b − 1)/2 comparisons)

(y.j. − y.j′.) ± tα/2c∗
B

,dfE

√

MSE

(

2

an

)

Tukey

(y.j. − y.j′.) ± qα,b,dfE

√

MSE

(

1

an

)

≡ (y.j. − yj′..) ±
qα,b,dfE√

2

√

MSE

(

2

an

)

Example 3.5: Halo Effect - Essay Evaluation

In this study, the interaction between essay quality and photograph was not significant. The following
results were obtained for the additive model.

MSE = 19.72 dfE = 56 a = 2 y1.. = 17.10, y2.. = 12.33 b = 3 y.1. = 16.40, y.2. = 15.65, y.3. = 12.10 n = 10
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There are two essay qualities, so there is only one comparison. Bonferroni’s and Tukey’s methods will give
the same interval. The following critical values were obtained in R with the qt and qtukey functions.

y1.. − y2.. = 17.10− 12.33 = 4.44 t.05/2,56 = 2.003

√

19.72

(

2

3(10)

)

= 1.147

4.44± 2.003(1.147) ≡ 4.44± 2.30 ≡ (2.14, 6.74)

q0.05,2,56 = 2.833

√

19.72

(

1

3(10)

)

= 0.811 2.833(0.811) = 2.30

The intervals are entirely positive, providing evidence that the true mean score is higher for the “Good”
essay than the “Poor” essay. In terms of photo, there were 3 conditions. First, compute the minimum
significant difference for each method, and then form simultaneous confidence intervals.

c∗B =
3(3 − 1)

2
= 3 t.05/(2(3)),56 = 2.468

√

19.72

(

2

2(10)

)

= 1.404 2.468(1.404) = 3.47

q.05,3,56 = 3.405

√

19.72

(

1

2(10)

)

= 0.993 3.405(0.993) = 3.38

y.1. − y.2. = 16.40− 15.65 = 0.75 y.1. − y.3. = 16.40− 12.10 = 4.30 y.2. − y.3. = 15.65− 12.10 = 3.55

The intervals for comparing Attractive with Unattractive and Control with Unattractive are entirely pos-
itive based on both Bonferroni’s and Tukey’s methods. Thus, conclude there is evidence of the halo effect.
The interval comparing Attractive with control does contain zero, and those conditions do not differ signif-
icantly. The results are given in Table 3.6. The R output for Tukey’s method is given below. Note that it
subtracts the lower labeled group from the higher labeled group, so the intervals are the negative versions
of those in Table 3.6.

j, j′ y.j. − y.j′. Bonferroni CI Tukey CI

1,2 0.75 (−2.72, 4.22) (−2.63, 4.13)
1,3 4.30 (0.83, 7.77) (0.92, 7.68)
2,3 3.55 (0.08, 7.02) (0.17, 6.93)

Table 3.6: Simultaneous Confidence Intervals for Photo Conditions in Beauty is Talent Study

> anova(halo.mod1)

Analysis of Variance Table

Response: grade

Df Sum Sq Mean Sq F value Pr(>F)

essayqual 1 340.77 340.77 17.278 0.0001117 ***
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picture 2 211.00 105.50 5.349 0.0074832 **

Residuals 56 1104.49 19.72

> TukeyHSD(halo.mod1,"essayqual")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = grade ~ essayqual + picture)

$essayqual

diff lwr upr p adj

2-1 -4.766333 -7.063409 -2.469258 0.0001117

> TukeyHSD(halo.mod1,"picture")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = grade ~ essayqual + picture)

$picture

diff lwr upr p adj

2-1 -0.7495 -4.130658 2.6316579 0.8551372

3-1 -4.2995 -7.680658 -0.9183421 0.0093295

3-2 -3.5500 -6.931158 -0.1688421 0.0375422

When there is an interaction present, that means the effects of the levels of Factor A depend on the level of
Factor B, and vice versa. Then it only makes sense to make comparisons among levels of one factor within
the levels of the other factor (or simply compare all ab means). These comparisons are often called “slices” as
they make comparisons of levels of one factor within the levels of the other factor. Note that these intervals
will be wider than those for the main effects, as they are based on fewer observations per sample mean.

To compare all levels of Factor A, when Factor B is at level j, simultaneous confidence intervals can be up
in the forms given below.

Bonferroni (with c∗A = a(a − 1)/2):

(yij. − yi′j.) ± tα/2c∗
A

,ab(n−1)

√

MSE

(

2

n

)

,

Tukey

(yij. − yi′j.) ± qα,a,ab(n−1)

√

MSE

(

1

n

)

.

For comparing levels of Factor B, when Factor A is at level i, the following formulas can be used.

Bonferroni (with c∗B = b(b − 1)/2)

(yij. − yij′.) ± tα/2c∗
B

,ab(n−1)

√

MSE

(

2

n

)

,

Tukey

(yij. − yij′.) ± qα,b,ab(n−1)

√

MSE

(

1

n

)

.
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Example 3.6: Penetration of Arrowheads by Clothing Fit and Type

In this study, there was a significant interaction effect. Comparisons could be made among Clothing
Fits within Types, with one Fit comparison within each of the 3 Types. Similarly, the 3 Types could
be compared within each Fit. Further, all 6 treatments could be compared simultaneously. First, obtain
minimum significant differences for comparing the Fits within Types.

t.05/2,18 = 2.101

√

0.043

(

2

4

)

= 0.147 2.101(0.147) = 0.308

q.05,2,18 = 2.971

√

0.043

(

1

4

)

= 0.104 2.971(0.104) = 0.308

Next, obtain minimum significant differences for comparing the Types within Fits.

t.05/(2(3)),18 = 2.639

√

0.043

(

2

4

)

= 0.147 2.639(0.147) = 0.388

q.05,3,18 = 3.609

√

0.043

(

1

4

)

= 0.104 3.609(0.104) = 0.375

If the goal is to compare all pairs among the ab = 2(3) = 6 treatments, then there are c∗AB = 6(5)/2 = 15
comparisons.

t.05/(2(15)),18 = 3.380

√

0.043

(

2

4

)

= 0.147 3.380(0.147) = 0.497

q.05,6,18 = 4.494

√

0.043

(

1

4

)

= 0.104 4.494(0.104) = 0.467

The simultaneous comparisons among the 6 treatments are given in Table 3.7. All intervals are either
entirely positive or negative. The highest penetration occurs when (i, j) = (1, 1), which corresponds to the
Tight fit with a t-shirt. The lowest penetration occurs when (i, j) = (2, 2), which corresponds to a Loose fit
with Jeans made from 65% cotton.

∇
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(i, i′), (j, j′) yij. − yi′j′. Bonferroni CI Tukey CI

(1,1),(1,2) 2.800 (2.303, 3.297) (2.333, 3.267)
(1,1),(1,3) 1.625 (1.128, 2.122) (1.158, 3.237)
(1,1),(2,1) 0.875 (0.378, 1.372) (0.408, 1.342)
(1,1),(2,2) 6.225 (5.728, 6.722) (5.758, 6.692)
(1,1),(2,3) 4.050 (3.553, 4.547) (3.583, 517)
(1,2),(1,3) −1.175 (−1.672,−0.678) (−1.642,−0.708)
(1,2),(2,1) −1.925 (−2.422,−1.428) (−2.392,−1.458)
(1,2),(2,2) 3.425 (2.928, 3.922) (2.958, 3.892)
(1,2),(2,3) 1.250 (0.753, 1.747) (0.783, 1.717)
(1,3),(2,1) −0.750 (−1.247,−0.253) (−1.217,−0.283)
(1,3),(2,2) 4.600 (4.103, 5.097) (4.133, 5.067)
(1,3),(2,3) 2.425 (1.928, 2.922) (1.958, 2.892)
(2,1),(2,2) 5.350 (4.853, 5.847) (4.883, 5.817)
(2,1),(2,3) 3.175 (2.678, 3.672) (2.708, 3.642)
(2,2),(2,3) −2.175 (−2.672,−1.678) (−2.642,−1.708)

Table 3.7: Simultaneous Confidence Intervals for the Arrowhead Penetration Study

Unbalanced Data

When the numbers of replicates per treatment vary, the sums of squares computations cannot be used and
a regression model is fit. Note that software packages do it this way regardless of whether the data are
balanced or unbalanced. The model makes use of dummy type variables for the various levels of Factors A
and B, while interaction effects make use of cross-products of the dummy variables. Let XA

1 , . . . , XA
a−1 and

XB
1 , . . . , XB

b−1 be defined as follow (this is a parameterization with the effects summing to 0).

XA
i =







1 : if Factor A is at level i i = 1, . . . , a − 1
−1 : if Factor A is at level a

0 : otherwise

XB
j =







1 : if Factor B is at level j j = 1, . . . , b − 1
−1 : if Factor B is at level b

0 : otherwise

Then the regression model can be fit with the following equation.

Y = β0 + βA
1 XA

1 + · · ·+ βA
a−1X

A
a−1 + βB

1 XB
1 + · · ·+ βB

b−1X
B
b−1 + βAB

11 XA
1 XB

1 + · · ·+ βAB
a−1,b−1X

A
a−1X

B
b−1 + ε

To test for interactions between levels of Factors A and B, is to test HAB
0 : βAB

11 = . . . = βAB
a−1,b−1 = 0,

and can be conducted with a Complete versus Reduced F -test. Tests for main effects of Factors A and B
(controlling for the interaction) can be done in a similar manner (see Example 3.5 below).

When each factor has 2 levels, the model simplifies as follows, and the tests for interaction and main effects
are t-tests that can be obtained without having to fit Complete and Reduced models.
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Y = β0 + βA
1 XA

1 + βB
1 XB

1 + βAB
11 XA

1 XB
1 + ε

Example 3.7: Lead Content in Lip Products

A European regulatory study measured lead content (mg/kg) in 223 manufactured lip products (Piccinini,
Piecha, and Torrent, 2013, [28]). The products were classified by the factors: Color (Factor A, a = 4: Red
(i = 1), Purple (i = 2), Pink (i = 3), and Brown (i = 4)) and Product Type (Factor B, b = 2: Lip Stick
(j = 1) and Lip Gloss (j = 2)). The number of brands, nij varied among the “treatments.” The products
included here are treated as a random sample from a population of all possible lip product formulations that
could be manufactured for these colors and product types. The summary statistics are given in Table 3.8
and the interaction plot is given in Figure 3.3. The analysis is based on the raw data.

Four models are fit. Model 1 contains all main effects and interactions, model 2 contains the main effects
only, model 3 contains Factor B main effects and interactions, model 4 contains Factor A main effects and
interactions. Two more models will be considered. Model 5 contains Factor A main effects only, while Model
6 contains Factor B main effects only.

Mode1 1: Ŷ1 = 0.564−0.163XA
1 +0.086XA

2 +0.032XA
3 +0.188XB

1 −0.033XA
1 XB

1 +0.092XA
2 XB

1 +0.026XA
3 XB

1

SSE1 = 66.898 dfE1 = 223 − 8 = 215

Mode1 2: Ŷ2 = 0.563− 0.173XA
1 + 0.120XA

2 + 0.040XA
3 +0.185XB

1 SSE2 = 66.898 dfE2 = 223− 5 = 218

Mode1 3: Ŷ3 = 0.570+0.185XB
1 −0.093XA

1 XB
1 +0.124XA

2 XB
1 +0.036XA

3 XB
1 SSE3 = 67.952 dfE3 = 223−5 = 218

Mode1 4: Ŷ4 = 0.631− 0.148XA
1 + 0.110XA

2 − 0.007XA
3 − 0.062XA

1 XB
1 + 0.022XA

2 XB
1 + 0.103XA

3 XB
1

SSE4 = 72.481 dfE4 = 223 − 7 = 216

Mode1 5: Ŷ5 = 0.570 + 0.185XB
1 SSE5 = 68.918 dfE5 = 223− 2 = 221

Mode1 6: Ŷ6 = 0.628− 0.167XA
1 + 0.121XA

2 + 0.024XA
3 SSE6 = 73.657 dfE4 = 223− 4 = 219

To test whether there is a significant interaction between Color and Product Type on Lead content, Models
1 (Complete) and 2 (Reduced) are compared.

HAB
0 : βAB

11 = βAB
21 = βAB

31 = 0 TS : FAB =

[

66.898−66.160
218−215

]

[

66.160
215

] =
0.246

0.308
= 0.799 P (F3,215 ≥ 0.799) = .4956

In practice, given the interaction is not significant (and the overall sample size is quite large), to test
for main effects for Factors A and B, Model 2 (Complete) and Models 5 (Factor A) and 6 (Factor B) are
compared. First, Models 3 and 4 will be compared with Model 1 to mimic the results of a single computer
pass of the interaction model (this is the method used by the SAS Systems Type III sums of squares).

HA
0 : βA

1 = βA
2 = βA

3 = 0 TS : FA =

[

67.592−66.160
218−215

]

[

66.160
215

] =
0.477

0.308
= 1.551 P (F3,215 ≥ 1.551) = .2023



98 CHAPTER 3. FACTORIAL DESIGNS

HB
0 : βB

1 = 0 TS : FB =

[

72.481−66.160
216−215

]

[

66.160
215

] =
6.321

0.308
= 20.54 P (F1,215 ≥ 20.54) < .0001

Had Model 2 (additive) been used as the Complete Model for the main effects tests (with Models 5 and 6
as the Reduced Models), the F -tests show that the main effect for Color is much closer to being significant
when the interaction is no longer being controlled for.

HA
0 : βA

1 = βA
2 = βA

3 = 0 TS : FA =

[

68.918−66.898
221−218

]

[

66.898
218

] =
0.673

0.307
= 2.194 P (F3,218 ≥ 2.194) = .0897

HB
0 : βB

1 = 0 TS : FB =

[

73.657−66.898
219−218

]

[

66.898
218

] =
6.759

0.307
= 22.02 P (F1,218 ≥ 22.02) < .0001

The primary conclusion is that there are significant differences in Product Type (Lip Stick has higher mean
Lead levels than Lip Gloss). There is not a significant Color effect or Color/Product Type interaction. The
output for the R program is given below.

∇

Color (i) Product Type (j) nij yij sij

Red (1) Lip Stick (1) 31 0.557 0.758
Red (1) Lip Gloss (2) 14 0.246 0.217

Purple (2) Lip Stick (1) 25 0.931 0.657
Purple (2) Lip Gloss (2) 12 0.369 0.212
Pink (3) Lip Stick (1) 51 0.811 0.580
Pink (3) Lip Gloss (2) 30 0.381 0.302

Brown (4) Lip Stick (1) 42 0.712 0.591
Brown (4) Lip Gloss (2) 18 0.507 0.462

Table 3.8: Summary statistics for lip product lead content Study

### Regression Model

> anova(ll.mod2, ll.mod1)

Analysis of Variance Table

Model 1: Pb ~ X1.A + X2.A + X3.A + X1.B

Model 2: Pb ~ X1.A + X2.A + X3.A + X1.B + I(X1.A * X1.B) + I(X2.A * X1.B) +

I(X3.A * X1.B)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 218 66.898

2 215 66.160 3 0.73838 0.7998 0.4952
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Figure 3.3: Interaction for Lip Product Lead content study
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> anova(ll.mod3, ll.mod1)

Analysis of Variance Table

Model 1: Pb ~ X1.B + I(X1.A * X1.B) + I(X2.A * X1.B) + I(X3.A * X1.B)

Model 2: Pb ~ X1.A + X2.A + X3.A + X1.B + I(X1.A * X1.B) + I(X2.A * X1.B) +

I(X3.A * X1.B)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 218 67.592

2 215 66.160 3 1.432 1.5511 0.2023

> anova(ll.mod4, ll.mod1)

Analysis of Variance Table

Model 1: Pb ~ X1.A + X2.A + X3.A + I(X1.A * X1.B) + I(X2.A * X1.B) + I(X3.A *

X1.B)

Model 2: Pb ~ X1.A + X2.A + X3.A + X1.B + I(X1.A * X1.B) + I(X2.A * X1.B) +

I(X3.A * X1.B)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 216 72.481

2 215 66.160 1 6.3213 20.542 9.678e-06 ***

> anova(ll.mod5, ll.mod2)

Analysis of Variance Table

Model 1: Pb ~ X1.B

Model 2: Pb ~ X1.A + X2.A + X3.A + X1.B

Res.Df RSS Df Sum of Sq F Pr(>F)

1 221 68.918

2 218 66.898 3 2.0196 2.1937 0.08972 .

> anova(ll.mod6, ll.mod2)

Analysis of Variance Table

Model 1: Pb ~ X1.A + X2.A + X3.A

Model 2: Pb ~ X1.A + X2.A + X3.A + X1.B

Res.Df RSS Df Sum of Sq F Pr(>F)

1 219 73.657

2 218 66.898 1 6.7591 22.026 4.751e-06 ***

### Using aov Function - Interaction Model

## Sequential Sums of Squares

> anova(ll.aov1)

Analysis of Variance Table

Response: Pb

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1.879 0.6264 2.0357 0.1099

prodType 1 6.759 6.7591 21.9652 4.926e-06 ***

shade:prodType 3 0.738 0.2461 0.7998 0.4952

Residuals 215 66.160 0.3077

### Main Effects given other main effects, Interaction given all main effects

> Anova(ll.aov1, Type="III")

Anova Table (Type II tests)

Response: Pb

Sum Sq Df F value Pr(>F)

shade 2.020 3 2.1877 0.09046 .

prodType 6.759 1 21.9652 4.926e-06 ***

shade:prodType 0.738 3 0.7998 0.49517

Residuals 66.160 215

### Using aov Function - Additive Model

## Sequential Sums of Squares

> anova(ll.aov2)

Analysis of Variance Table

Response: Pb

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1.879 0.6264 2.0414 0.109
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prodType 1 6.759 6.7591 22.0259 4.751e-06 ***

Residuals 218 66.898 0.3069

### Main Effects given other main effects

> Anova(ll.aov2, Type="III")

Anova Table (Type II tests)

Response: Pb

Sum Sq Df F value Pr(>F)

shade 2.020 3 2.1937 0.08972 .

prodType 6.759 1 22.0259 4.751e-06 ***

Residuals 66.898 218

For contrasts among main effects, which are relevant when the model is additive, the following sums of
squares and variances are obtained. Inferences are then made as in the balanced case.

SSCA
=

(

ĈA

)2

∑a
i=1

a2
i

ni.

V
{

ĈA

}

= σ2
a
∑

i=1

a2
i

ni.
SSCB

=

(

ĈB

)2

∑b
j=1

b2
j

n.j

V
{

ĈB

}

= σ2
b
∑

j=1

b2
j

n.j

In the case of contrasts among cell means, the following results apply.

SSCAB
=

(

ĈAB

)2

∑a
i=1

∑b
j=1

ab2
ij

nij

V
{

ĈAB

}

= σ2
a
∑

i=1

b
∑

j=1

ab2
ij

nij

The following adjustments are made to the Bonferroni and Tukey methods for the unbalanced case.

Bonferroni (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,dfE

√

MSE

(

1

ni.
+

1

ni′.

)

Tukey-Kramer

(yi.. − yi′..) ± qα,a,dfE

√

MSE

2

(

1

ni.
+

1

ni′.

)

Example 3.8: Lead Content in Lip Products

Although the Color was not a significant main effect at the α = 0.05 significance level, suppose interest
was in comparing the colors. First, consider a contrast of Red (i = 1) versus Purple(i = 2)/Pink(i =
3)/Brown(i = 4), with a1 = 3, a2 = a3 = a4 = −1. Then obtain all pairwise comparisons among colors. The
additive model (Model 2) is used.

MSE =
66.898

218
= 0.307 n1. = 45 n2. = 37 n3. = 81 n4. = 60 y1.. = 0.460 y2.. = 0.749 y3.. = 0.651 y4.. = 0.650
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ĈA = 3(0.460)− 0.749− 0.651− 0.650 = −0.670
32

45
+

(−1)2

37
+

(−1)2

81
+

(−1)2

60
= 0.256

SSCA
=

(−0.670)2

0.256
= 1.753 ŜE

{

ĈA

}

=
√

0.307(0.256) = 0.280

HCA

0 : CA = 0 TS : FCA
=

1.753

0.307
= 5.710 RR : FCA

≥ F.05,1,218 = 3.884 P = P (F1,218 ≥ 5.710) = 0.0177

HCA

0 : CA = 0 TS : tCA
=

−0.670

0.280
= −2.393 RR : |tCB

| ≥ tα/2,218 = 1.971 P = 2P (t218 ≥ |−2.393|) = .0176

(1 − α)100% CI for CA: − 0.670± 1.971(0.280) ≡ −0.670± 0.552 ≡ (−1.222,−0.118)

The contrast is significantly different from 0. Note that this contrast consisted of comparing the lowest
mean with the average of the 3 higher means.

There are a = 4 colors, which implies c∗A = 6 pairwise comparisons. Consider the the pairwise comparison
between Red (i = 1) and Purple (i′ = 2).

y1..−y2.. = 0.460−0.749 = −0.289
1

n1
+

1

n2
=

1

45
+

1

37
= 0.049249 t.05/(2(6)),218 = 2.663 q.05,4,218 = 3.661

Bonferroni CI: − 0.289± 2.663
√

0.307(0.049249) ≡ −0.289± 0.327 ≡ (−0.616, 0.038)

Tukey CI: − 0.289± 3.661

√

0.307

2
0.049249 ≡ −0.289± 0.318 ≡ (−0.607, 0.029)

The results for all pairs are given in Table 3.9. No pairs of colors are significantly different.

i, i′ yi.. − yi′.. ŜE {yi.. − yi′..} Bonferroni CI Tukey CI

1,2 -0.289 0.123 (−0.616, 0.038) (−0.607, 0.029)
1,2 -0.191 0.103 (−0.465, 0.083) (−0.458, 0.076)
1,2 -0.190 0.109 (−0.481, 0.101) (−0.473, 0.093)
1,2 0.098 0.110 (−0.195, 0.391) (−0.187, 0.383)
1,2 0.099 0.116 (−0.209, 0.407) (−0.201, 0.399)
1,2 0.001 0.094 (−0.250, 0.252) (−0.243, 0.245)

Table 3.9: Simultaneous Confidence Intervals for Lip Product Colors in Lead study

Higher Order Models

Models can be extended to any number of factors. The case of a balanced experiment with three factors A,
B, and C with a, b, and c levels respectively, and n replicates per treatment is considered here. Extensions
to more factors and unbalanced data can be generalized from this and previous sections. The model is given
below, along with representative sums of squares.
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Yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl

i = 1, . . . , a j = 1, . . . , b k = 1, . . . , c l = 1, . . . , n εijkl ∼ N
(

0, σ2
)

a
∑

i=1

αi =

b
∑

j=1

βj =

c
∑

k=1

γi =

a
∑

i=1

(αβ)ij =

b
∑

j=1

(αβ)ij =

a
∑

i=1

(αβγ)ijk =

b
∑

j=1

(αβγ)ijk =

c
∑

k=1

(αβγ)ijk = 0 ∀i, j, k

SSA = bcn

a
∑

i=1

(

Y i... − Y ....

)2
SSAB = cn

a
∑

i=1

b
∑

j=1

(

Y ij.. − Y i... − Y .j.. + Y ....

)2

SSABC = n

a
∑

i=1

b
∑

j=1

c
∑

k=1

(

Y ijk. − Y ij.. − Y i.k. − Y .jk. + Y i... + Y .j.. + Y ..k. − Y ....

)2

SSE =

a
∑

i=1

b
∑

j=1

c
∑

k=1

n
∑

l=1

(

Yijkl − Y ijk.

)2

dfA = a − 1 dfAB = (a − 1)(b − 1) dfABC = (a − 1)(b − 1)(c − 1) dfE = abc(n − 1)

The F -tests for interactions and main effects are conducted as in the case of the 2-factor model.

Example 3.9: Oil Holding Capacity of Banana Cultivars

A food chemistry experiment was conducted to measure oil holding capacity of bananas (Anyasi, Jideani,
and Mchau, 2015, [4]). The response was oil holding capacity (g/g dry weight) and there were three factors:
Banana Cultivar (Luvhele (i = 1), Mabonde (i = 2), M-red (i = 3)), pre-treatment acid (ascorbic (j = 1),
citric (j = 2), lactic (j = 3)), and amount of acid (10 g/L (k = 1), 15 (k = 2), 20 (k = 3)). There were
n = 3 replicates per treatment. Although the amount of acid is numeric, it is treated as a nominal factor in
this analysis.

The data means are given in Table 3.10. The Analysis of Variance is given in Table 3.11, note that none
of the interactions or main effects are significant. Apparently none of these factors are associated with oil
holding capacity of bananas. The R output is given below.

∇

> ban.mod1 <- aov(OHC ~ cultivar * acidType * acidDose)

> anova(ban.mod1)

Analysis of Variance Table

Response: OHC

Df Sum Sq Mean Sq F value Pr(>F)

cultivar 2 0.9923 0.49614 1.9031 0.1590

acidType 2 0.2811 0.14053 0.5391 0.5864

acidDose 2 0.3556 0.17778 0.6819 0.5099

cultivar:acidType 4 0.1939 0.04847 0.1859 0.9447

cultivar:acidDose 4 0.4634 0.11585 0.4444 0.7760

acidType:acidDose 4 0.1558 0.03894 0.1494 0.9625

cultivar:acidType:acidDose 8 1.2886 0.16107 0.6179 0.7590

Residuals 54 14.0777 0.26070
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ijk Mean ijk Mean ijk Mean ijk Mean

111 1.7300 211 1.6000 311 1.9300 .11 1.7533
112 1.5300 212 1.4700 312 1.8700 .12 1.6233
113 1.6000 213 1.4700 313 1.6000 .13 1.5567
121 1.7300 221 1.8000 321 1.6000 .21 1.7100
122 1.8000 222 1.6700 322 1.9300 .22 1.8000
123 1.7300 223 1.2700 323 1.6700 .23 1.5567
131 1.6000 231 1.0700 331 2.0000 .31 1.5567
132 1.4000 232 1.4700 332 1.9300 .32 1.6000
133 1.5300 233 1.6000 333 1.3300 .33 1.4867
11. 1.6200 21. 1.5133 31. 1.8000 .1. 1.6444
12. 1.7533 22. 1.5800 32. 1.7333 .2. 1.6889
13. 1.5100 23. 1.3800 33. 1.7533 .3. 1.5478
1.1 1.6867 2.1 1.4900 3.1 1.8433 ..1 1.6733
1.2 1.5767 2.2 1.5367 3.2 1.9100 ..2 1.6744
1.3 1.6200 2.3 1.4467 3.3 1.5333 ..3 1.5333
1.. 1.6278 2.. 1.4911 3.. 1.7622 ... 1.6270

Table 3.10: Oil Holding Capacity for Bananas

Source df SS MS F F.05 Pr > F

A 2 0.9923 0.4961 1.9031 3.1682 0.1590
B 2 0.2811 0.1405 0.5391 3.1682 0.5864
C 2 0.3556 0.1778 0.6819 3.1682 0.5099

AB 4 0.1939 0.0485 0.1859 2.5429 0.9447
AC 4 0.4634 0.1159 0.4444 2.5429 0.7760
BC 4 0.1558 0.0389 0.1494 2.5429 0.9625

ABC 8 1.2886 0.1611 0.6179 2.1152 0.7590
Error 54 14.0777 0.2607

Total 80 17.8083

Table 3.11: Analysis of Variance of Oil Holding Capacity for Bananas
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Example 3.10: Lead Content in Lip Products

This study included a third factor, Price with 3 levels containing ranges of prices (≤ 5 euros (k = 1), 5-15
euros (k = 2), ≥ 15 euros (k = 3)). The model would now include two new dummy variables, as well as
extended numbers of interactions. The aov function will be used directly for the analysis. The R output is
given below with no changes in interpretation. Price and none of the interactions are significant, the primary
important factor is product.

∇

## Interaction Model

> ll.aov3 <- aov(Pb ~ shade * prodType * priceCatgry)

> anova(ll.aov3)

Analysis of Variance Table

Response: Pb

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1.879 0.6264 1.9836 0.1175

prodType 1 6.759 6.7591 21.4031 6.556e-06 ***

priceCatgry 1 0.004 0.0043 0.0135 0.9076

shade:prodType 3 0.741 0.2469 0.7817 0.5054

shade:priceCatgry 3 0.516 0.1721 0.5450 0.6520

prodType:priceCatgry 1 0.044 0.0442 0.1401 0.7086

shade:prodType:priceCatgry 3 0.222 0.0739 0.2341 0.8725

Residuals 207 65.371 0.3158

> Anova(ll.aov3, Type="II")

Anova Table (Type II tests)

Response: Pb

Sum Sq Df F value Pr(>F)

shade 1.960 3 2.0685 0.1055

prodType 6.729 1 21.3081 6.857e-06 ***

priceCatgry 0.006 1 0.0205 0.8862

shade:prodType 0.749 3 0.7907 0.5003

shade:priceCatgry 0.493 3 0.5205 0.6686

prodType:priceCatgry 0.044 1 0.1401 0.7086

shade:prodType:priceCatgry 0.222 3 0.2341 0.8725

Residuals 65.371 207

## Additive Model

> ll.aov4 <- aov(Pb ~ shade + prodType + priceCatgry)

> anova(ll.aov4)

Analysis of Variance Table

Response: Pb

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1.879 0.6264 2.0321 0.1103

prodType 1 6.759 6.7591 21.9262 4.992e-06 ***

priceCatgry 1 0.004 0.0043 0.0138 0.9065

Residuals 217 66.894 0.3083

> Anova(ll.aov4, Type="II")

Anova Table (Type II tests)

Response: Pb

Sum Sq Df F value Pr(>F)

shade 1.995 3 2.1572 0.09404 .

prodType 6.763 1 21.9381 4.964e-06 ***

priceCatgry 0.004 1 0.0138 0.90646

Residuals 66.894 217
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3.1.2 Mixed Effects Models

When Factor A is a Fixed Factor (all levels of interest are included in the study), and Factor B is a
Random Factor (only a sample of its levels are included, such as medical centers in a clinical trial), it is
called a Mixed Effects Model. The computation of the sums of squares in the Analysis of Variance is the
same, but the tests for treatment effects change. The model is given below.

Yijk = µ + αi + βj + (αβ)ij + εijk

where µ is the overall mean, αi is the (fixed) effect of the ith level of factor A, βj is the (random) effect of
the jth level of factor B, (αβ)ij is the (random) interaction of the factor A at level i and factor B at level
j. One (of several) ways this model is parameterized is to assume the following model structure.

a
∑

i=1

αi = 0 βj ∼ N
(

0, σ2
b

)

(αβ)ij ∼ N
(

0, σ2
ab

)

εijk ∼ N
(

0, σ2
)

All random effects and error terms are assumed mutually independent in this (particular) formulation.
The Analysis of Variance for the mixed effects model is given in Table 3.12. Data are no longer assumed
independent when they are measured on the same level of a random factor.

E {Yijk} = µ + αi V {Yijk} = σ2
b + σ2

ab + σ2

COV {Yijk, Yi′j′k′} =















σ2
b + σ2

ab + σ2 : i = i′, j = j′, k = k′

σ2
b + σ2

ab : i = i′, j = j′, k 6= k′

σ2
b : i 6= i′, j = j′, ∀k, k′

0 : otherwise

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSAB P
(

Fa−1,(a−1)(b−1) ≥ FA

)

B b − 1 SSB MSB = SSB
b−1 FB = MSB

MSAB P
(

Fb−1,(a−1)(b−1) ≥ FB

)

AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1)

FAB = MSAB
MSE

P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

ERROR ab(n − 1) SSE MSE = SSE
ab(n−1)

TOTAL abn − 1 TSS

Table 3.12: The Analysis of Variance Table for a 2-Factor Factorial Design - Factor A fixed, Factor B random

The expectations of the mean squares for the mixed effects model (with A fixed, and B random) are given
below.
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E {MSA} = σ2 + nσ2
ab +

bn
∑a

i=1 α2
i

a − 1
E {MSB} = σ2 + nσ2

ab + anσ2
b

E {MSAB} = σ2 + nσ2
ab E {MSE} = σ2

Tests concerning interactions and main effects for the mixed model are carried out as follow. Note that
expected mean squares for Factors A and B contain the interaction variance component. Thus, under their
null hypotheses their expected mean squares simplify to E {MSAB}, which is why their F -tests use MSAB
as the error term.

1. HAB
0 : σ2

ab = 0 (No interaction effect).

2. HAB
A : σ2

ab > 0 (Interaction effects exist)

3. T.S. FAB = MSAB
MSE

4. R.R.: FAB ≥ Fα,(a−1)(b−1),ab(n−1)

5. P -value: P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

Assuming no interaction effects exist, the test for differences among the effects of the levels of factor A as
follows.

1. HA
0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA
A : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSAB

4. R.R.: FA ≥ Fα,a−1,(a−1)(b−1)

5. P -value: P
(

Fa−1,(a−1)(b−1) ≥ FA

)

Assuming no interaction effects exist, we can test for differences among the effects of the levels of factor B
as follows.

1. HB
0 : σ2

b = 0 (No factor B effect).

2. HB
A : σ2

b > 0 (Factor B effects exist)

3. T.S. FB = MSB
MSAB

4. R.R.: FB ≥ Fα,b−1,(a−1)(b−1)

5. P -value: P
(

Fb−1,(a−1)(b−1) ≥ FB

)
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Unbiased (ANOVA) estimates of the variance components are obtained from the mean squares (see their
expectations above). Note that these can be negative (except the estimate of the error variance).

s2 = MSE s2
ab =

MSAB − MSE

n
s2
b =

MSB − MSAB

an

Assuming the interaction is not significant, pairwise comparisons among levels of Factor A can be made
based on simultaneous confidence intervals.

Bonferroni (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,(a−1)(b−1)

√

MSAB

(

2

bn

)

,

Tukey’s

(yi.. − yi′..) ± qα,a,(a−1)(b−1)

√

MSAB

(

1

bn

)

.

Example 3.11: Women’s Professional Bowling Association Scores - 2009

This data comes from the qualifying rounds of the Women’s Professional Bowling Association tournament
held at Alan Park, Michigan in 2009. There were two factors: oil pattern (Factor A, fixed) and bowler
(Factor B, random). There were a = 4 oil patterns used on the lane (1=Viper, 2=Chameleon, 3=Scor-
pion, 4=Shark). There were b = 15 bowlers (1=Diandra Abaty, 2=Shalin Zulkiffi, 3=Liz Johnson, 4=Kelly
Kulick, 5=Clara Guerrero, 6=Jennifer Petrick, 7=Wendy MacPherson, 8=Shannon Pluhowski, 9=Stephanie
Nation, 10=Tammy Boomershine, 11=Amanda Fagan, 12=Aumi Guerra, 13=Michelle Feldman, 14=Shan-
non O’Keefe, 15=Jodie Woessner). Each bowler bowled 2 sets of 7 games on each of the oil patterns. The
response Y , is the score for an individual game for a bowler, making n = 2(7) = 14 replicates per oil
pattern/bowler combination. The means (SDs) are given in Table 3.13 and the interaction plot is given in
Figure 3.4. The Analysis of Variance and F -tests are given in Table 3.14.

The ANOVA results in significant main effects for oil pattern (FA = 3.573, p = .0217) and for bowlers
(FB = 2.611, p = .0082), but not a significant interaction (FAB = 1.262, p = .1271). Estimates of the variance
components are given here.

s2 = 649.6 s2
ab =

819.6− 649.6

14
= 12.14 s2

b =
2140.3− 819.6

4(14)
= 23.58

In particular, the estimate of the standard deviation of scores for the same bowler on the same oil pattern
is

√
649.6 = 25.5 and the standard deviation of the effects of the different bowlers is

√
23.58 = 4.86.

Since there is no evidence of an oil pattern/bowler interaction, Bonferroni’s and Tukey’s methods can be
used to obtain simultaneous Confidence Intervals to compare the a = 4 oil patterns (thus there are 4(3)/2=6
comparisons). The results are given in Table 3.15. The only significant difference is between oil patterns 1
(Viper) and 3 (Scorpion), all other simultaneous Confidence Intervals contain 0.



3.1. MULTIPLE-FACTOR ANALYSIS OF VARIANCE - CROSSED FACTORS 109

Bonferroni: t.05/(2(6)),42 = 2.769

√

819.6

(

2

15(14)

)

= 2.794 2.769(2.794) = 7.74

Tukey: q.05,4,42 = 3.783

√

819.6

(

1

15(14)

)

= 1.976 3.783(1.976) = 7.47

The output from R is given below, including likelihood based tests that give the correct F -statistics based
on Estimated Generalized Least Squares. Note that the F -tests based on the aov function are incorrect, as
they use MSE for the tests for the main effects of Factors A and B.

∇

Bowler Viper Chameleon Scorpion Shark Mean

1 223.29 (42.44) 208.79 (22.98) 195.57 (27.27) 211.00 (28.85) 209.66
2 211.79 (28.77) 195.71 (27.06) 196.43 (24.31) 191.57 (19.77) 198.88
3 218.14 (24.51) 208.50 (26.23) 209.64 (27.78) 215.50 (14.09) 212.95
4 219.43 (18.72) 216.64 (21.74) 212.43 (27.52) 216.21 (35.62) 216.18
5 210.57 (20.77) 198.43 (18.8) 204.71 (28.7) 219.07 (24.82) 208.20
6 211.00 (30.91) 203.29 (16.9) 193.07 (23.72) 187.14 (30.82) 198.63
7 223.36 (34.26) 199.29 (30.29) 194.43 (20.24) 221.07 (22.84) 209.54
8 209.57 (25.17) 214.21 (31.64) 208.64 (20.76) 201.29 (25.94) 208.43
9 199.57 (27.98) 198.57 (21.67) 193.29 (18.57) 204.43 (26.78) 198.96
10 205.86 (33.02) 213.71 (20.73) 198.36 (31.23) 219.29 (27.84) 209.30
11 202.50 (26.88) 205.29 (14.49) 194.36 (21.4) 207.57 (17.67) 202.43
12 206.21 (31.98) 182.64 (25.8) 196.14 (16.73) 194.00 (26.59) 194.75
13 198.50 (15.51) 207.86 (22.39) 210.71 (25.88) 193.86 (33.64) 202.73
14 212.00 (30.03) 205.86 (25.49) 208.29 (22.43) 220.21 (13.01) 211.59
15 199.57 (27.98) 209.79 (23.93) 204.86 (20.27) 208.64 (13.62) 205.71

Mean 210.09 204.57 201.40 207.39 205.86

Table 3.13: Means (SDs) by Oil Pattern/Bowler combination - Women’s Professional Bowlers Association
2009 Data

> wpba.mod1 <- aov(score ~ pattern + bowler + bowler:pattern)

> summary(wpba.mod1)

## This gives incorrect F-tests for Pattern and Bowler

Df Sum Sq Mean Sq F value Pr(>F)

pattern 3 8785 2928.4 4.508 0.00382 **

bowler 14 29965 2140.3 3.295 3.84e-05 ***

pattern:bowler 42 34423 819.6 1.262 0.12711

Residuals 780 506679 649.6

> wpba.mod2 <- aov(score ~ pattern + bowler + Error(bowler:pattern))

> summary(wpba.mod2)

## This gives correct F-tests for Pattern and Bowler

Error: bowler:pattern

Df Sum Sq Mean Sq F value Pr(>F)
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Figure 3.4: Interaction Plot of scores by Oil Pattern/Bowler - WPBA 2009 data

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

Oil Pattern 4 − 1 = 3 8785 8785
3 = 2928.4 2928.4

819.6 = 3.573 .0217

Bowler 15− 1 = 14 29965 29965
14 = 2140.3 2140.3

819.6 = 2.611 .0082

INTERACTION 3(14) = 42 344232 344232
42 = 819.6 819.6

649.6 = 1.262 .1271

ERROR 4(15)(14− 1) = 780 506679 506679
780 =649.6

TOTAL 4(15)(14)− 1839 579852

Table 3.14: The Analysis of Variance Table for the WPBA 2009 data

i, i′ yi.. − yi′.. Bonferroni CI Tukey CI
1,2 210.09− 204.57 = 5.52 (−2.22, 13.26) (−1.95, 12.99)
1,3 210.09− 201.40 = 8.69 (0.95, 16.43) (1.22, 16.16)
1,4 210.09− 207.39 = 2.70 (−5.04, 10.44) (−4.77, 10.17)
2,3 204.57− 201.40 = 3.17 (−4.57, 10.91) (−4.30, 10.64)
2,4 204.57− 207.39 = −2.82 (−10.56, 4.92) (−10.29, 4.65)
3,4 201.40− 207.39 = −5.99 (−13.73, 1.75) (−13.46, 1.48)

Table 3.15: Simultaneous Confidence Intervals for Oil Patterns for the WPBA 2009 data
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pattern 3 8785 2928.4 3.573 0.02172 *

bowler 14 29965 2140.3 2.611 0.00824 **

Residuals 42 34423 819.6

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 780 506679 649.6

> wpba.mod3 <- lme(fixed = score ~ pattern, random = ~1|bowler/pattern)

> summary(wpba.mod3)

Linear mixed-effects model fit by REML

Data: NULL

AIC BIC logLik

7851.303 7884.403 -3918.652

Random effects:

Formula: ~1 | bowler

(Intercept)

StdDev: 4.856495

Formula: ~1 | pattern \%in\% bowler

(Intercept) Residual

StdDev: 3.484903 25.48701

Fixed effects: score ~ pattern

Value Std.Error DF t-value p-value

(Intercept) 205.86190 1.596276 780 128.96385 0.0000

pattern1 4.22857 1.710901 42 2.47155 0.0176

pattern2 -1.29048 1.710901 42 -0.75427 0.4549

pattern3 -4.46667 1.710901 42 -2.61071 0.0125

> intervals(wpba.mod3)

Approximate 95\% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 202.7283989 205.861905 208.995411

pattern1 0.7758329 4.228571 7.681310

pattern2 -4.7432148 -1.290476 2.162262

pattern3 -7.9194052 -4.466667 -1.013928

Random Effects:

Level: bowler

lower est. upper

sd((Intercept)) 2.627534 4.856495 8.976303

Level: pattern

lower est. upper

sd((Intercept)) 1.221161 3.484903 9.94508

Within-group standard error:

lower est. upper

24.25312 25.48701 26.78367

> anova(wpba.mod3)

numDF denDF F-value p-value

(Intercept) 1 780 16631.675 <.0001

pattern 3 42 3.573 0.0217

>

> library(lmerTest)

> wpba.mod4 <- lmer(score~pattern+(1|bowler)+(1|pattern:bowler))

> summary(wpba.mod4)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to

degrees of freedom [lmerMod]

Formula: score ~ pattern + (1 | bowler) + (1 | pattern:bowler)

Random effects:

Groups Name Variance Std.Dev.

pattern:bowler (Intercept) 12.14 3.485
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bowler (Intercept) 23.58 4.856

Residual 649.59 25.487

Number of obs: 840, groups: pattern:bowler, 60; bowler, 15

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 205.862 1.596 14.000 128.966 <2e-16 ***

pattern1 4.229 1.711 42.000 2.472 0.0176 *

pattern2 -1.290 1.711 42.000 -0.754 0.4549

pattern3 -4.467 1.711 42.000 -2.611 0.0125 *

> anova(wpba.mod4)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

pattern 6962.8 2320.9 3 42 3.5729 0.02172 *

> difflsmeans(wpba.mod4)

## No adjustment for simultaneous CIs

Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

pattern 1 - 2 5.5 2.79 42.0 1.98 -0.119 11.157 0.055 .

pattern 1 - 3 8.7 2.79 42.0 3.11 3.057 14.334 0.003 **

pattern 1 - 4 2.7 2.79 42.0 0.97 -2.938 8.338 0.339

pattern 2 - 3 3.2 2.79 42.0 1.14 -2.462 8.814 0.262

pattern 2 - 4 -2.8 2.79 42.0 -1.01 -8.457 2.819 0.319

pattern 3 - 4 -6.0 2.79 42.0 -2.15 -11.633 -0.357 0.038 *

When there are 3 or more factors in a balanced design, the expected mean squares depend on which terms
are fixed and which are random. The primary results are given in Table 3.16 for two cases, Case 1: A and B
are fixed, and C is random, Case 2: A is fixed, and B and C are random. Note that when there is only one
replicate per treatment (n = 1), MSE has no degrees of freedom and σ2 cannot be independently estimated
from σ2 + σ2

ABC which is E {MSABC}. To simplify the table, the following notation is introduced.

A Fixed: θ2
A =

∑a
i=1 α2

i

a − 1
B Fixed: θ2

B =

∑b
j=1 β2

j

b − 1
A,B Fixed: θ2

AB =

∑a
i=1

∑b
j=1 (αiβj)

2

(a − 1)(b − 1)

Source of Degrees of A,B Fixed A Fixed
Variation Freedom C Random B,C Random

A a − 1 σ2 + nσ2
ABC + bnσ2

AC + bcnθ2
A σ2 + nσ2

ABC + bnσ2
AC + cnσ2

AB + bcnθ2
A

B b − 1 σ2 + nσ2
ABC + anσ2

BC + acnθ2
B σ2 + nσ2

ABC + anσ2
BC + cnσ2

AB + acnσ2
B

C c − 1 σ2 + nσ2
ABC + anσ2

BC + bnσ2
AC + abnσ2

C σ2 + nσ2
ABC + anσ2

BC + bnσ2
AC + abnσ2

C

AB (a − 1)(b − 1) σ2 + nσ2
ABC + cnθ2

AB σ2 + nσ2
ABC + cnσ2

AB

AC (a − 1)(c − 1) σ2 + nσ2
ABC + bnσ2

AC σ2 + nσ2
ABC + bnσ2

AC

BC (b − 1)(c − 1) σ2 + nσ2
ABC + anσ2

BC σ2 + nσ2
ABC + anσ2

BC

ABC (a− 1)(b − 1)(c − 1) σ2 + nσ2
ABC σ2 + nσ2

ABC

Error abc(n − 1) σ2 σ2

Table 3.16: Expected Mean Squares for Balanced 3-Way Mixed Model

The goal is to isolate the variance components σ2
• and the fixed effects components θ2

• for estimators and
tests. Beginning with the bottom of the table, the following ANOVA estimators are obtained.

s2 = MSE s2
ABC =

MSABC − MSE

n
s2
BC =

MSBC − MSABC

an
s2
AC =

MSAC − MSABC

bn
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s2
C =

MSC − MSAC − MSBC + MSABC

abn

Case2: s2
AB =

MSAB − MSABC

cn
s2
B =

MSB − MSAB − MSBC + MSABC

acn

When tests have single numerator and denominator mean squares, the F -tests are obtained directly as in
the 2-factor Mixed model. In other cases, combinations of mean squares are needed, and degrees of freedom
must be estimated, one such method is Satterthwaite’s approximation. Consider Factor A for each Case.

Case1: E {MSA} = σ2 + nσ2
ABC + bnσ2

AC + bcnθ2
A E {MSAC} = σ2 + nσ2

ABC + bnσ2
AC

Case2: E {MSA} = σ2 + nσ2
ABC + bnσ2

AC + cnσ2
AB + bcnθ2

A

E {MSAB} + E {MSAC} − E {MSA} = σ2 + nσ2
ABC + bnσ2

AC + cnσ2
AB

Thus to isolate θ2
A for Case 1, only MSAC is needed. However for Case 2, MSAB + MSAC − MSABC

is needed. A direct F -test can be used for Case 1, while a “synthetic” F -test is needed for Case 2. The
approximate degrees of freedom based on Satterthwaite’s approximation can be obtained as follows for a
linear function of Mean Squares.

MS• = g1MS1 + · · ·+ gmMSm ⇒ df• ≈ (MS•)
2

(g1MS1)2

df1
+ · · ·+ (gmMSm)2

dfm

These calculations will be performed based on two examples given. The first example considered spatula
performance by cooks, which has spatula length and angle (both fixed factors) and subject utilizing the
spatula (random). The second study involves measurement reliability of foot inversion with a Phillips
biometer by testers (treated as fixed) for 12 subjects on 2 days, with 2 replicates per day. The first study
has one replicate per treatment (which is common in higher order studies), so that σ2 and σ2

ABC cannot be
estimated independently (without assuming the 3-way interaction variance component is 0). However, the
main effects and 2-way interactions can still be analyzed.

Example 3.12: Shoveling Times for Spatulas

An ergonomic experiment was conducted to compare spatula length and angles on food shoveling times
(Wu and Hsieh, 2002, [37]). There were 4 spatula lengths (20, 25, 30, 40cm), and 4 angles (15, 25, 35, 45
degrees). There were 8 chefs, who each used each of the 16 combinations once. The spatula lengths and
angles are fixed factors, and the chefs (subjects) are treated as random. The response was shoveling time
for 2000 grams of green beans from pan to plate. The analysis of variance is given in Table 3.17.

Estimated variance components are given below.

s2 + s2
LAC = 13.08 s2

AC =
13.15− 13.08

4(1)
= 0.0175 s2

LC =
15.63− 13.08

4(1)
= 0.6375

s2
C =

861.46− 15.63− 13.15 + 13.08

4(4)(1)
= 52.86
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Tests for fixed effects are given below.

HLA
0 : (αβ)11 = · · · = (αβ)44 = θ2

LA = 0 TS : FLA =
MSLA

MSLAC
=

12.59

13.08
= 0.963

RR : FLA ≥ F.05,9,63 = 2.032 P = P (F9,63 ≥ 0.963) = .4788

HL
0 : α1 = · · · = α4 = θ2

L = 0 TS : FL =
MSL

MSLC
=

325.31

15.63
= 20.81 RR : FL ≥ F.05,3,21 = 3.072

P = P (F3,21 ≥ 20.81) < .0001

HA
0 : β1 = · · · = β4 = θ2

A = 0 TS : FA =
MSA

MSAC
=

289.15

13.15
= 21.99 RR : FA ≥ F.05,3,21 = 3.072

P = P (F3,21 ≥ 21.99) < .0001

The evidence is for important main effects for Length, Angle, and Chef with no evidence of any important
interactions. Table 3.18 gives the comparisons among pairs of Lengths and Angles (with added Bonferroni
adjusted P -values). The Likelihood Ratio tests for the variance components (which are different from the
F -test from the ANOVA) are given below. Each of these is a chi-square statistic with 1 degree of freedom
(

χ2
.05,1 = 3.841

)

. A portion of the extensive R output is given below.

HC
0 : σ2

C = 0 TS : X2
C = 46.80 HLC

0 : σ2
LC = 0 TS : X2

LC = 0.273 HAC
0 : σ2

AC = 0 TS : X2
AC = 0.00024

∇

Source Df Sum Sq Mean Sq

Length 3 975.9 325.31
Angle 3 867.4 289.15
Chef 7 6030.2 861.46
Length:Angle 9 113.3 12.59
Length:Chef 21 328.3 15.63
Angle:Chef 21 276.1 13.15
Length:Angle:Chef 63 823.8 13.08
Residuals 0 0.0

Table 3.17: Analysis of Variance for Spatula experiment

> spat.mod2 <- lmer(shovtime ~ length*angle + (1|subject) + (1|subject:length) +

+ (1|subject:angle))

> summary(spat.mod2)

Random effects:

Groups Name Variance Std.Dev.
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Differences of LSMEANS

Comparison Estimate Std Err DF t-value Lo Bnd Hi Bnd P Adj P

length 1 - 2 0.5 0.988 21.0 0.55 -1.511 2.6006 0.587 1.0000
length 1 - 3 -1.4 0.988 21.0 -1.44 -3.481 0.6306 0.164 0.987
length 1 - 4 -6.5 0.988 21.0 -6.53 -8.506 -4.3944 < 2e − 16 < .0001
length 2 - 3 -2.0 0.988 21.0 -1.99 -4.026 0.0856 0.059 .3586
length 2 - 4 -7.0 0.988 21.0 -7.08 -9.051 -4.9394 < 2e − 16 < .0001
length 3 - 4 -5.0 0.988 21.0 -5.08 -7.081 -2.9694 < 2e − 16 .0003

angle 1 - 2 3.7 0.906 21.0 4.12 1.847 5.6177 5e − 04 .0029
angle 1 - 3 2.0 0.906 21.0 2.24 0.142 3.9127 0.036 .2162
angle 1 - 4 -3.3 0.906 21.0 -3.60 -5.145 -1.3748 0.002 .0101
angle 2 - 3 -1.7 0.906 21.0 -1.88 -3.590 0.1802 0.074 .4443
angle 2 - 4 -7.0 0.906 21.0 -7.71 -8.878 -5.1073 < 2e − 16 < .0001
angle 3 - 4 -5.3 0.906 21.0 -5.83 -7.173 -3.4023 < 2e − 16 < .0001

Table 3.18: Pairwise comparisons among Lengths and Angles for Spatula experiment

subject:angle (Intercept) 0.01819 0.1349

subject:length (Intercept) 0.63906 0.7994

subject (Intercept) 52.85968 7.2705

Residual 13.07619 3.6161

> anova(spat.mod2)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

length 816.35 272.116 3 21 20.8101 1.701e-06 ***

angle 862.64 287.546 3 21 21.9900 1.106e-06 ***

length:angle 113.28 12.587 9 63 0.9626 0.4791

> difflsmeans(spat.mod2)

Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

length 1 - 2 0.5 0.988 21.0 0.55 -1.511 2.6006 0.587

length 1 - 3 -1.4 0.988 21.0 -1.44 -3.481 0.6306 0.164

length 1 - 4 -6.5 0.988 21.0 -6.53 -8.506 -4.3944 <2e-16

length 2 - 3 -2.0 0.988 21.0 -1.99 -4.026 0.0856 0.059

length 2 - 4 -7.0 0.988 21.0 -7.08 -9.051 -4.9394 <2e-16

length 3 - 4 -5.0 0.988 21.0 -5.08 -7.081 -2.9694 <2e-16

angle 1 - 2 3.7 0.906 21.0 4.12 1.847 5.6177 5e-04

angle 1 - 3 2.0 0.906 21.0 2.24 0.142 3.9127 0.036

angle 1 - 4 -3.3 0.906 21.0 -3.60 -5.145 -1.3748 0.002

angle 2 - 3 -1.7 0.906 21.0 -1.88 -3.590 0.1802 0.074

angle 2 - 4 -7.0 0.906 21.0 -7.71 -8.878 -5.1073 <2e-16

angle 3 - 4 -5.3 0.906 21.0 -5.83 -7.173 -3.4023 <2e-16

Example 3.13: Reliability of Foot Joint Inversion Measurements

A study reported results of a reliability experiment measuring foot joint inversion and eversion using a
Phillips biometer (Freeman, el al, 2007, [14]). This analysis is based on the inversion measurement (angle).
There were 2 testers, for the course of this analysis they are treated as fixed (for instance they may be the
only two people trained at a medical unit to operate the machine). There were 12 subjects who were each
measured twice (n = 2) on each of 2 days by the 2 testers. Subjects and days are treated as random. The
Analysis of Variance is given in Table 3.19. The “Inv” label on the variables refers to the fact that these are
only the inversion (not the eversion) measurements.
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ANOVA estimates of the variance components are given below, with tester having 2 levels, subject having
12, and day having 2, with n = 2 replicates per treatment.

s2 = 0.323 s2
TSD =

0.783− 0.323

2
= 0.230 s2

TS =
10.366− 0.783

2(2)
= 2.396

s2
TD =

1.76− 0.783

12(2)
= 0.041 s2

SD =
3.094− 0.783

2(2)
= 0.578

s2
S =

173.048− 10.366− 3.094 + 0.783

2(2)(2)
= 20.046 s2

D =
11.344− 1.76− 3.094 + 0.783

2(12)(2)
= 0.152

The F -test for testing for Tester effects is conducted as follows.

HT
0 : α1 = α2 = θ2

T = 0 TS : FT =
MST

MSTS + MSTD − MSTSD
=

0.844

10.366 + 1.76− 0.783
=

0.844

11.343
= 0.074

df1 = dfT = 1 df2 =
(11.343)2

[

(10.366)2

11 + (1.76)2

1 + (−0.783)2

11

] = 9.957

RR : FT ≥ F.05,1,9.957 = 4.970 P = P (F1,9.957 ≥ 0.074) = .7912

There is no evidence of differences in the Testers’ means (which is good from a clinical standpoint). The
output from the R program is given below. Note that if any of the ANOVA estimates of the variance
components had been negative, the REML estimates of the variance components and the F -test would not
have been the same.

∇

Source Df Sum Sq Mean Sq

testerInv 1 0.84 0.844
subjInv 11 1903.53 173.048
dayInv 1 11.34 11.344
testerInv:subjInv 11 114.03 10.366
testerInv:dayInv 1 1.76 1.76
subjInv:dayInv 11 34.03 3.094
testerInv:subjInv:dayInv 11 8.61 0.783
Residuals 48 15.5 0.323

Table 3.19: Analysis of Variance for foot joint inversion measurement experiment

> foot.mod2 <- lmer(angleInv ~ testerInv + (1|subjInv) + (1|dayInv) +

+ (1|testerInv:subjInv) + (1|testerInv:dayInv) + (1|subjInv:dayInv) +

+ (1|testerInv:subjInv:dayInv))

> summary(foot.mod2)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to

degrees of freedom [lmerMod]
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Random effects:

Groups Name Variance Std.Dev.

testerInv:subjInv:dayInv (Intercept) 0.23011 0.4797

subjInv:dayInv (Intercept) 0.57765 0.7600

testerInv:subjInv (Intercept) 2.39583 1.5478

subjInv (Intercept) 20.04639 4.4773

testerInv:dayInv (Intercept) 0.04072 0.2018

dayInv (Intercept) 0.15152 0.3892

Residual 0.32292 0.5683

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 19.34375 1.37424 11.52600 14.076 1.29e-08 ***

testerInv1 0.09375 0.34375 9.95600 0.273 0.791

> anova(foot.mod2)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

testerInv 0.024019 0.024019 1 9.9566 0.07438 0.7906

> difflsmeans(foot.mod2)

Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

testerInv 1 - 2 0.2 0.688 10.0 0.27 -1.35 1.72 0.8

> rand(foot.mod2)

Analysis of Random effects Table:

Chi.sq Chi.DF p.value

subjInv 28.986 1 7e-08 ***

dayInv 0.461 1 0.50

testerInv:subjInv 16.302 1 5e-05 ***

testerInv:dayInv 0.377 1 0.54

subjInv:dayInv 4.831 1 0.03 *

testerInv:subjInv:dayInv 4.158 1 0.04 *

3.1.3 Random Effects Models

When both Factors A and B are random, it is referred to as a Random Effects Model. The computation
of the sums of squares in the Analysis of Variance is the same, but the tests for treatment effects change.
The model is written as follows.

Yijk = µ + αi + βj + (αβ)ij + εijk

where µ is the overall mean, αi is the (random) effect of the ith level of factor A, βj is the (random) effect
of the jth level of factor B, (αβ)ij is the (random) interaction of factor A at level i and factor B at level j.
This model is parameterized assuming the following model structure.

αi ∼ N
(

0, σ2
A

)

βj ∼ N
(

0, σ2
B

)

(αβ)ij ∼ N
(

0, σ2
AB

)

εijk ∼ N
(

0, σ2
)

All random effects and error terms are assumed mutually independent in this formulation. The Analysis
of Variance for the random effects model is given in Table 3.20. Data are no longer assumed independent
when they are measured on the same level of a random factor.

E {Yijk} = µ V {Yijk} = σ2
A + σ2

B + σ2
AB + σ2
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COV {Yijk, Yi′j′k′} =























σ2
A + σ2

B + σ2
AB + σ2 : i = i′, j = j′, k = k′

σ2
A + σ2

B + σ2
AB : i = i′, j = j′, k 6= k′

σ2
A : i = i′, j 6= j′, ∀k, k′

σ2
B : i 6= i′, j = j′, ∀k, k′

0 : otherwise

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSAB P
(

Fa−1,(a−1)(b−1) ≥ FA

)

B b − 1 SSB MSB = SSB
b−1 FB = MSB

MSAB P
(

Fb−1,(a−1)(b−1) ≥ FB

)

AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1) FAB = MSAB

MSE P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

ERROR ab(n − 1) SSE MSE = SSE
ab(n−1)

TOTAL abn − 1 TSS

Table 3.20: The Analysis of Variance Table for a 2-Factor Factorial Design - Factors A and B random

The expectations of the mean squares for the random effects model (with A and B random) are given
below.

E {MSA} = σ2 + nσ2
AB + bnσ2

A E {MSB} = σ2 + nσ2
AB + anσ2

B

E {MSAB} = σ2 + nσ2
AB E {MSE} = σ2

Tests concerning interactions and main effects for the random model are carried out as follow. Note that
expected mean squares for Factors A and B contain the interaction variance component. Thus, under their
null hypotheses their expected mean squares simplify to E {MSAB}, which is why their F -tests use MSAB
as the error term.

1. HAB
0 : σ2

AB = 0 (No interaction effect).

2. HAB
A : σ2

AB > 0 (Interaction effects exist)

3. T.S. FAB = MSAB
MSE

4. R.R.: FAB ≥ Fα,(a−1)(b−1),ab(n−1)

5. P -value: P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

The test for differences among the effects of the levels of factor A as follows.

1. HA
0 : σ2

A = 0 (No factor A effect).
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2. HA
A : σ2

A > 0 (Factor A effects exist)

3. T.S. FA = MSA
MSAB

4. R.R.: FA ≥ Fα,a−1,(a−1)(b−1)

5. P -value: P
(

Fa−1,(a−1)(b−1) ≥ FA

)

The test for differences among the effects of the levels of factor B as follows.

1. HB
0 : σ2

B = 0 (No factor B effect).

2. HB
A : σ2

B > 0 (Factor B effects exist)

3. T.S. FB = MSB
MSAB

4. R.R.: FB ≥ Fα,b−1,(a−1)(b−1)

5. P -value: P
(

Fb−1,(a−1)(b−1) ≥ FB

)

Unbiased (ANOVA) estimates of the variance components are obtained from the mean squares (see their
expectations above). Note that these can be negative (except the estimate of the error variance).

s2 = MSE s2
AB =

MSAB − MSE

n
s2
A =

MSA − MSAB

bn
s2
B =

MSB − MSAB

an

Example 3.14: Repeatability and Reproducibility of Measurements

In engineering, focus is often on accuracy of measurements and variability of products being manufactured.
One factor is the Product, and the other is the Operator (or possibly Machine) that measures the product.
The studies are referred to as Gage Repeatability and Reproducibility (GR&R)experiments. The same
operator/machine will measure the same product multiple times (in random order). In these studies, σ2

is referred to as the repeatability variance, and the sum of the operator and product/operator interaction
variance is referred to as the reproducibility variance. The sum of the repeatability and reproducibility
variances is called the gage variance.

σ2
Total = σ2

P + σ2
O + σ2

OP + σ2 σ2
Repeatability = σ2 σ2

Reproducibility = σ2
O + σ2

OP

σ2
Gage = σ2

Reproducibility + σ2
Repeatability

An experiment was conducted (Li and Al-Refaie, 2008, [19]) for measuring diameter of p = 10 drilled holes
in wood (treated as “parts”) by o = 3 operators, there were n = 3 measurements for each part by each
operator. The means for all combinations of part and operator are given in Table 3.21 and the Analysis of
Variance is given in Table 3.22. Measurements have been multiplied by 100 for ease of viewing calculations.
Based on the F -tests, the interaction has a P -value of .0703 and for operator, P = .0539; while the part
has a large F -statistic, with a very small P -value. The estimated variances are given below. The variance
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in parts accounts for about 77% of the total variation in measurements (30.8188/39.9114). R output that
estimates the variance components is given below.

s2 = 6.6778 s2
OP =

11.1827− 6.6778

3
= 1.5016 s2

P =
288.579− 11.1827

3(3)
= 30.8188

s2
O =

38.5778− 11.1827

10(3)
= 0.9132 s2

Repeatability = 6.6778

s2
Reproducibility = 0.9132 + 1.5016 = 2.4148 s2

Total = 6.6778 + 2.4148 + 30.8188 = 39.9114

∇

operator1 operator2 operator3 Mean

part1 2559.33 2559.00 2559.33 2559.22
part2 2561.00 2564.00 2565.67 2563.56
part3 2560.00 2560.67 2564.33 2561.67
part4 2560.67 2559.67 2561.33 2560.56
part5 2557.33 2564.33 2565.00 2562.22
part6 2569.00 2566.33 2565.00 2566.78
part7 2562.67 2563.33 2567.00 2564.33
part8 2569.00 2569.33 2569.33 2569.22
part9 2547.67 2546.67 2550.00 2548.11
part10 2557.67 2561.67 2560.00 2559.78

Mean 2560.43 2561.50 2562.70 2561.54

Table 3.21: Means by Part (Drill Hole)/Operator combination - Gage R&R experiment

Source df SS MS F F(.05) P (> F )
Part 9 2597.211 288.5790 25.8058 2.4563 < .0001
Operator 2 77.1556 38.5778 3.4498 3.5546 0.0539
P*O 18 201.2889 11.1827 1.6746 1.7784 0.0703
Error 60 400.6667 6.6778
Total 89 3276.322

Table 3.22: The Analysis of Variance Table for the Gage R&R experiment

> wd.mod3 <- lmer(Ymeas ~ 1 + (1|Part) + (1|Operator) + (1|Part:Operator))

> summary(wd.mod3)

summary from lme4 is returned

some computational error has occurred in lmerTest

Linear mixed model fit by REML [’lmerMod’]

Formula: Ymeas ~ 1 + (1 | Part) + (1 | Operator) + (1 | Part:Operator)

Random effects:

Groups Name Variance Std.Dev.

Part:Operator (Intercept) 1.5016 1.2254

Part (Intercept) 30.8218 5.5517

Operator (Intercept) 0.9132 0.9556
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Residual 6.6778 2.5841

Number of obs: 90, groups: Part:Operator, 30; Part, 10; Operator, 3

Fixed effects:

Estimate Std. Error t value

(Intercept) 2561.544 1.874 1367

The case of the 3-Way Random Effects model is very similar to the 3-way Mixed Effects model with two
random factors with σ2

A replacing θ2
A in Table 3.16. Then all variance component estimates are obtained in

a similar manner as was done in Example 3.13. Note that the ANOVA estimate for the (random) Tester
effect would have been negative. This is consistent with the very small F -statistic (FT < 1) for Testers in
Example 3.13.

s2
T =

MST − MSTS − MSTD + MSTSD

bcn
=

0.844− 10.366− 1.76 + 0.783

12(2)(2)
= −0.219

3.2 Nested Designs

In some designs, one factor’s levels are nested within levels of another factor. Thus, the levels of Factor B
that are exposed to one level of Factor A are different from those that receive a different level of Factor A.
There will be n replications under each “combination” of factor levels in balanced designs. The statistical
model is written as follows.

Yijk = µ + αi + βj(i) + εijk i = 1, . . . , a j(i) = 1, . . . , bi k = 1, . . . , n ε ∼ N
(

0, σ2
)

Here µ is the overall mean, αi is the effect of the ith level of Factor A, βj(i) is the effect of the jth level of

Factor B nested under the ith level of Factor A, and εijk is the random error term. In general, there will
be a levels for Factor A, bi levels of Factor B within the ith level of Factor A, and n replicates per cell. In
practice, Factor A will be fixed or random, and Factor B will be either fixed or random. In any event, the
Analysis of Variance is the same, and is obtained as follows, once the data have been observed.

yij. =

∑n
k=1 yijk

n

yi.. =

∑bi

j=1

∑n
k=1 yijk

bin

N = n

a
∑

i=1

bi

y... =

∑a
i=1

∑bi

j=1

∑n
k=1 yijk

N

TSS =

a
∑

i=1

bi
∑

j=1

n
∑

k=1

(yijk − y...)
2
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SSA = n

a
∑

i=1

bi (yi.. − y...)
2

SSB(A) = n

a
∑

i=1

bi
∑

j=1

(

yij. − yi..

)2

SSE =

a
∑

i=1

bi
∑

j=1

n
∑

k=1

(

yijk − yij.

)2

3.2.1 Factors A and B Fixed

In the case where both A and B are fixed factors, the effects are fixed (unknown) constants, and the following
assumptions are made.

a
∑

i=1

αi = 0

bi
∑

j=1

βj(i) = 0 ∀i εijk ∼ N
(

0, σ2
e

)

The Analysis of Variance when both factors A and B(A) are fixed is given in Table 3.23, where b. =
∑a

i=1 bi.

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -Value

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSE P
(

Fa−1,b.(n−1) ≥ FA

)

B(A) b. − a SSB(A) MSB(A) = SSB(A)
b.−a FB(A) = MSB(A)

MSE P
(

Fb.−a,b.(n−1) ≥ FB(A)

)

ERROR b.(n − 1) SSE MSE = SSE
b.(r−1)

TOTAL nb. − 1 TSS

Table 3.23: The Analysis of Variance Table for a 2-Factor Nested Design – A and B Fixed Factors

The tests for effects of factors A and B(A) involve the two F –statistics, and are conducted as follow. The
test for differences among the effects of the levels of factor A is as follows.

1. HA
0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA
A : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSE

4. R.R.: FA ≥ Fα,a−1,b.(n−1)

5. P -value: P
(

Fa−1,b.(n−1) ≥ FA

)

The test for differences among the effects of the levels of factor B(A) is as follows.
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1. H
B(A)
0 : β1(1) = . . . = βba(a) = 0 (No factor B effect).

2. H
B(A)
A : Not all βj(i) = 0 (Factor B effects exist)

3. T.S. FB(A) = MSB(A)
MSE

4. R.R.: FB(A) ≥ Fα,(b−1),b.(r−1)

5. P -value: P
(

Fb.−a,b.(n−1) ≥ FB(A)

)

Pairwise comparisons among levels of Factor A are based on constructing simultaneous confidence intervals
as follow.

Bonferroni (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,b.(n−1)

√

MSE

(

1

nbi
+

1

nbi′

)

,

Tukey

(yi.. − yi′..) ± qα,a,b.(n−1)

√

MSE

2

(

1

nbi
+

1

nbi′

)

To compare levels of Factor B under a particular level of Factor A, simultaneous confidence intervals are
constructed as follow.

Bonferroni (with c∗Bi
= bi (bi − 1) /2):

(yij. − yij′.) ± tα/2c∗
Bi

,b.(n−1)

√

MSE

(

2

n

)

,

Tukey

(yij. − yij′.) ± qα,bi,b.(n−1)

√

MSE

(

1

n

)

When entering the data for the Factor B levels, it is helpful to make the levels distinct such as 1, . . . , b1, b1+
1, . . . , b1 + b2, . . . , b., not as 1, . . . , b1, 1, . . . , b2, . . . , 1, . . . , ba. The latter way is more useful as a generic
notation.

Example 3.15: Measurement of Alcohol Content in Distilled Beverages

An experiment was conducted to measure alcohol content in distilled beverages by thermal infrared en-
thalpimetry (Oliveira, et al, 2017, [27]). The response was the difference between the measured alcohol
content and the amount stated on the label. There were a = 3 types of distilled spirits (Vodka (i = 1),
Whiskey (i = 2), Cachaca (i = 3)), and within each type of distilled spirits there were b = 3 brands (the
brands within Vodka are different than those within Whiskey and Cachaca, and so on). For each brand
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there were n = 24 measurements. For the purposes of this analysis, the assumption is that these are the
only 3 types and the only 3(3)=9 brands of interest to the researchers. Data have been simulated to match
the means and standard deviations of the alcohol contents in the paper, the units are percent alcohol. The
summary statistics are given in Table 3.24. The sums of squares can be obtained as follow. Notice that
for SSB(A), deviations for the brand means from the spirit type means are obtained, not from the overall
mean. The Analysis of Variance is given in Table 3.25.

SSA = 24(3)
[

((−0.304)− (−0.219))2 + ((−0.306)− (−0.219))2 + ((−0.047) − (−0.219))2
]

= 72(0.0444) = 3.1968

SSB(A) = 24
[

((−0.431) − (−0.304))2 + · · ·+ ((−0.130)− (−0.047))2
]

= 24(.1703) = 4.0872

SSE = (24− 1)
[

0.3302 + · · ·+ 0.4102
]

= 23(1.0843) = 24.9389

dfA = 3 − 1 = 2 MSA =
3.1968

2
= 1.5984 dfB(A) = 3(3 − 1) = 6 MSB(A) =

4.0872

6
= 0.6812

dfE = 3(3)(24 − 1) = 207 MSE =
24.9389

207
= 0.1205

From the ANOVA table, it is clear that there are significant Spirit Type (FA = 13.27, P < .0001) and Brand
within Spirit Type effects

(

FB(A) = 5.65, P < .0001
)

. Pairwise comparisons among Types and Brands within
Types are obtained as follow.

Bonferroni for Type: C∗
A = 3(3 − 1)/2 = 3

t.05/(2(3)),207 = 2.414

√

0.1205

(

1

3(24)
+

1

3(24)

)

= 0.0579 2.414(.0579) = 0.140

Tukey for Type: a = 3

q.05,3,207 = 3.339
3.339√

2
0.0579 = 0.137

Since the Brands within Types have the same number of levels and use the same error term, the Bonferroni
and Tukey critical values are the same for making pairwise comparisons among them as for the Spirit Types.
Vodka and Whiskey are both significantly lower than Cachaca. Within Vodka, Brand 1 is significantly lower
than Brands 2 and 3; within Whiskey, Brand 1 is significantly lower than Brands 2 and 3; and within
Cachaca, Brands 1 and 3 are significantly lower than Brand 2. The R output is given below.

∇

> anova(dist.mod1)

Analysis of Variance Table

Response: Y



3.2. NESTED DESIGNS 125

Type Vodka (i = 1) Whiskey (i = 2) Cachaca (i = 3)
Brand1 -0.431 (0.330) -0.589 (0.340) -0.090 (0.339)
Brand2 -0.240 (0.279) -0.139 (0.340) 0.079 (0.420)
Brand3 -0.240 (0.280) -0.191 (0.359) -0.130 (0.410)
Mean -0.304 -0.306 -0.047 -0.219

Table 3.24: Means (SDs) by Spirit Type and Brand within Type

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -Value

Spirit Type 2 3.1968 3.1968
2 = 1.5984 1.59840.1205 = 13.2747 < .0001

Brand(Type) 6 4.0872 4.0872
6 = 0.6812 FB(A) = 0.6812

0.1205 = 5.6531 < .0001

ERROR 207 24.9389 24.9389
207 = 0.1205

TOTAL 215 32.2229

Table 3.25: The Analysis of Variance Table for the Alcohol Content in Distilled Spirits experiment – A and
B Fixed Factors

Df Sum Sq Mean Sq F value Pr(>F)

spiritType 2 3.1967 1.59834 13.2669 3.791e-06 ***

spiritType:brandSprt 6 4.0872 0.68120 5.6543 1.850e-05 ***

Residuals 207 24.9385 0.12048

> TukeyHSD(dist.mod1,"spiritType")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Y ~ spiritType + spiritType/brandSprt)

$spiritType

diff lwr upr p adj

2-1 -0.0025000 -0.1390648 0.1340648 0.9989709

3-1 0.2568056 0.1202407 0.3933704 0.0000435

3-2 0.2593056 0.1227407 0.3958704 0.0000362

3.2.2 Factor A Fixed and B Random

In the case where A is fixed and B is random, the effects for levels of Factor A are fixed (unknown) constants,
the effects of levels of Factor B are random variables, and the following assumptions are made.

a
∑

i=1

αi = 0 βj(i) ∼ N
(

0, σ2
B(A)

)

εijk ∼ N
(

0, σ2
)

Further, assume all random effects of levels of Factor B(A) and all random error terms are mutually inde-
pendent. The sums of squares are the same as in the previous subsection, but the error term for Factor A
changes. The Analysis of Variance when Factor A is fixed and B(A) is random is given in Table 3.26, where
b. =

∑a
i=1 bi. The covariance structure and Expected Mean Squares for the factors are given below.
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E {Yijk} = µ + αi V {Yijk} = σ2
B(A) + σ2

COV {Yijk, Yi′j′k′} =







σ2
B(A) + σ2 : i = i′, j = j′, k = k′

σ2
B(A) : i = i′, j = j′, k 6= k′

0 : otherwise

E {MSE} = σ2 E {MSB(A)} = σ2 + nσ2
B(A) E {MSA} = σ2 + nσ2

B(A) +
n
∑a

i=1 biα
2
i

a − 1

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -Value

A a − 1 SSA MSA = SSA
a−1

FA = MSA
MSB(A)

P (Fa−1,b.−a ≥ FA)

B(A) b. − a SSB(A) MSB(A) = SSB(A)
b.−a FB(A) = MSB(A)

MSE P
(

Fb.−a,b.(n−1) ≥ FB(A)

)

ERROR b.(n − 1) SSE MSE = SSE
b.(n−1)

TOTAL nb. − 1 TSS

Table 3.26: The Analysis of Variance Table for a 2-Factor Nested Design – A Fixed and B Random

The tests for effects of factors A and B(A) involve the two F –statistics, and can be conducted as follow.
The test for differences among the effects of the levels of factor A is as follows.

1. HA
0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA
A : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSB(A)

4. R.R.: FA ≥ Fα,(a−1),b.−a

5. P -value: P (Fa−1,b.−a ≥ FA)

The test for differences among the effects of the levels of factor B(A) is as follows.

1. H
B(A)
0 : σ2

B(A) = 0 (No factor B effect).

2. H
B(A)
A : σ2

B(A) > 0 (Factor B effects exist)

3. T.S. FB(A) = MSB(A)
MSE
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4. R.R.: FB(A) ≥ Fα,(b.−a),b.(n−1)

5. P -value: P
(

Fb.−a,b.(n−1) ≥ FB(A)

)

Pairwise comparisons among levels of Factor A are based on constructing simultaneous confidence intervals
as follow.

Bonferroni (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,b.−a

√

MSB(A)

(

1

nbi
+

1

nbi′

)

Tukey

(yi.. − yi′..) ± qα,a,b.−a

√

MSB(A)

2

(

1

nbi
+

1

nbi′

)

ANOVA estimators for the variance components are given below, see the Expected Mean Squares given
above.

s2 = MSE s2
B(A) =

MSB(A) − MSE

n

Example 3.16: Momentum Measurements for Animal Trap Models

An experiment compared a = 8 models of animal traps (Cook and Proulx, 1989, [9]). The response was
trap momentum at HDISP (when both jaws are displaced halfway). There were b = 3 traps per model, and
each trap was measured n = 10 times. Data were generated to match reported summary statistics. For this
analysis, the models are treated as fixed and the individual traps within each model are treated as random.
The summary data are given in Table 3.27 and the Analysis of Variance is given in Table 3.28.

There is strong evidence of differences among models (FA = 48.65, P < .0001) and among traps nested
within models (FB(A) = 10.14, P < .0001). To make comparisons among the models, there are a = 8 models
and C∗

A = 8(7)/2− 28 pairs.

Bonferroni (with c∗A = a(a − 1)/2 = 8(8 − 1)/2 = 28):

t.05/2(28),16 = 3.7398

√

0.010525

(

1

10(3)
+

1

10(3)

)

= 0.02649 3.7398(0.02649) = 0.0991

Tukey

q.05,8,16 = 4.8962

√

0.010525

2

(

1

10(3)
+

1

10(3)

)

= 0.01873 4.8962(0.01873) = 0.0917
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Based on Tukey’s HSD, Models 1-3 have significantly lower momentums than the others, Model 4 is
significantly lower than Models 6-8, and Model 5 is significantly lower than Model 8.

ANOVA estimators for the variance components and standard deviations are given below.

s2 = MSE = 0.001038 (s = 0.03222) s2
B(A) =

0.010525− 0.001038

10
= 0.00095

(

sB(A) = 0.03080
)

Partial output from the R program is given below.

∇

Model Trap1 Trap2 Trap3 Mean
1 0.5055 (0.0192) 0.5479 (0.0202) 0.5618 (0.0202) 0.5384
2 0.5503 (0.0362) 0.5609 (0.0350) 0.5652 (0.0371) 0.5588
3 0.5668 (0.0364) 0.5891 (0.0371) 0.6179 (0.0355) 0.5913
4 0.6567 (0.0361) 0.6705 (0.0336) 0.7377 (0.0355) 0.6883
5 0.7494 (0.0333) 0.7754 (0.0344) 0.7911 (0.0361) 0.7720
6 0.8076 (0.0317) 0.8091 (0.0311) 0.8176 (0.0300) 0.8114
7 0.7659 (0.0201) 0.8257 (0.0194) 0.8848 (0.0195) 0.8255
8 0.8333 (0.0392) 0.8830 (0.0374) 0.8902 (0.0401) 0.8688

Mean 0.7068

Table 3.27: Means (SDs) by Animal Trap Model and Trap within Model (n = 10) measurements per trap

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -Value

Trap Model 7 3.5845 3.5848
7 = 0.5121 0.5121

0.010525 = 48.65 < .0001

Trap (Model) 16 0.1684 0.1684
16 = 0.010525 FB(A) = 0.010525

0.001038 = 10.141 < .0001

ERROR 216 0.2242 0.2242
216

= 0.001038

TOTAL 239 3.9771

Table 3.28: The Analysis of Variance Table for the Animal Trap Momentum Experiment – A Fixed and B
Random Factors

> trap.mod1 <- aov(momentum ~ model + model/trapModel)

> anova(trap.mod1)

Analysis of Variance Table

Response: momentum

Df Sum Sq Mean Sq F value Pr(>F)

model 7 3.5845 0.51207 493.374 < 2.2e-16 ***

model:trapModel 16 0.1684 0.01053 10.141 < 2.2e-16 ***

Residuals 216 0.2242 0.00104
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> trap.mod2 <- aov(momentum ~ model + Error(trapModel))

> summary(trap.mod2)

Error: trapModel

Df Sum Sq Mean Sq F value Pr(>F)

model 7 3.585 0.5121 48.65 1.32e-09 ***

Residuals 16 0.168 0.0105

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 216 0.2242 0.001038

> library(lmerTest)

> trap.mod4 <- lmer(momentum ~ model + (1|model:trapModel))

> summary(trap.mod4)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to

degrees of freedom [lmerMod]

Formula: momentum ~ model + (1 | model:trapModel)

Random effects:

Groups Name Variance Std.Dev.

model:trapModel (Intercept) 0.0009487 0.03080

Residual 0.0010379 0.03222

Number of obs: 240, groups: model:trapModel, 24

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.706808 0.006622 16.000000 106.731 < 2e-16 ***

model1 -0.168408 0.017521 16.000000 -9.612 4.75e-08 ***

model2 -0.148008 0.017521 16.000000 -8.447 2.72e-07 ***

model3 -0.115542 0.017521 16.000000 -6.594 6.17e-06 ***

model4 -0.018509 0.017521 16.000000 -1.056 0.30648

model5 0.065158 0.017521 16.000000 3.719 0.00187 **

model6 0.104625 0.017521 16.000000 5.971 1.96e-05 ***

model7 0.118658 0.017521 16.000000 6.772 4.48e-06 ***

3.2.3 Factors A and B Random

In the case where A and B are both random, the effects for levels of Factor A Factor B are random variables,
and the following assumptions are made.

αi N
(

0, σ2
a

)

βj(i) N
(

0, σ2
b(a)

)

εijk N
(

0, σ2
e

)

Further, it is assumed that all random effects of levels of Factors A and B and all random error terms
are mutually independent. The sums of squares are the same as in the previous subsections, and the error
term for Factor A is the same as in the mixed case. The Analysis of Variance when Factors A and B(A) are
random is given in Table 3.29, where b. =

∑a
i=1 bi. The covariance structure and Expected Mean Squares

for the factors are given below.

E {Yijk} = µ V {Yijk} = σ2
A + σ2

B(A) + σ2
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COV {Yijk, Yi′j′k′} =















σ2
A + σ2

B(A) + σ2 : i = i′, j = j′, k = k′

σ2
A + σ2

B(A) : i = i′, j = j′, k 6= k′

σ2
A : i = i′, j 6= j′, k 6= k′

0 : otherwise

E {MSE} = σ2 E {MSB(A)} = σ2 + nσ2
B(A) E {MSA} = σ2 + nσ2

B(A) + n
b.

a
σ2

A

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -value

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSB(A) P (Fa−1,b.−a ≥ FA)

B(A) b. − a SSB(A) MSB(A) =
SSB(A)

b.−a FB(A) =
MSB(A)

MSE P
(

Fb.−a,b.(n−1) ≥ FB(A)

)

ERROR b.(n − 1) SSE MSE = SSE
b.(n−1)

TOTAL nb. − 1 TSS

Table 3.29: The Analysis of Variance Table for a 2-Factor Nested Design – A and B Random

The tests for interactions and for effects of factors A and B involve the two F –statistics, and can be
conducted as follow. The test for differences among the effects of the levels of factor A is as follows.

1. HA
0 : σ2

A = 0 (No factor A effect).

2. HA
A : σ2

A > 0 (Factor A effects exist)

3. T.S. FA = MSA
MSB(A)

4. R.R.: FA ≥ Fα,(a−1),b.−a

5. P -value: P (Fa−1,b.−a ≥ FA)

The test for differences among the effects of the levels of factor B as follows.

1. H
B(A)
0 : σ2

B(A) = 0 (No factor B effect).

2. H
B(A)
A : σ2

B(A) = 0 (Factor B effects exist)

3. T.S. FB(A) = MSB(A)
MSE

4. R.R.: FB(A) ≥ Fα,(b.−a),b.(n−1)

5. P -value: P
(

Fb.−a,b.(n−1) ≥ FB(A)

)
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ANOVA estimators for the variance components are given below, see the Expected Mean Squares given
above.

s2 = MSE s2
B(A) =

MSB(A) − MSE

n
s2
A =

MSA − MSB(A)

n b.

a

Example 3.17: Variation in Semiconductor Wafers

A study reported variation in a measurement made on silicon wafers (Jensen, 2002, [16]). The measurement
was not specified due to proprietary reasons. A random sample of a = 20 batches of wafers were selected,
with b = 2 wafers being randomly selected within each batch, and n = 9 measurements were made at random
locations on each wafer. The Analysis of Variance is given in Table 3.30.

There is strong evidence of batch-to-batch (FA = 7.5475, P < .0001) and wafer within lot
(

FB(A) = 5.1488, P < .0001
)

variation. ANOVA estimates of the variance components and standard deviations are given below.

s2 = 19.03 s = 4.36 s2
B(A) =

97.98− 19.03

9
= 8.77 sB(A) = 2.96 s2

A =
739.52− 97.98

2(9)
= 35.64 sA = 5.97

Partial output from the R program is given below.

∇

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P -Value

Batch 19 14050.87 14050.87
19

= 739.52 739.52
97.98

= 7.5475 < .0001

Wafer(Batch) 20 1959.63 1959.63
20

= 97.98 FB(A) = 97.98
19.03

= 5.1488 < .0001

ERROR 320 6089.58 6089.58
320

= 19.03

TOTAL 359 22100.09

Table 3.30: The Analysis of Variance Table for the Semiconductor Variation Study – A and B Random
Factors

> semi.mod1 <- aov(Y ~ batch + batch/wafer)

> anova(semi.mod1)

Analysis of Variance Table

## The F-test for batch uses wrong error term

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

batch 19 14050.9 739.52 38.8608 < 2.2e-16 ***

batch:wafer 20 1959.6 97.98 5.1488 3.708e-11 ***

Residuals 320 6089.6 19.03
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> semi.mod2 <- lmer(Y ~ 1 + (1|batch/wafer))

> summary(semi.mod2)

summary from lme4 is returned

some computational error has occurred in lmerTest

Linear mixed model fit by REML [’lmerMod’]

Formula: Y ~ 1 + (1 | batch/wafer)

Random effects:

Groups Name Variance Std.Dev.

wafer:batch (Intercept) 8.772 2.962

batch (Intercept) 35.641 5.970

Residual 19.030 4.362

Number of obs: 360, groups: wafer:batch, 40; batch, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 174.342 1.433 121.6

3.3 Split-Plot Designs

In some experiments, with two or more factors, there is a restriction on randomization when assigning units
to combinations of treatments. This may be due to measurements being made at multiple time points, or
in the logistics of conducting the experiment. In this setting, there are larger experimental units (whole
plots), which are made up of smaller subunits (subplots). Factors that are assigned to the whole plots are
called the Whole Plot Factor. Not surprisingly, the factor applied to the sub units is called the Sub Plot
Factor. The experiment can be set up as a Completely Randomized Design, with whole plot units being
randomly assigned to whole-plot treatments and sub-plot units within whole plots receiving the sub-plot
treatments. Often the experiment will be replicated in various blocks (maybe locations in a field trial or
days in a laboratory experiment) as a Randomized Block Design for the Whole Plot units.

An experiment to compare 4 heating temperatures and 6 additive ingredients to bread flour may be
conducted as follow. First, it is described as a Completely Randomized Design (CRD), then as a Randomized
Block Design (RBD).

• Select 12 large sections of (homogeneous) bread flour (whole plots)

• Randomly assign each section to a temperature setting, such that three sections receive each temper-
ature (whole plot factor levels)

• Break each piece into 6 subsections (sub plots)

• Randomly Assign an additive to each subsection, such that each full section of flour receives each
additive (sub-plot factor levels)

• Select 4 large sections of (homogeneous) bread flour (whole plots)

• Randomly assign each piece to a temperature setting (whole plot factor levels)

• Break each piece into 6 subparts (sub plots)

• Randomly Assign an additive to each subsection, such that each full piece of flour receives each additive
(sub-plot factor levels)
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• Repeat the experiment on 3 days (blocks) with separate randomizations

Note that with extended cooking times, it would be unrealistic to individually prepare 24 combinations of
temperature and additive in a single day. Thus, there is a restriction on randomization and cannot use a
fully crossed Completely Randomized Design. In this study, temperature is the whole plot factor, additive
is the sub-plot factor, and days serve as blocks.

For the CRD with respect to the whole plots, with whole plot units nested within the whole-plot factor
levels, the model can be written as follows.

Yijk = µ + αi + βj(i) + γk + (αγ)ik + εijk

Here µ is the overall mean, αi is the effect of the ith level of (Whole Plot) Factor A, βj(i) is the effect of

the jth whole-plot nested within the ith whole-plot factor level, γk is the effect of the kth level of (Sub-Plot)
Factor C, (αγ)ik is the interaction between the ith level of Factor A and the kth level of Factor C, and εijk

is the random error term. When the whole plot and sub plot factors are fixed, the usual assumptions are as
follow.

a
∑

i=1

αi =

c
∑

k=1

γk =

a
∑

i=1

(αγ)ik =

c
∑

k=1

(αγ)ik = 0 ∀k, i βj(i) ∼ N
(

0, σ2
B(A)

)

εijk ∼ N
(

0, σ2
)

All random effects are assumed to be independent of one another.

The general form of the model for a Split-Plot experiment when conducted as an RBD with respect to the
Whole-Plot units is as follows.

Yijk = µ + αi + βj + (αβ)ij + γk + (αγ)ik + εijk

Here µ is the overall mean, αi is the effect of the ith level of (Whole Plot) Factor A, βj is the effect of the
jth block, (αβ)ij is the interaction between the ith level of Factor A and Block j, γk is the effect of the kth

level of (Sub-Plot) Factor C, (αγ)ik is the interaction between the ith level of Factor A and the kth level of
Factor C, and εijk is the random error term.

In general, there will be a levels for Factor A, b whole plot units within each level of Factor A (CRD) or
blocks (RBD), and c levels of Factor C. In practice, Factor A will be fixed or random, and Factor C will be
either fixed or random, and Whole Plot Units (CRD) or Blocks (RBD) will be random. In any event, the
Analysis of Variance is the same, and is obtained as follows, based on the observed data.

yij. =

∑c
k=1 yijk

c

yi.k =

∑b
j=1 yijk

b

y.jk =

∑a
i=1 yijk

a
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yi.. =

∑b
j=1

∑c
k=1 yijk

bc

y.j. =

∑a
i=1

∑c
k=1 yijk

ac

y..k =

∑a
i=1

∑b
j=1 yijk

ab

y... =

∑a
i=1

∑b
j=1

∑c
k=1 yijk

abc

TSS =

a
∑

i=1

b
∑

j=1

c
∑

k=1

(yijk − y...)
2

SSA = bc

a
∑

i=1

(yi.. − y...)
2

CRD: SSB(A) = c
a
∑

i=1

b
∑

j=1

(

yij. − yi..

)2

RBD: SSB = ac

b
∑

j=1

(

y.j. − y...

)2

RBD: SSAB = c

a
∑

i=1

b
∑

j=1

(

yij. − yi.. − y.j. + y...

)2

SSC = ab

c
∑

k=1

(y..k − y...)
2

SSAC = b

a
∑

i=1

c
∑

k=1

(yi.k − yi.. − y..k + y...)
2

SSE =

a
∑

i=1

b
∑

j=1

c
∑

k=1

(

yijk − yij. − yi.k + yi..

)2

In the case of the CRD, the final error term is the interaction between the sub-plot factor and the whole-plot
units nested within the whole-plot factor levels. For the RBD, the final error term represents the sum of the
BC interaction and three-way ABC interaction, and thus assumes there is no sub-plot by block interaction.
These two error terms are identical for a given set of abc measurements. The cases of fixed whole-plot and
sub-plot factors are considered here. The Analysis of Variance for the CRD is given in Table 3.31 and for
the RBD is given in Table 3.32. The Expected Mean Squares are given here that lead to the appropriate
F -tests, the Sub-Plot portion of the table is the same for both designs.

Completely Randomized Design for Whole Plot Units

E {MSE} = σ2 E {MSAC} = σ2 +
b
∑a

i=1

∑c
k=1 (αγ)2ik

(a − 1)(c − 1)
E {MSC} = σ2 +

ab
∑c

k=1 γ2
i

c − 1

E {MSB(A)} = σ2 + cσ2
B(A) E {MSA} = σ2 + cσ2

B(A) +
bc
∑a

i=1 α2
i

a − 1
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Randomized Block Design for Whole Plot Units

E {MSAB} = σ2 + cσ2
AB E {MSB} = σ2 + cσ2

AB + acσ2
B E {MSA} = σ2 + cσ2

AB +
bc
∑a

i=1 α2
i

a − 1

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P (> F )

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSB(A) P
(

Fa−1,a(b−1) ≥ FA

)

B(A) a(b − 1) SSB(A) MSB(A) = SSB(A)
a(b−1)

C c − 1 SSC MSC = SSC
c−1 FC = MSC

MSE P
(

Fc−1,a(b−1)(c−1) ≥ FC

)

AC (a − 1)(c − 1) SSAC MSAC = SSAC
(a−1)(c−1) FAC = MSAC

MSE P
(

F(a−1)(c−1),a(b−1)(c−1) ≥ FAC

)

ERROR a(b − 1)(c − 1) SSE MSE = SSE
a(b−1)(c−1)

TOTAL abc − 1 TSS

Table 3.31: The Analysis of Variance Table for a Split-Plot Design in a CRD – A and B Fixed Factors

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P (> F )

A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSAB P
(

Fa−1,(a−1)(b−1) ≥ FA

)

B b − 1 SSB MSB = SSB
b−1

AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1)

C c − 1 SSC MSC = SSC
c−1 FC = MSC

MSE P
(

Fc−1,a(b−1)(c−1) ≥ FC

)

AC (a − 1)(c − 1) SSAC MSAC = SSAC
(a−1)(c−1) FAC = MSAC

MSE P
(

F(a−1)(c−1),a(b−1)(c−1) ≥ FAC

)

ERROR a(b − 1)(c − 1) SSE MSE = SSE
a(b−1)(c−1)

TOTAL abc − 1 TSS

Table 3.32: The Analysis of Variance Table for a Split-Plot Design in a RBD – A and B Fixed Factors

The tests for interaction and main effects of factors A, C involve the three F –statistics, and can be
conducted as follow. First, conduct the test for an interaction between the whole plot factor (A) and the
sub-plot factor (C).

1. H0 : (αγ)11 = · · · = (αγ)ac = 0 (No factor AC interaction).

2. HA : Not all (αγ)ik = 0 (AC interaction exists)

3. T.S. FAC = MSAC
MSE
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4. R.R.: FAC ≥ Fα,(a−1)(c−1),a(b−1)(c−1)

5. P -value: P
(

F(a−1)(c−1),a(b−1)(c−1) ≥ FAC

)

Assuming no interaction, the test for differences among the effects of the levels of factor C is conducted as
follows.

1. H0 : γ1 = . . . = γc = 0 (No factor C effect).

2. HA : Not all γk = 0 (Factor C effects exist)

3. T.S. FC = MSC
MSE

4. R.R.: FC ≥ Fα,c−1,a(b−1)(c−1)

5. P -value: P
(

Fc−1,a(b−1)(c−1) ≥ FC

)

Assuming no interaction exists, the test for differences among the effects of the levels of factor A is conducted
as follows for the CRD.

1. H0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSB(A)

4. R.R.: FA ≥ Fα,(a−1),a(b−1)

5. P -value: P
(

Fa−1,a(b−1) ≥ FA

)

Assuming no interaction exists, the test for differences among the effects of the levels of factor A is conducted
as follows for the RBD.

1. H0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA : Not all αi = 0 (Factor A effects exist)

3. T.S. Fobs = MSA
MSAB

4. R.R.: Fobs ≥ Fα,(a−1),(a−1)(b−1)

5. P -value: P
(

Fa−1,(a−1)(b−1) ≥ FA

)

When there is no interaction, pairwise comparisons can be made among levels of Factor A based on
constructing simultaneous confidence intervals as follow.

Bonferroni (CRD) (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,a(b−1)

√

MSB(A)

(

2

bc

)
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Tukey (CRD)

(yi.. − yi′..) ± qα,a,a(b−1)

√

MSB(A)

(

1

bc

)

Bonferroni (RBD) (with c∗A = a(a − 1)/2):

(yi.. − yi′..) ± tα/2c∗
A

,(a−1)(b−1)

√

MSAB

(

2

bc

)

Tukey (RBD)

(yi.. − yi′..) ± qα,a,(a−1)(b−1)

√

MSAB

(

1

bc

)

To compare levels of Factor C, the simultaneous confidence intervals are constructed as follow. These are
the same, whether the design was constructed as a CRD or RBD with respect to the Whole-Plot units.

Bonferroni (with c∗C = c(c − 1)/2):

(y..k − y..k′) ± tα/2c∗
C

,a(b−1)(c−1)

√

MSE

(

2

ab

)

,

Tukey’s

(y..k − y..k′) ± qα,c,a(b−1)(c−1)

√

MSE

(

1

ab

)

When interaction is present, sub-plot factor levels can be compared within the same level of the whole-plot
factor or the whole-plot levels could be compared within the same sub-plot. The estimated standard errors of
the differences are given below, along with their degrees of freedom based on Satterthwaite’s Approximation.

SP within WP: ŜE
{

Y i.k − Y i.k′

}

=

√

2MSE

b
df = a(b − 1)(c − 1)

WP within/across SP (CRD): ŜE
{

Y i.k − Y i′.k′

}

=

√

2 [MSB(A) + (c − 1)MSE]

bc

df =
(MSB(A) + (c − 1)MSE)

2

(

(MSB(A))2

a(b−1) + ((c−1)MSE)2

a(b−1)(c−1)

)

WP within/across SP (RBD): ŜE
{

Y i.k − Y i′.k′

}

=

√

2 [MSAB + (c − 1)MSE]

bc
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df =
(MSAB + (c − 1)MSE)

2

(

(MSAB)2

(a−1)(b−1) + ((c−1)MSE)2

a(b−1)(c−1)

)

In the case of the Completely Randomized Design, the ANOVA estimator of variation in the Whole-Plot
unit effects can be obtained as follows.

s2 = MSE s2
B(A) =

MSB(A) − MSE

c

In the case of the Randomized Block Design, the ANOVA estimators of the variance components for Blocks
and Whole-Plot/Block interaction can be obtained as follow.

s2 = MSE s2
AB =

MSAB − MSE

c
s2
B =

MSB − MSAB

ac

Two examples are considered. The first is an observational study that was conducted as a Completely
Randomized Design (except that subjects were sampled from and not assigned to the two whole-plot factor
groups). The second involves a Split-Plot experiment conducted within a Randomized Block Design.

Example 3.18: Axion Densities in Eyes of Normal and Alzheimers Patients

An observational study reported axion densities in right/left eyes of Normal/Alzheimers patients (Arm-
strong, 2013, [5]). The whole-plot factor was patient status (Normal (i = 1), Alzheimers(i = 2), a = 2), with
b = 12 subjects sampled from each patient group. Within each patient, the axion density was measured in
each eye (sub-plot factor, Right (k = 1), Left (k = 2), c = 2). Data are given in Table 3.33.

Due to the simplicity of the dataset, the sums of squares are set-up directly (albeit using a spreadsheet for
actual calculations).

Whole-Plot (A): SSA = 12(2)
[

(886.125− 734.938)2 + (583.750− 734.938)2
]

= 1097168

Subj(WP) (B(A)): SSB(A) = 2
[

(719.5− 886.125)2 + · · ·+ (627 − 583.750)2
]

= 1392056

Sub-Plot (C): SSC = 2(12)
[

(748.208− 734.938)2 + (721.667− 734.938)2
]

= 8453

WPxSP (AC): SSAC = 12
[

(829.167− 886.125− 748.208 + 734.938)2 + · · ·+ (563.250− 538.750− 721.667 + 734.938)2
]

= 2509

Error: SSE = (673 − 719.5− 892.167 + 886.125)2 + · · ·+ (374 − 376 − 563.250 + 721.667)2 = 167889

dfA = 2−1 = 1 dfB(A) = 2(12−1) = 22 dfC = 2−1 = 1 dfAC = (2−1)(2−1) = 1 dfE = 2(12−1)(2−1) = 22

The Analysis of Variance is given in Table 3.34. It is clear that their is a significant Patient Group effect
with little evidence of either an Eye main effect or an interaction between Patient Group and Eye. As there
are only two levels of Patient Group, there is only one comparison: Normal versus Alzheimer’s; the results
of Bonferroni’s and Tukey’s methods are identical. The ANOVA estimates of the variance components are
given below,
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y1.. − y2.. = 886.125− 583.750 = 302.375 t.025,22 = 2.074

√

MSB(A)

(

2

2(12)

)

=

√

63275(2)

12(2)
= 72.615

302.375± 2.074(72.615)≡ 302.375± 150.603 ≡ (151.8, 453.0)

s2 = 7631 s2
B(A) =

63275− 7631

2
= 27822

The R partial output is given below.

∇

Normal Patients Alzheimers Patients

Subject Right Left SubjMean Subject Right Left SubjMean

1 673 766 719.5 13 538 377 457.5
2 899 956 927.5 14 583 555 569
3 616 605 610.5 15 696 298 497
4 749 858 803.5 16 568 583 575.5
5 1078 1017 1047.5 17 649 700 674.5
6 978 861 919.5 18 284 458 371
7 706 569 637.5 19 862 746 804
8 1005 991 998 20 848 774 811
9 1420 1258 1339 21 716 698 707
10 1003 997 1000 22 508 563 535.5
11 818 982 900 23 378 374 376
12 761 701 731 24 621 633 627

Mean y1.1 = 892.167 y1.2 = 880.083 y1.. = 886.125 Mean y2.1 = 604.250 y2.2 = 563.250 y2.. = 583.750

Mean y..1 = 748.208 y..2 = 721.667 y... = 734.938

Table 3.33: Individual measurements for Axion densities is Normals/Alzheimers patients

## ANOVA w/ incorrect WP error term

> eyes.mod1 <- aov(axondens ~ alz_grp + alz_grp/subject + eye + alz_grp:eye)

> anova(eyes.mod1)

Analysis of Variance Table

Response: axondens

Df Sum Sq Mean Sq F value Pr(>F)

alz_grp 1 1097168 1097168 143.7713 4.037e-11 ***

eye 1 8454 8454 1.1077 0.3040

alz_grp:subject 22 1392056 63275 8.2915 2.812e-06 ***

alz_grp:eye 1 2509 2509 0.3287 0.5722

Residuals 22 167889 7631

## ANOVA w/ correct WP error term

> eyes.mod2 <- aov(axondens ~ alz_grp * eye + Error(subject))

> summary(eyes.mod2)

Error: subject

Df Sum Sq Mean Sq F value Pr(>F)

alz_grp 1 1097168 1097168 17.34 0.000404 ***
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ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P (> F )

Patient 1 1097168 1097168
1 = 1097168 1097168

63275 = 17.3396 0.0004

Subj(Patient Grp) 22 1392056 1392056
22

= 63275

Eye 1 8454 8454
1

= 8454 8454
7631

= 1.1077 0.3040

Patient Grp x Eye 1 2509 2509
1

= 2509 2509
7631

= 0.3287 0.5722

Error 22 167889 16788
22

= 7631

Total 47 2668075

Table 3.34: The Analysis of Variance Table for Axion densities in Normal/Alzheimers Patients’ Right/Left
Eyes

Residuals 22 1392056 63275

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

eye 1 8454 8454 1.108 0.304

alz_grp:eye 1 2509 2509 0.329 0.572

Residuals 22 167889 7631

## Mixed Effects Model

> eyes.mod3 <- lmer(axondens ~ alz_grp * eye + (1|alz_grp:subject))

> summary(eyes.mod3)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to

degrees of freedom [lmerMod]

Formula: axondens ~ alz_grp * eye + (1 | alz_grp:subject)

Random effects:

Groups Name Variance Std.Dev.

alz_grp:subject (Intercept) 27822 166.80

Residual 7631 87.36

Number of obs: 48, groups: alz_grp:subject, 24

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 734.938 36.307 22.000 20.242 8.88e-16 ***

alz_grp1 151.187 36.307 22.000 4.164 0.000404 ***

eye1 13.271 12.609 22.052 1.052 0.303971

alz_grp1:eye1 -7.229 12.609 22.052 -0.573 0.572219

> anova(eyes.mod3)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

alz_grp 132324 132324 1 22.00 17.3396 0.0004041 ***

eye 8454 8454 1 22.03 1.1077 0.3039824

alz_grp:eye 2509 2509 1 22.03 0.3287 0.5722247

> difflsmeans(eyes.mod3)

Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

alz_grp 1 - 2 302.4 72.6 22.0 4.16 151.8 453.0 4e-04 ***

eye 1 - 2 26.5 25.2 22.0 1.05 -25.8 78.8 0.304
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Example 3.19: Chymosin Treatment and Ripening Time Effects on Mozzarella Cheese

An experiment was conducted to measure various responses due to different Chymosin treatments and
Ripening times on mozzarella cheese (Moynihan, et al, 2014, [24]). The Whole-Plot factor was Chymosin
Treatment (High Bovine Calf (HBCC, i = 1), Low Bovine Calf (LBCC, i = 2), High Camel (HCC, i = 3),
and Low Camel (LCC, i = 4)). The Sub-Plot factor was Ripening Time (14 days (k = 1), 28 (k = 2), 56
(k = 3), and 84 (k = 4)). The experiment was replicated on b = 3 cheesemaking days (blocks). On a given
cheesemaking day, there would be a random ordering of the 4 types of cheese to be made. Then once one of
the Chymosin types was prepared, it would be broken into 4 subsections, which would be randomly assigned
to the 4 ripening times. The 4 ripening times were randomly assigned to the subsections, then the samples
were refrigerated and stored for the appropriate ripening time, then observed.

There were 3 response variables: hardness of melted cheese (Y1), adhesiveness of mass (Y2), and blister
quantity (Y3), this analysis will be based on blister quantity. The cell means for Chymosin Type and Ripening
Time are given in Table 3.35, each mean is an average of b = 3 measurements (one per cheesemaking day).
The Analysis of Variance is given in Table 3.36, there are significant main effects for Chymosin Treatment
(FA = 14.87, P = .0035) and Ripening Time (FC = 13.52, P < .0001). There is no evidence of a Chymosin
Treatment/Ripening Time interaction (FAC = 1.14, P = .3754).

Pairwise comparisons among Chymosin Treatments and Ripening Times, as well as estimated variance
components are given below. There are a = c = 4 Whole-Plot and Sub-Plot treatments with c∗A = c∗C =
4(3)/2 = 6 comparisons for each.

Bonferroni (Chymosin): t.05/(2(6)),6 = 3.863

√

2(1.22)

3(4)
= 0.451 3.863(0.451) = 1.742

Tukey (Chymosin): q.05,4,6 = 4.896

√

1.22

3(4)
= 0.319 4.896(0.319) = 1.561

Bonferroni (Ripening): t.05/(2(6)),24 = 2.875

√

2(1.05)

4(3)
= 0.418 2.875(0.418) = 1.203

Tukey (Ripening): q.05,4,24 = 3.901

√

1.05

3(4)
= 0.296 3.901(0.296) = 1.154

s2 = 1.05 s2
AB =

1.22− 1.05

4
= 0.43 s2

B =
41.30− 1.22

4(4)
= 2.51

Based on Tukey’s method, in terms of the Chymosin Treatments, HBCC and LBCC have significantly
higher means than HCC and LCC; no other pairs of means are significantly different. In terms of Ripening
Times, 84 days is significantly higher than all other times, 56 days is significantly higher than 14 days; no
other pairs of times are significantly different. The partial R output is given below.

∇
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Ripe1 (14) Ripe2 (28) Ripe3 (56) Ripe4 (84) Mean

Chym1 (HBCC) 8.770 10.280 9.300 11.750 10.025
Chym2 (LBCC) 8.730 9.550 10.340 11.590 10.052
Chym3 (HCC) 7.550 8.080 8.690 9.160 8.370
Chym4 (LCC) 6.590 6.100 8.410 9.270 7.592

Mean 7.910 8.502 9.185 10.442 9.010

Table 3.35: Mean blister quantities by Chymosin Treatment and Ripening Times - Split-Plot experiment in
RBD

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P (> F )

Chymosin (WP) 3 54.43 18.14 18.14
1.22 = 14.8719 0.0035

Day (Block) 2 82.60 41.30 41.30
1.22 = 33.8525 0.0005

ChyxDay (WPxBlk) 6 7.32 1.22 1.22
1.05 = 1.1619 0.3588

RipeTime (SP) 3 42.60 14.20 14.20
1.05 = 13.5247 0.0000

ChyxRipe (WPxSP) 9 10.76 1.20 1.20
1.05 = 1.1385 0.3754

Error 24 25.20 1.05

Total 47 222.91

Table 3.36: The Analysis of Variance Table for Blister quantities for Chymosin Treatment/Ripening Times
Split-Plot experiment
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## ANOVA w/ incorrect Whole-Plot F-test

> chym.mod1 <- aov(blister ~ c.trt*c.blk + c.time + c.trt:c.time)

> summary(chym.mod1)

Df Sum Sq Mean Sq F value Pr(>F)

c.trt 3 54.43 18.14 17.280 3.42e-06 ***

c.blk 2 82.60 41.30 39.333 2.66e-08 ***

c.time 3 42.60 14.20 13.525 2.27e-05 ***

c.trt:c.blk 6 7.32 1.22 1.162 0.359

c.trt:c.time 9 10.76 1.20 1.139 0.375

Residuals 24 25.20 1.05

## Mixed Effects Model Outbut

> chy.mod2 <- lmer(blister ~ c.trt*c.time + (1|c.blk) + (1|c.trt:c.blk))

> summary(chy.mod2)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to

degrees of freedom [lmerMod]

Formula: blister ~ c.trt * c.time + (1 | c.blk) + (1 | c.trt:c.blk)

Random effects:

Groups Name Variance Std.Dev.

c.trt:c.blk (Intercept) 0.0425 0.2062

c.blk (Intercept) 2.5050 1.5827

Residual 1.0500 1.0247

Number of obs: 48, groups: c.trt:c.blk, 12; c.blk, 3

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.0100 0.9276 2.0000 9.713 0.01043 *

c.trt1 1.0150 0.2761 6.0000 3.676 0.01038 *

c.trt2 1.0425 0.2761 6.0000 3.775 0.00923 **

c.trt3 -0.6400 0.2761 6.0000 -2.318 0.05964 .

c.time1 -1.1000 0.2562 24.0000 -4.294 0.00025 ***

c.time2 -0.5075 0.2562 24.0000 -1.981 0.05915 .

c.time3 0.1750 0.2562 24.0000 0.683 0.50107

c.trt1:c.time1 -0.1550 0.4437 24.0000 -0.349 0.72989

c.trt2:c.time1 -0.2225 0.4437 24.0000 -0.501 0.62062

c.trt3:c.time1 0.2800 0.4437 24.0000 0.631 0.53397

c.trt1:c.time2 0.7625 0.4437 24.0000 1.718 0.09858 .

c.trt2:c.time2 0.0050 0.4437 24.0000 0.011 0.99110

c.trt3:c.time2 0.2175 0.4437 24.0000 0.490 0.62845

c.trt1:c.time3 -0.9000 0.4437 24.0000 -2.028 0.05376 .

c.trt2:c.time3 0.1125 0.4437 24.0000 0.254 0.80201

c.trt3:c.time3 0.1450 0.4437 24.0000 0.327 0.74666

> anova(chy.mod2)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

c.trt 46.847 15.6155 3 6 14.8719 0.003478 **

c.time 42.603 14.2010 3 24 13.5247 2.269e-05 ***

c.trt:c.time 10.759 1.1954 9 24 1.1385 0.375426

> difflsmeans(chy.mod2)

Differences of LSMEANS:

Estimate Standard Error DF t-value Lower CI Upper CI p-value

c.trt 1 - 2 0.0 0.4509 6.0 -0.06 -1.1309 1.0759 0.953

c.trt 1 - 3 1.7 0.4509 6.0 3.67 0.5516 2.7584 0.010 *

c.trt 1 - 4 2.4 0.4509 6.0 5.39 1.3291 3.5359 0.002 **

c.trt 2 - 3 1.7 0.4509 6.0 3.73 0.5791 2.7859 0.010 **

c.trt 2 - 4 2.5 0.4509 6.0 5.46 1.3566 3.5634 0.002 **

c.trt 3 - 4 0.8 0.4509 6.0 1.72 -0.3259 1.8809 0.135

c.time 1 - 2 -0.6 0.4183 24.0 -1.42 -1.4559 0.2709 0.170

c.time 1 - 3 -1.3 0.4183 24.0 -3.05 -2.1384 -0.4116 0.005 **

c.time 1 - 4 -2.5 0.4183 24.0 -6.05 -3.3959 -1.6691 <2e-16 ***

c.time 2 - 3 -0.7 0.4183 24.0 -1.63 -1.5459 0.1809 0.116
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c.time 2 - 4 -1.9 0.4183 24.0 -4.64 -2.8034 -1.0766 1e-04 ***

c.time 3 - 4 -1.3 0.4183 24.0 -3.01 -2.1209 -0.3941 0.006 **

Split-plot experiments can also contain random effects, although most published examples tend to have
fixed effects among whole-plot and sub-plot factors. Below is a description of an example with the sub-plot
factor being a random factor.

Example 3.20: Rating of Whey Syrup in a Sensory Study

An experiment is described of sensory ratings of whey syrup used in Norwegian ice cream (Steinsholt,
1998, [32]). There were 4 varieties of whey syrup, and 8 raters, and the plan was to have 3 replicates per
variety/rater. Had this been done as a fully crossed design, there would have had to been 4(8)(3)=96 batches
produced, which would have been very time consuming. Instead, there were 4(3) = 12 batches made among
the 4 syrup varieties in a CRD, and the batches were stored frozen for 14 days. Then the raters rated the
12 batches in random order (separate for each rater). In this example, the Varieties (whole-plot factor) are
Fixed and the Raters (sub-plot factor) are random (although there is heated debate in the food preference
literature of whether to treat trained raters as fixed or random). Note that the author used a different model
formulation than that used here and in most mixed effects software packages. For this model, Factor A is
variety with a = 4 levels, Factor B(A) is batch nested within variety with b = 3 replicates per variety, and
Factor C is rater, with c = 8 levels.

The model and Expected Mean Squares are given below for fixed variety (Whole-Plot factor), random
rater (Sub-Plot factor) and and random variety/rater interaction effects, with all random effects assumed
independent.

Yijk = µ + αi + βj(i) + γk + (αβ)ik + εijk i = 1, . . . , a = 4 j = 1, . . . , b = 3 k = 1, . . . , 8

a
∑

i=1

αi = 0 βj(i) ∼ N
(

0, σ2
B(A)

)

γK ∼ N
(

0, σ2
B(A)

)

(αγ)ik ∼ N
(

0, σ2
AC

)

εijk ∼ N
(

0, σ2
)

E {MSE} = σ2 E {MSAC} = σ2 + bσ2
AC E {MSC} = σ2 + bσ2

AC + abσ2
C

E {MSB(A)} = σ2 + cσ2
B(A) E {MSA} = σ2 + bσ2

AC + cσ2
B(A) + bc

a
∑

i=1

α2
i

Note that the F -test for variety effects is not simply the ratio of the Variety mean square to the Batch(Variety)
mean square, and thus Satterthwaite’s approximation must be used. There are two ways the F -test can be
conducted, but note that software packages such as the lmerTest package in R will use the second version.

HA
0 : α1 = · · · = αa = 0 TS1 : FA1 =

MSA + MSE

MSB(A) + MSAC
TS2 : FA2 =

MSA

MSB(A) + MSAC − MSE

The first F -statistic will always be positive, but both the numerator and denominator degrees of freedom
must be estimated. The second F -statistic can be negative, but only the denominator degrees of freedom
must be estimated. The ANOVA table reported in paper is given in Table 3.37.
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The F -test for Variety effects is conducted here using the second version given above. ANOVA estimates
of the variance components are also obtained.

TS : FA2 =
5.566

1.845 + 1.447− 1.164
=

5.566

2.128
= 2.616 df2 =

(2.128)2
[

(1.845)2

8
+ (1.447)2

21
+ (−1.164)2

56

] =
4.528

0.549
= 8.25

RR2 : FA2 ≥ F.05,3,8.25 = 4.009 P = .1210

s2 = 1.164 s2
AC =

1.447− 1.164

3
= 0.094 s2

C =
33.118− 1.447

4(3)
= 2.639 s2

B(A) =
1.845− 1.164

8
= 0.085

∇

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square
A 4 − 1 = 3 16.698 16.698

3
= 5.566

B(A) 4(3 − 1) = 8 14.833 14.833
8

= 1.845

C 8 − 1 = 7 231.823 231.823
7

= 33.118

AC (4 − 1)(8 − 1) = 21 30.385 30.385
21

= 1.447

ERROR 4(3 − 1)(8 − 1) = 56 65.167 65.167
56

1.164

TOTAL 4(3)(8) − 1 = 95 358.906

Table 3.37: The Analysis of Variance Table for a Split-Plot Design in a CRD – Ice Cream Rating Example

3.4 Repeated Measures Designs

In some experimental situations, subjects are assigned to treatments, and measurements are made at repeated
points over some fixed period of time. This can be thought of as a CRD, where more than one measurement
is being made on each experimental unit. The goal is still to detect differences among the treatment means
(effects), but must account for the fact that measurements are being made over time. Previously, the error
was differences among the units within the treatments. Now various measurements are observed on each
unit nested within each treatment, and have a new error term. The measurement Yijk, representing the
outcome for the ith treatment on the jth unit (that receives the treatment) at the kth time point, can
be written as follows (this is a special case of the Split-Plot experiment where the whole-plot units (often
subjects) are assigned to treatments in a CRD). Note that many (particularly behavioral) studies will refer
to a Randomized Block Design as a Repeated Measures Design where the time points are replaced by the
various treatments and units (subjects) are the blocks (where each unit receives each treatment).

Yijk = µ + αi + βj(i) + γk + αγik + εijk i = 1, . . . , c j(i) = 1 . . . , bi k = 1, . . . , c
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where:

• µ is the overall mean

• αi is the fixed effect of the ith treatment (i = 1, . . . , a)

• βj(i) is the random effect of the jth unit receiving the ith treatment (j = 1, . . . , bi)

• γk is the fixed effect of the kth time point (k = 1, . . . , c)

• αγik is the interaction of the ith treatment and the kth time point

• εijk is the random error component that is assumed to be N
(

0, σ2
)

.

The means sums of squares can be obtained as follows for the case where b1 = · · · = ba = b and the data
have been observed.

yij. =

∑c
k=1 yijk

c

yi.k =

∑b
j=1 yijk

b

yi.. =

∑b
j=1

∑c
k=1 yijk

bc

y..k =

∑a
i=1

∑b
j=1 yijk

ab

y... =

∑a
i=1

∑b
j=1

∑c
k=1 yijk

abc

TSS =

a
∑

i=1

b
∑

j=1

c
∑

k=1

(yijk − y...)2

SSA = bc

a
∑

i=1

(yi.. − y...)
2

SSB(A) = c

a
∑

i=1

b
∑

j=1

(

yij. − yi..

)2

SSC = ab

c
∑

k=1

c
∑

k=1

(y..k − y...)
2

SSAC = b
a
∑

i=1

c
∑

k=1

(yi.k − yi.. − y..k + y...)2

SSE =

a
∑

i=1

b
∑

j=1

c
∑

k=1

(

yijk − yij. − yi.k + yi..

)2

In practice, treatments and time points will always be treated as fixed effects and units nested within
treatments are random effects. The Analysis of Variance is given in Table 3.38 (this is always done on
a computer). The degrees of freedom are based on the experiment consisting of a treatments, b subjects
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ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F P (> F )

Trts SSA a − 1 MSA = SSA
a−1

FA = MSA
MSB(A)

P
(

Fa−1,a(b−1) ≥ FA

)

Units(Trts) SSB(A) a(b − 1) MSB(A) = SSB(A)
a(b−1)

Time SSC c − 1 MSC = SSC
c−1

FC = MSC
MSE

P
(

Fc−1,a(b−1)(c−1) ≥ FC

)

TrtxTime SSAC (a − 1)(c − 1) MSAC = SSAC
(a−1)(c−1)

FAC = MSAC
MSE

P
(

F((a−1)(c−1),a(b−1)(c−1) ≥ FAC

)

Error SSE a(b − 1)(c − 1) MSE = SSE
a(b−1)(c−1)

TOTAL TSS abc − 1

Table 3.38: Univariate Analysis of Variance Table for a Repeated Measures Design

receiving each treatment, and measurements being made at c points in time. Note that if the number of
subjects per treatment differ (bi subjects receiving treatment i), replace a(b − 1) with

∑a
i=1 (bi − 1).

One primary hypothesis to test is for a treatment effect. This test is of the form:

1. HA
0 : α1 = · · · = αa = 0 (No treatment effect)

2. HA
A : Not all αi = 0 (Treatment effects)

3. T.S.: FA = MSA
MSB(A)

4. R.R.: FA ≥ Fα,a−1,a(b−1)

5. P -value: P
(

Fa−l,a(b−1) ≥ FA

)

To test for time effects and time by treatment interaction, tests are of the following form.

1. HC
0 : γ1 = · · · = γc = 0 (No time effect)

2. HC
A : Not all γk = 0 (Time effects)

3. T.S.: FC = MSC
MSE

4. R.R.: FC ≥ Fα,c−1,a(b−1)(c−1)

5. P -value: P
(

F(c−1),a(b−1)(c−1) ≥ FC

)

1. HAC
0 : (αγ)11 = · · · = (αγ)ac = 0 (No trt by time interaction)

2. HAC
A : Not all (αγ)ik = 0 (Trt by Time interaction)

3. T.S.: FAC = MSAC
MSE



148 CHAPTER 3. FACTORIAL DESIGNS

4. R.R.: FAC ≥ Fα,(a−1)(c−1),a(b−1)(c−1)

5. P -value: P
(

F(a−1)(c−1),a(b−1)(c−1) ≥ FAC

)

As this model is the same as the Split-Plot with the Whole-Plot units in a CRD, comparisons among
Treatments and Times are conducted in the same manner.

Example 3.21: Heart Rates among Skydivers

A study compared heart rates at c = 5 time points of a skydiving flight among novice and experienced sky-
divers (Singley, Hale, and Russell, 2012, [34]). There were b = 11 novice (tandem) and 11 experienced (solo)
jumpers (a = 2). The time points represented: baseline, take-off, 1524 meters, 3028 meters, and landing.
Data have been generated that match reported means, F -statistic for time effect, and total sum of squares.
Summary data with respect to treatment and time are given in Table 3.39, and the Analysis of Variance
is given in Table 3.40. There is strong evidence of a time effect on heart rate (FC = 134.10, P < .0001), but no
evidence of a Group main effect of a Group/Time interaction (FA = 2.897, P = .1042; FAC = 2.045, P = .0959).
The critical difference for comparing pairs of time means based on the Bonferroni method with c∗c =
5(5 − 1)/2 = 10 comparisons is given below. Times 5 (88.59) and 2 (93.89) are not significantly differ-
ent, all other pairs are. Although the groups (Expert vs Novice) are not significantly different based on the
F -test, a 95% Confidence Interval for the difference is given below. Further, the ANOVA estimates of the
variance components are given below.

Times: t.05/(2(10)),80 = 2.887

√

2(52.24)

2(11)
= 2.179 2.887(2.179) = 6.291

Groups: 95.13−97.81 = −2.68 t.025,20 = 2.086

√

2(68.48)

11(5)
= 1.578 −2.68±2.086(1.578) ≡ −2.68±3.29 ≡ (−5.97, 0.61)

s2 = 53.24 s = 7.30 s2
B(A) =

68.48− 53.24

5
= 3.90 sB(A) = 1.98

Partial R Output is given below.

∇

Expert Novice Mean

Time1 76.91 72.36 74.64
Time2 92.27 95.51 93.89
Time3 98.18 105.55 101.87
Time4 122.09 124.64 123.37
Time5 86.18 91.00 88.59
Mean 95.13 97.81 96.47

Table 3.39: Treatment/Time Heart Rate means among skydivers
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ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P (> F )

Treatments (Group) 2-1=1 198.40 198.40
1 = 198.40 198.40

68.48 = 2.897 P (F1,20 ≥ 2.897) = .1042

Subjects(Trts) 2(11-1)=20 1369.64 1369.64
20

= 68.48

Time 5-1=4 28555.23 28555.23
4

= 7138.81 7138.81
53.24

= 134.10 P (F4,80 ≥ 134.10) < .0001

TrtxTime 1(4)=4 435.48 435.48
4 = 108.87 108.87

53.24 = 2.045 P (F4,80 ≥ 2.045) = .0959

Error 2(11-1)(5-1)=80 5430.3 4258.80
80

= 53.24

TOTAL 2(11)(5)-1=109 34817.55

Table 3.40: The Analysis of Variance Table for Skydiving Heart Rate Example

> ## AOV with incorrect error term for expGrp

> sd.mod1 <- aov(heartRt ~ expGrp*jumpTime + subjGrp:expGrp)

> summary(sd.mod1)

Df Sum Sq Mean Sq F value Pr(>F)

expGrp 1 198 198 3.728 0.057 .

jumpTime 4 28555 7139 134.092 <2e-16 ***

expGrp:jumpTime 4 435 109 2.044 0.096 .

expGrp:subjGrp 20 1370 68 1.287 0.213

Residuals 80 4259 53

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>

> library(nlme)

> options(contrasts=c("contr.sum","contr.poly"))

>

> sd2 <- groupedData(heartRt ~ jumpTime | expGrp/subjGrp)

>

> ## Generalized Least Squares with Compound Symmetry

> sd.mod2a <- gls(heartRt ~ expGrp * jumpTime,

+ corr = corCompSymm(form = ~ 1 | subjGrp))

> summary(sd.mod2a)

Generalized least squares fit by REML

Model: heartRt ~ expGrp * jumpTime

Data: NULL

AIC BIC logLik

747.6508 778.9128 -361.8254

Correlation Structure: Compound symmetry

Formula: ~1 | subjGrp

Parameter estimate(s):

Rho

0.05420198

Coefficients:

Value Std.Error t-value p-value

(Intercept) 96.46927 0.7890838 122.25479 0.0000

expGrp1 -1.34327 0.7890838 -1.70232 0.0918

jumpTime1 -21.83336 1.3913657 -15.69204 0.0000

jumpTime2 -2.57973 1.3913657 -1.85410 0.0667

jumpTime3 5.39573 1.3913657 3.87801 0.0002

jumpTime4 26.89618 1.3913657 19.33078 0.0000

expGrp1:jumpTime1 3.61736 1.3913657 2.59987 0.0107

expGrp1:jumpTime2 -0.27718 1.3913657 -0.19922 0.8425

expGrp1:jumpTime3 -2.34173 1.3913657 -1.68304 0.0955
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expGrp1:jumpTime4 0.06873 1.3913657 0.04940 0.9607

Correlation:

(Intr) expGr1 jmpTm1 jmpTm2 jmpTm3 jmpTm4 eG1:T1 eG1:T2

expGrp1 0.00

jumpTime1 0.00 0.00

jumpTime2 0.00 0.00 -0.25

jumpTime3 0.00 0.00 -0.25 -0.25

jumpTime4 0.00 0.00 -0.25 -0.25 -0.25

expGrp1:jumpTime1 0.00 0.00 0.00 0.00 0.00 0.00

expGrp1:jumpTime2 0.00 0.00 0.00 0.00 0.00 0.00 -0.25

expGrp1:jumpTime3 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 -0.25

expGrp1:jumpTime4 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 -0.25

eG1:T3

expGrp1

jumpTime1

jumpTime2

jumpTime3

jumpTime4

expGrp1:jumpTime1

expGrp1:jumpTime2

expGrp1:jumpTime3

expGrp1:jumpTime4 -0.25

Standardized residuals:

Min Q1 Med Q3 Max

-2.035431e+00 -7.970632e-01 4.735347e-15 6.970365e-01 1.948673e+00

Residual standard error: 7.502542

Degrees of freedom: 110 total; 100 residual

> anova(sd.mod2a)

Denom. DF: 100

numDF F-value p-value

(Intercept) 1 14946.234 <.0001

expGrp 1 2.898 0.0918

jumpTime 4 134.092 <.0001

expGrp:jumpTime 4 2.044 0.0939

> AIC(sd.mod2a)

[1] 747.6508

> getVarCov(sd.mod2a)

Marginal variance covariance matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 56.2880 3.0509 3.0509 3.0509 3.0509

[2,] 3.0509 56.2880 3.0509 3.0509 3.0509

[3,] 3.0509 3.0509 56.2880 3.0509 3.0509

[4,] 3.0509 3.0509 3.0509 56.2880 3.0509

[5,] 3.0509 3.0509 3.0509 3.0509 56.2880

Standard Deviations: 7.5025 7.5025 7.5025 7.5025 7.5025

> intervals(sd.mod2a)

Approximate 95% confidence intervals

Coefficients:

lower est. upper

(Intercept) 94.9037530 96.46927273 98.0347924

expGrp1 -2.9087924 -1.34327273 0.2222470

jumpTime1 -24.5937935 -21.83336364 -19.0729338

jumpTime2 -5.3401572 -2.57972727 0.1807026

jumpTime3 2.6352974 5.39572727 8.1561572

jumpTime4 24.1357519 26.89618182 29.6566117

expGrp1:jumpTime1 0.8569338 3.61736364 6.3777935

expGrp1:jumpTime2 -3.0376117 -0.27718182 2.4832481

expGrp1:jumpTime3 -5.1021572 -2.34172727 0.4187026

expGrp1:jumpTime4 -2.6917026 0.06872727 2.8291572

attr(,"label")
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[1] "Coefficients:"

Correlation structure:

lower est. upper

Rho -0.07678504 0.05420198 0.2392377

attr(,"label")

[1] "Correlation structure:"

Residual standard error:

lower est. upper

6.526298 7.502542 8.624818

The univariate model described above assumes that the measurements at the various time points have
equal variances and correlations between pairs of measurements within subjects are all equal (Compound
Symmetry). If that assumption holds, or the less stringent Huynh-Feldt assumption that the variance of
the differences among all pairs of measurements within subjects are equal, then this analysis is appropriate.
When these assumptions do not hold, researchers often conduct a multivariate Analysis of Variance and make
adjustments to the degrees of freedom for the within subjects factors (Time and Treatment/Time interaction
in this case). There are two widely used adjustments: Greenhouse-Geisser and Huynh-Feldt. These methods
use methods beyond the scope of this course and are not discussed here.

With the advent of more flexible mixed model statistical programs (first developed as Proc Mixed in the
SAS System), it is possible to allow for more complex correlation structure within subjects. For instance,
if measurements are made at equally space time points over an extended period of time, the correlations
between measurements further apart in time may tend to decrease multiplicatively. This is often modeled
as an Autoregressive process of order 1 (AR(1)) for the errors. For example based tutorials of this based on
Proc Mixed, see the following two papers (Littell, Pendergast, and Natarajan, 2000, [20]; Bagiella, Sloan,
and Heitjan, 2000, [6]). There are many possibilities for the correlation/covariance structures that are
covered in the papers. The most general structure allows all c variances and all c(c− 1)/2 covariances to be
distinct. That is considered to be the unstructured (symmetric) case. Examples of many variance/covariance
structures in S, and applicable in R are given in Pinheiro and Bates, 2000, [29].

Example 3.22: Heart Rates among Skydivers

The model fit in Example 3.21 for the Skydivers’ heart rate measurements assumed a Compound Symmetry
pattern for the within subjects errors. This assumes that the variances in measurements are constant over
the c = 5 time points, and that the correlation/covariance among measurements at all pairs of times are
the same. Now, consider the model fit allowing for an unstructured covariance structure within subjects.
The R output is given below (there is no closed form way of obtaining this). The F -tests for Group
and Group/Time interaction are not quite significant at the α = 0.05 level, but are closer to significance
(FA = 3.871, P = .0631; FAC = 2.256, P = .0703). There is little evidence of the variances at the various
time points being different: the variance function estimates (standard deviation multipliers, with time 1 as
the reference) range from 0.936 to 1.093. The individual correlations range from −0.214 to 0.326. Note that
this model has c + c(c − 1)/2 = 5 + 5(5 − 1)/2 = 15 variance parameters, while the model in Example 3.21
had 2. The Likelihood Ratio test to test between the two models yields a Chi-square statistic of 5.729 with
15−2 = 13 degrees of freedom and a P -value of .9555. There is no reason to prefer the more complex model
over the simpler model for this data.

∇

> ## Generalized Least Squares with Unstructured Covariance Structure
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> sd.mod3a <- gls(heartRt ~ expGrp * jumpTime,

+ corr = corCompSymm(form = ~ 1 | subjGrp),

+ weight = varIdent(form = ~ 1 | jumpTime))

> summary(sd.mod3a)

Generalized least squares fit by REML

Model: heartRt ~ expGrp * jumpTime

Data: NULL

AIC BIC logLik

755.1105 796.7932 -361.5552

Correlation Structure: Compound symmetry

Formula: ~1 | subjGrp

Parameter estimate(s):

Rho

0.05968999

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | jumpTime

Parameter estimates:

1 2 3 4 5

1.0000000 1.0269539 1.1082193 0.9470501 0.9917593

Coefficients:

Value Std.Error t-value p-value

(Intercept) 96.46927 0.7963595 121.13785 0.0000

expGrp1 -1.34327 0.7963595 -1.68677 0.0948

jumpTime1 -21.83336 1.3715664 -15.91856 0.0000

jumpTime2 -2.57973 1.3991575 -1.84377 0.0682

jumpTime3 5.39573 1.4838254 3.63636 0.0004

jumpTime4 26.89618 1.3181668 20.40423 0.0000

expGrp1:jumpTime1 3.61736 1.3715664 2.63740 0.0097

expGrp1:jumpTime2 -0.27718 1.3991575 -0.19811 0.8434

expGrp1:jumpTime3 -2.34173 1.4838254 -1.57817 0.1177

expGrp1:jumpTime4 0.06873 1.3181668 0.05214 0.9585

Correlation:

(Intr) expGr1 jmpTm1 jmpTm2 jmpTm3 jmpTm4 eG1:T1 eG1:T2

expGrp1 0.000

jumpTime1 -0.016 0.000

jumpTime2 0.011 0.000 -0.248

jumpTime3 0.089 0.000 -0.274 -0.281

jumpTime4 -0.070 0.000 -0.223 -0.232 -0.261

expGrp1:jumpTime1 0.000 -0.016 0.000 0.000 0.000 0.000

expGrp1:jumpTime2 0.000 0.011 0.000 0.000 0.000 0.000 -0.248

expGrp1:jumpTime3 0.000 0.089 0.000 0.000 0.000 0.000 -0.274 -0.281

expGrp1:jumpTime4 0.000 -0.070 0.000 0.000 0.000 0.000 -0.223 -0.232

eG1:T3

expGrp1

jumpTime1

jumpTime2

jumpTime3

jumpTime4

expGrp1:jumpTime1

expGrp1:jumpTime2

expGrp1:jumpTime3

expGrp1:jumpTime4 -0.261

Standardized residuals:

Min Q1 Med Q3 Max

-2.084396e+00 -8.046225e-01 -1.094309e-14 7.051100e-01 2.089758e+00

Residual standard error: 7.387175

Degrees of freedom: 110 total; 100 residual

> anova(sd.mod3a)
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Denom. DF: 100

numDF F-value p-value

(Intercept) 1 14989.005 <.0001

expGrp 1 2.450 0.1206

jumpTime 4 147.423 <.0001

expGrp:jumpTime 4 2.009 0.0989

> AIC(sd.mod3a)

[1] 755.1105

> getVarCov(sd.mod3a)

Marginal variance covariance matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 54.5700 3.3451 3.6098 3.0848 3.2305

[2,] 3.3451 57.5520 3.7071 3.1680 3.3175

[3,] 3.6098 3.7071 67.0210 3.4187 3.5801

[4,] 3.0848 3.1680 3.4187 48.9440 3.0594

[5,] 3.2305 3.3175 3.5801 3.0594 53.6750

Standard Deviations: 7.3872 7.5863 8.1866 6.996 7.3263

> intervals(sd.mod3a)

Approximate 95% confidence intervals

Coefficients:

lower est. upper

(Intercept) 94.889318 96.46927273 98.0492272

expGrp1 -2.923227 -1.34327273 0.2366818

jumpTime1 -24.554512 -21.83336364 -19.1122150

jumpTime2 -5.355616 -2.57972727 0.1961613

jumpTime3 2.451860 5.39572727 8.3395947

jumpTime4 24.280976 26.89618182 29.5113873

expGrp1:jumpTime1 0.896215 3.61736364 6.3385122

expGrp1:jumpTime2 -3.053070 -0.27718182 2.4987068

expGrp1:jumpTime3 -5.285595 -2.34172727 0.6021401

expGrp1:jumpTime4 -2.546478 0.06872727 2.6839328

attr(,"label")

[1] "Coefficients:"

Correlation structure:

lower est. upper

Rho -0.07419729 0.05968999 0.2482478

attr(,"label")

[1] "Correlation structure:"

Variance function:

lower est. upper

2 0.6396169 1.0269539 1.648853

3 0.6995196 1.1082193 1.755705

4 0.6006061 0.9470501 1.493331

5 0.6100048 0.9917593 1.612424

attr(,"label")

[1] "Variance function:"

Residual standard error:

lower est. upper

5.282376 7.387175 10.330645

>

>

> anova(sd.mod2a, sd.mod3a)

Model df AIC BIC logLik Test L.Ratio p-value

sd.mod2a 1 12 747.6508 778.9128 -361.8254

sd.mod3a 2 16 755.1105 796.7932 -361.5552 1 vs 2 0.5403307 0.9695
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3.5 R Programs for Chapter 3 Examples

3.5.1 Halo Effect - Essay Evaluation

halo <- read.table("http://www.stat.ufl.edu/~winner/data/halo1.dat",

header=F, col.names=c("essayqual","picture","grade"))

attach(halo)

essayqual <- factor(essayqual)

picture <- factor(picture)

interaction.plot(essayqual,picture,grade)

## Additive Model - Trt Level 1 is Reference

halo.mod1 <- aov(grade ~ essayqual + picture)

anova(halo.mod1)

summary.lm(halo.mod1)

TukeyHSD(halo.mod1,"essayqual")

TukeyHSD(halo.mod1,"picture")

## Interaction Model

halo.mod2 <- aov(grade ~ essayqual*picture)

anova(halo.mod2)

summary.lm(halo.mod2)

## Compare Additive and Interaction Models

anova(halo.mod1, halo.mod2)

## Switch to Trt Effects sum to 0

options(contrasts=c("contr.sum","contr.poly"))

halo.mod3 <- aov(grade ~ essayqual + picture)

anova(halo.mod3)

summary.lm(halo.mod3)

halo.mod4 <- aov(grade ~ essayqual*picture)

anova(halo.mod4)

summary.lm(halo.mod4)

anova(halo.mod3, halo.mod4)

3.5.2 Penetration of Arrowheads by Clothing Fit and Type

arrow1 <- read.csv("http://www.stat.ufl.edu/~winner/data/arrowhead_clothing.csv")

attach(arrow1); names(arrow1)

## Select only the first arrowhead type data (Bullet)

Y1 <- pntrt[arrowhead == 1]

clothFit1 <- clothFit[arrowhead == 1]

clothType1 <- clothType[arrowhead == 1]

clothFit1 <- factor(clothFit1, levels=1:2, labels=c("Tight","Loose"))

clothType1 <- factor(clothType1, levels=1:3,

labels=c("T-shirt", "Jeans65Cttn", "Jeans95Cttn"))

options(contrasts=c("contr.sum","contr.poly"))

arrow.mod1 <- aov(Y1 ~ clothFit1 * clothType1)

anova(arrow.mod1)



3.5. R PROGRAMS FOR CHAPTER 3 EXAMPLES 155

summary.lm(arrow.mod1)

interaction.plot(clothType1, clothFit1, Y1)

sum((Y1 - mean(Y1))^2) ## Total SS

3.5.3 Lead Content in Lip Products

lead_lip <- read.csv("http://www.stat.ufl.edu/~winner/data/lead_lipstick.csv")

attach(lead_lip); names(lead_lip)

tapply(Pb, list(shade, prodType), length)

tapply(Pb, list(shade, prodType), mean)

tapply(Pb, list(shade, prodType), sd)

interaction.plot(shade, prodType, Pb)

## Generate X’s for Regression Model

n.tot <- length(Pb)

X1.A <- rep(0,n.tot)

X2.A <- rep(0,n.tot)

X3.A <- rep(0,n.tot)

X1.B <- rep(0,n.tot)

X1.A <- ifelse(shade == "Red", 1, ifelse(shade == "Brown", -1, 0))

X2.A <- ifelse(shade == "Purple", 1, ifelse(shade == "Brown", -1, 0))

X3.A <- ifelse(shade == "Pink", 1, ifelse(shade == "Brown", -1, 0))

X1.B <- ifelse(prodType == "LP", 1, -1)

## Full Model

ll.mod1 <- lm(Pb ~ X1.A + X2.A + X3.A + X1.B + I(X1.A * X1.B) +

I(X2.A * X1.B) + I(X3.A * X1.B))

summary(ll.mod1)

anova(ll.mod1)

## Drop Interactions

ll.mod2 <- lm(Pb ~ X1.A + X2.A + X3.A + X1.B)

summary(ll.mod2)

anova(ll.mod2)

## Drop Factor A

ll.mod3 <- lm(Pb ~ X1.B + I(X1.A * X1.B) +

I(X2.A * X1.B) + I(X3.A * X1.B))

summary(ll.mod3)

anova(ll.mod3)

## Drop Factor B

ll.mod4 <- lm(Pb ~ X1.A + X2.A + X3.A + I(X1.A * X1.B) +

I(X2.A * X1.B) + I(X3.A * X1.B))

summary(ll.mod4)

anova(ll.mod4)

## Drop Factor A and Interactions

ll.mod5 <- lm(Pb ~ X1.B)

summary(ll.mod5)

anova(ll.mod5)

## Drop Factor B and Ineractions

ll.mod6 <- lm(Pb ~ X1.A + X2.A + X3.A)

summary(ll.mod6)

anova(ll.mod6)
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## F-tests for Model Comparisons

anova(ll.mod2, ll.mod1)

anova(ll.mod3, ll.mod1)

anova(ll.mod4, ll.mod1)

anova(ll.mod5, ll.mod2)

anova(ll.mod6, ll.mod2)

anova(ll.mod5, ll.mod1)

anova(ll.mod6, ll.mod1)

options(contrasts=c("contr.sum","contr.poly"))

ll.aov1 <- aov(Pb ~ shade * prodType)

anova(ll.aov1)

ll.aov2 <- aov(Pb ~ shade + prodType)

anova(ll.aov2)

library(car)

Anova(ll.aov1, Type="II")

Anova(ll.aov1, Type="III")

Anova(ll.aov2, Type="II")

Anova(ll.aov2, Type="III")

## 3-Way ANOVA

ll.aov3 <- aov(Pb ~ shade * prodType * priceCatgry)

anova(ll.aov3)

ll.aov4 <- aov(Pb ~ shade + prodType + priceCatgry)

anova(ll.aov4)

library(car)

Anova(ll.aov3, Type="II")

Anova(ll.aov3, Type="III")

Anova(ll.aov4, Type="II")

Anova(ll.aov4, Type="III")

3.5.4 Oil Holding Capacity of Banana Cultivars

ban1 <- read.table("http://www.stat.ufl.edu/~winner/data/banana_pretreat.dat",

header=F,col.names=c("cultivar","acidType","acidDose","OHC"))

attach(ban1)

cultivar <- factor(cultivar)

acidType <- factor(acidType)

acidDose <- factor(acidDose)

ban.mod1 <- aov(OHC ~ cultivar * acidType * acidDose)

anova(ban.mod1)

3.5.5 Women’s Professional Bowling Scores - 2009

wpba2009 <- read.table("http://www.stat.ufl.edu/~winner/data/wpba2009.dat",

header=F, col.names=c("bowler","pattern","set","game","score"))

attach(wpba2009)

bowler <- factor(bowler)

pattern <- factor(pattern)
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tapply(score,bowler,mean); tapply(score,bowler,sd)

tapply(score,pattern,mean); tapply(score,pattern,sd)

tapply(score,list(bowler,pattern),mean); tapply(score,list(bowler,pattern),sd)

options(contrasts=c("contr.sum","contr.poly"))

wpba.mod1 <- aov(score ~ pattern + bowler + bowler:pattern)

summary(wpba.mod1)

interaction.plot(bowler, pattern, score)

wpba.mod2 <- aov(score ~ pattern + bowler + Error(bowler:pattern))

summary(wpba.mod2)

library(nlme)

wpba.mod3 <- lme(fixed = score ~ pattern, random = ~1|bowler/pattern)

summary(wpba.mod3)

intervals(wpba.mod3)

anova(wpba.mod3)

library(lmerTest)

wpba.mod4 <- lmer(score~pattern+(1|bowler)+(1|pattern:bowler))

summary(wpba.mod4)

anova(wpba.mod4)

lsmeans(wpba.mod4)

difflsmeans(wpba.mod4)

confint(wpba.mod4)

3.5.6 Shoveling Times for Spatulas

spatula <- read.table("http://www.stat.ufl.edu/~winner/data/chopstick3.dat",

header=F,col.names=c("length","angle","subject","shovtime"))

attach(spatula)

names(spatula)

# spatula

length <- factor(length)

angle <- factor(angle)

subject <- factor(subject)

options(contrasts=c("contr.sum","contr.poly"))

spat.mod1 <- aov(shovtime ~ length * angle * subject)

anova(spat.mod1)

# install.packages("lmerTest")

library(lmerTest)

spat.mod2 <- lmer(shovtime ~ length*angle + (1|subject) + (1|subject:length) +

(1|subject:angle))

summary(spat.mod2)

anova(spat.mod2)

difflsmeans(spat.mod2)

rand(spat.mod2)

3.5.7 Reliability of Foot Joint Inversion Measurements

foot <- read.table("http://www.stat.ufl.edu/~winner/data/biometer_foot.dat",

header=F,col.names=c("subj","inv_env","tester","day","trial","angle"))
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attach(foot)

subj <- factor(subj)

inv_env <- factor(inv_env)

tester <- factor(tester)

day <- factor(day)

## Select only Inversion measurements

subjInv <- subj[inv_env == 1]

testerInv <- tester[inv_env == 1]

dayInv <- day[inv_env == 1]

angleInv <- angle[inv_env == 1]

foot.mod1 <- aov(angleInv ~ testerInv * subjInv * dayInv)

anova(foot.mod1)

# install.packages("lmerTest")

library(lmerTest)

options(contrasts=c("contr.sum","contr.poly"))

foot.mod2 <- lmer(angleInv ~ testerInv + (1|subjInv) + (1|dayInv) +

(1|testerInv:subjInv) + (1|testerInv:dayInv) + (1|subjInv:dayInv) +

(1|testerInv:subjInv:dayInv))

summary(foot.mod2)

anova(foot.mod2)

difflsmeans(foot.mod2)

rand(foot.mod2)

3.5.8 Repeatability and Reproducibility of Measurements

wd <- read.csv("http://www.stat.ufl.edu/~winner/data/wood_drill_gage.csv")

attach(wd); names(wd)

Part <- factor(Part)

Operator <- factor(Operator)

Ymeas <- 100*Ymeas

options(contrasts=c("contr.sum","contr.poly"))

wd1.mod1 <- aov(Ymeas ~ Part*Operator)

anova(wd1.mod1)

library(nlme)

wd2 <- groupedData(Ymeas ~ 1 | Part/Operator) ## Set up grouped data

wd.mod2 <- lme(Ymeas ~ 1, data=wd2, random = ~ 1 | Part/Operator)

summary(wd.mod2)

library(lmerTest)

wd.mod3 <- lmer(Ymeas ~ 1 + (1|Part) + (1|Operator) + (1|Part:Operator))

summary(wd.mod3)

3.5.9 Measurement of Alcohol Content In Distilled Spirits

wac <- read.csv("whisky_alccont.csv")

attach(wac); names(wac)

spiritType <- factor(spiritType)
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brandSprt <- factor(brandSprt)

Y <- alcCntnt - labelAC

dist.mod1 <- aov(Y ~ spiritType + spiritType/brandSprt)

anova(dist.mod1)

TukeyHSD(dist.mod1,"spiritType")

3.5.10 Momentum Measurements for Animal Traps

trap <- read.csv("http://www.stat.ufl.edu/~winner/data/animal_trap.csv")

attach(trap); names(trap)

model <- factor(model)

trapModel <- factor(trapModel)

trap.mod1 <- aov(momentum ~ model + model/trapModel)

anova(trap.mod1)

trap.mod2 <- aov(momentum ~ model + Error(trapModel))

summary(trap.mod2)

options(contrasts=c("contr.sum","contr.poly"))

library(nlme)

trap2 <- groupedData(momentum ~ model | model/trapModel)

trap.mod3 <- lme(momentum ~ model, data=trap2, random= ~1|model/trapModel)

summary(trap.mod3)

library(lmerTest)

trap.mod4 <- lmer(momentum ~ model + (1|model:trapModel))

summary(trap.mod4)

3.5.11 Variation in Semiconductor Wafers

semicon <- read.table("http://www.stat.ufl.edu/~winner/data/semicon_qual.dat",

header=F,col.names=c("batch","waferBtch","wafer","location","Y"))

attach(semicon)

batch <- factor(batch)

wafer <- factor(wafer)

semi.mod1 <- aov(Y ~ batch + batch/wafer)

anova(semi.mod1)

library(lmerTest)

semi.mod2 <- lmer(Y ~ 1 + (1|batch/wafer))

summary(semi.mod2)
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3.5.12 Axion Densities in Eyes of Normal and Alzheimers Patients

axioneyes <- read.csv("http://www.stat.ufl.edu/~winner/data/alzheimers_eyes.csv")

attach(axioneyes); names(axioneyes)

subject <- factor(subject)

alz_grp <- factor(alz_grp)

eye <- factor(eye)

options(contrasts=c("contr.sum","contr.poly"))

eyes.mod1 <- aov(axondens ~ alz_grp + alz_grp/subject + eye + alz_grp:eye)

summary(eyes.mod1)

eyes.mod2 <- aov(axondens ~ alz_grp * eye + Error(subject))

summary(eyes.mod2)

library(lmerTest)

eyes.mod3 <- lmer(axondens ~ alz_grp * eye + (1|alz_grp:subject))

summary(eyes.mod3)

anova(eyes.mod3)

difflsmeans(eyes.mod3)

3.5.13 Chymosin Treatment and Ripening Time Effects on Mozzarella Cheese

chym <- read.csv("http://www.stat.ufl.edu/~winner/data/camel_cheese.csv")

attach(chym); names(chym)

c.trt <- factor(c.trt)

c.blk <- factor(c.blk)

c.time <- factor(c.time)

options(contrasts=c("contr.sum","contr.poly"))

chym.mod1 <- aov(blister ~ c.trt*c.blk + c.time + c.trt:c.time)

summary(chym.mod1)

library(lmerTest)

chy.mod2 <- lmer(blister ~ c.trt*c.time + (1|c.blk) + (1|c.trt:c.blk))

summary(chy.mod2)

anova(chy.mod2)

difflsmeans(chy.mod2)

3.5.14 Heart Rates Among Skydivers

sd1 <- read.csv("http://www.stat.ufl.edu/~winner/data/skydive.csv")

attach(sd1); names(sd1)

expGrp <- factor(expGrp)

subjGrp <- factor(subjGrp)

jumpTime <- factor(jumpTime)

## AOV with incorrect error term for expGrp

sd.mod1 <- aov(heartRt ~ expGrp*jumpTime + subjGrp:expGrp)

summary(sd.mod1)
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library(nlme)

options(contrasts=c("contr.sum","contr.poly"))

sd2 <- groupedData(heartRt ~ jumpTime | expGrp/subjGrp)

## Generalized Least Squares with Compound Symmetry

sd.mod2a <- gls(heartRt ~ expGrp * jumpTime,

corr = corCompSymm(form = ~ 1 | subjGrp))

summary(sd.mod2a)

anova(sd.mod2a)

AIC(sd.mod2a)

getVarCov(sd.mod2a)

intervals(sd.mod2a)

## Generalized Least Squares with Unstructured Covariance Structure

sd.mod3a <- gls(heartRt ~ expGrp * jumpTime,

corr = corCompSymm(form = ~ 1 | subjGrp),

weight = varIdent(form = ~ 1 | jumpTime))

summary(sd.mod3a)

anova(sd.mod3a)

AIC(sd.mod3a)

getVarCov(sd.mod3a)

intervals(sd.mod3a)

anova(sd.mod2a, sd.mod3a)



162 CHAPTER 3. FACTORIAL DESIGNS



Chapter 4

Analysis of Covariance

The Analysis of Covariance is generally applied when the goal is to compare treatments or groups in terms
of a numeric response variable after controlling for one or more numeric predictors (covariates) that are
believed to be related to the response. In many situations the covariate is a baseline or pre-treatment score
for the unit, and the response is the post-treatment score. There can be one or more treatment factors and
one or more covariates. Mechanically, the analysis is fit as a multiple regression model with dummy variables
for the treatments and numeric variable(s) for the covariate(s).

4.1 Model with 1 Treatment Factor and 1 Covariate

Consider the model with a single factor with a levels, a single covariate X, and response variable Y . Define
a − 1 dummy variables W1, . . . , Wa−1 as follow.

Wi =

{

1 : if Factor A is at level i i = 1, . . . , a− 1
0 : otherwise

Observations for treatment a receive W1 = · · · = Wa−1 = 0 (as in the multiple regression models with
categorical predictors). The use of Wi instead of X is to simplify notation. Many practitioners center the
covariate(s) around their mean(s) when fitting the model, and that will be done here as well, as it makes
interpreting parameters easier. First, the additive model is described, followed by a model with interaction.

4.1.1 Additive Model - Common Slopes

Let Yij represent the the response for the jth unit within the ith treatment or group, Xij be its covariate
value, and W1ij, . . . , Wa−1,ij be its dummy values for the factors. The additive model can be written as
follows.

163
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Yij = β0 + β1

(

Xij − X ..

)

+ γ1W1ij + · · ·+ γa−1Wa−1,ij + εij i = 1, . . . , a; j = 1, . . . , ni εij ∼ N
(

0, σ2
)

In this model, the slope relating the covariate to the response is assumed to be the same for all treat-
ments/groups. An interaction model allows the slopes to differ, and is considered below. In this model, β0

is interpreted as the mean for treatment a when the covariate is at the overall mean level X .., β1 is the
slope relating the response to the covariate, and γi represents the difference in the mean response between
treatments i and a, controlling for the covariate. If all treatments had the same mean for their covari-
ates, there would be no need for including the covariate, and it would be more efficient to conduct a 1-Way
ANOVA.

The test for treatment effects, after controlling for the covariate can be done using the general linear test
using a comparison of a Complete model (with the covariate and treatment dummy variables) and a Reduced
model with only the covariate, as was done in Chapter 2.

Example 4.1: Skin Smoothing Study

A study compared a = 3 treatments in terms of smoothing skin (Ma’Or, Yehuda, and Voss, 1997, [22]).
The three treatments were: Formulated gel (i = 1), Formulated gel plus 1% Dead Sea concentrate (i = 2),
and Placebo Control (i = 3). The response was a roughness value measured with laser on the skin surface
after 4 weeks of treatment, the covariate was the baseline (pre-treatment) value of the same roughness value.
There were n1 = n2 = n3 = 20 subjects per treatment. Data have been generated to match mean, SD, min,
max, and correlations between pre- and post-treatment scores within each treatment. Summary statistics
are given in Table 4.1. A plot of the data is given in Figure 4.1, along with a vertical line at X.. = 186.89.

The first (Reduced) model contains only the centered covariate as a predictor. The model summary is
given below.

Model 1: Ŷ = 137.537 + 0.697
(

X − X ..

)

SSE1 = 46773 dfE1 = 60 − 2 = 58 R2
1 = .7195

The second (Full) model contains the centered covariate as well as dummy variables for Gel formulation
(W1) and Gel plus Dead Sea concentrate (W2). The model summary is given below.

Model 2: Ŷ = 167.118+0.707
(

X − X ..

)

−32.245W1−56.599W2 SSE2 = 14666 dfE2 = 60−4 = 56 R2
2 = .9121

A test of whether there are differences among the treatment effects, controlling for pre-treatment score is
given below, making use of the F -test for a subset of regression coefficients in Section 2.3.

H0 : γ1 = γ2 = 0 TS : Fobs =

[

46773−14666
58−56

]

[

14666
56

] =
16053.5

261.9
= 61.3 P (F2,56 ≥ 61.3) < .0001

There is strong evidence of differences among the treatment effects. The t-tests, given with the R output
below show that both gel only and gel plus Dead Sea concentrate have significantly lower roughness scores
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Figure 4.1: Plot of Post-Treatment Roughness Scores versus Pre-Treatment by Treatment Group

than the control group, controlling for baseline score. For gel only t1 = −32.245/5.118 = −6.301, while for
gel plus Dead Sea concentrate t2 = −56.599/5.120 = −11.035; both P -values are less than .0001. A plot of
the additive model (using the original X values) is given in Figure 4.2.

∇

Gel (i = 1) Gel+DeadSea (i = 2) Placebo (i = 3)

Pre-Trt (X) 186.14 (76.44) 189.61 (61.9) 184.93 (57.6)
Post-Trt (Y ) 134.34 (54.06) 112.54 (35.53) 165.73 (55.83)

Table 4.1: Roughness Means (SDs) by Treatment Pre-Treatment and Post-Treatment (20 subjects per
treatment)

> ## Covariate Only Model

> dsm.mod1 <- lm(post_y ~ xc)

> summary(dsm.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 137.53667 3.66612 37.52 <2e-16 ***

xc 0.69686 0.05713 12.20 <2e-16 ***

Residual standard error: 28.4 on 58 degrees of freedom

Multiple R-squared: 0.7195, Adjusted R-squared: 0.7147
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Figure 4.2: Plot of Additive Model - Skin Softening Study

F-statistic: 148.8 on 1 and 58 DF, p-value: < 2.2e-16

> anova(dsm.mod1)

Analysis of Variance Table

Response: post_y

Df Sum Sq Mean Sq F value Pr(>F)

xc 1 119991 119991 148.79 < 2.2e-16 ***

Residuals 58 46773 806

> ## Additive Model

> dsm.mod2 <- lm(post_y ~ xc + gel + gelDS)

> summary(dsm.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 167.11784 3.61923 46.175 < 2e-16 ***

xc 0.70732 0.03257 21.716 < 2e-16 ***

gel -32.24500 5.11771 -6.301 4.91e-08 ***

gelDS -56.49853 5.11983 -11.035 1.14e-15 ***

Residual standard error: 16.18 on 56 degrees of freedom

Multiple R-squared: 0.9121, Adjusted R-squared: 0.9073

F-statistic: 193.6 on 3 and 56 DF, p-value: < 2.2e-16

> anova(dsm.mod2)

Analysis of Variance Table

Response: post_y

Df Sum Sq Mean Sq F value Pr(>F)

xc 1 119991 119991 458.1660 < 2.2e-16 ***

gel 1 214 214 0.8177 0.3697

gelDS 1 31893 31893 121.7764 1.141e-15 ***
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Residuals 56 14666 262

> anova(dsm.mod1,dsm.mod2)

Analysis of Variance Table

Model 1: post_y ~ xc

Model 2: post_y ~ xc + gel + gelDS

Res.Df RSS Df Sum of Sq F Pr(>F)

1 58 46773

2 56 14666 2 32107 61.297 7.888e-15 ***

The Adjusted Means are the estimated responses for the treatment groups when the covariate(s) are at

their mean levels. For the model with the X values centered, that removes the term involving β̂1 from the
fitted equation. Note that the intercept, β̂0 is the adjusted mean for the reference group.

Y
Adj
1 = β̂0 + γ̂1 . . . Y

Adj
a−1 = β̂0 + γ̂a−1 Y

Adj
a = β̂0

While it is easy to obtain the standard errors of the adjusted mean for the reference group, and the
differences of the adjusted means for the a− 1 other groups with the reference group from summary output,
other means and differences must be obtained from the variance-covariance matrix of the estimated regression
coefficients. This can be obtained with the vcov function applied to an lm object (and many others) in R.
For instance, to obtain the estimated standard error for the adjusted mean for Treatment 1 or the difference
in adjusted means for Treatments 1 and 2, the following results can be used.

ŜE

{

Y
Adj
1

}

= ŜE
{

β̂0 + γ̂1

}

=

√

V̂
{

β̂0

}

+ V̂ {γ̂1} + 2 ˆCOV
{

β̂0, γ̂1

}

ŜE

{

Y
Adj
1 − Y

Adj
2

}

= ŜE {γ̂1 − γ̂2} =

√

V̂ {γ̂1} + V̂ {γ̂2} − 2 ˆCOV {γ̂1, γ̂2}

Example 4.2: Skin Smoothing Study

The estimated adjusted means and their differences are given below for the skin smoothing study.

Y
Adj
1 = 167.118− 32.245 = 134.873 Y

Adj
2 = 167.118− 56.499 = 110.619 Y

Adj
3 = 167.118

Y
Adj
1 − Y

Adj
2 = −32.245− (−56.499) = 24.254 Y

Adj
1 − Y

Adj
3 = −32.245 Y

Adj
2 − Y

Adj
3 = −56.499

The estimated variance-covariance matrix is given below. Estimated standard errors and t-tests and/or
Confidence Intervals are obtained from it.

> round(vcov(dsm.mod2),4)

(Intercept) xc gel gelDS
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(Intercept) 13.0988 0.0021 -13.0972 -13.1045

xc 0.0021 0.0011 -0.0013 -0.0050

gel -13.0972 -0.0013 26.1910 13.1007

gelDS -13.1045 -0.0050 13.1007 26.2127

ŜE

{

Y
Adj
1

}

=
√

13.0988 + 26.1910 + 2(−13.0972) =
√

13.0954 = 3.619

ŜE

{

Y
Adj
2

}

=
√

13.0988 + 26.2127 + 2(−13.1045) =
√

13.1025 = 3.620

ŜE

{

Y
Adj
3

}

=
√

13.0988 = 3.619

ŜE

{

Y
Adj
1 − Y

Adj
2

}

=
√

26.1919 + 26.2127− 2(13.1007) =
√

26.2032 = 5.119

ŜE

{

Y
Adj
1 − Y

Adj
3

}

=
√

26.1910 = 5.118

ŜE

{

Y
Adj
2 − Y

Adj
3

}

=
√

26.2127 = 5.120

Note that for 56 degrees of freedom, t.025 = 2.003. 95% Confidence Intervals for the three treatment
population means and differences among pairs of them are given below (without making adjustments for
simultaneous intervals).

Trt 1: 134.873± 2.003(3.619) ≡ 134.873± 7.249 ≡ (127.624, 142.122)

Trt 2: 110.619± 2.003(3.620) ≡ 110.619± 7.251 ≡ (103.368, 1417.870)

Trt 1: 167.118± 2.003(3.619) ≡ 167.118± 7.249 ≡ (159.869, 174.367)

Trt 1-2: 24.254± 2.003(5.119) ≡ 24.254± 10.253 ≡ (14.001, 34.507)

Trt 1-3: − 32.245± 2.003(5.118) ≡ −32.245± 10.251 ≡ (−42.496,−21.994)

Trt 2-3: − 56.499± 2.003(5.120) ≡ −56.499± 10.255 ≡ (−66.754,−46.244)

All pairs of treatments are significantly different. The Gel formulation plus Dead Sea concentrate gives the
best (lowest) roughness values, followed by Gel formulation, and then Placebo. Output from R making use
of the lsmeans package, computing the adjusted means and simultaneous 95% Confidence Intervals making
a Tukey adjustment is given below. These intervals are wider since they have simultaneous coverage with
95% confidence. To obtain them, replace t.025,56 above with q.05,3,56/

√
2 = 2.408. Note that the uncentered

X values were used and the least squares means are obtained at X...

∇
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> dsm.mod2b <- lm(post_y ~ factor(Trt) + pre_x)

> marginal = lsmeans(dsm.mod2b,

+ ~ Trt:pre_x)

>

> cld(marginal,

+ alpha = 0.05,

+ Letters = letters, ### Use lower-case letters for .group

+ adjust = "tukey") ### Tukey-adjusted comparisons

Trt pre_x lsmean SE df lower.CL upper.CL .group

2 186.8928 110.6193 3.619743 56 101.7102 119.5284 a

1 186.8928 134.8728 3.618745 56 125.9662 143.7795 b

3 186.8928 167.1178 3.619227 56 158.2100 176.0257 c

Confidence level used: 0.95

Conf-level adjustment: sidak method for 3 estimates

P value adjustment: tukey method for comparing a family of 3 estimates

significance level used: alpha = 0.05

4.1.2 Interaction Model - Different Slopes

The possibility that the slope relating the covariate to the response can differ by treatment can be tested
in the regression framework. As before, interaction terms are obtained by taking cross-product terms of the
numeric covariate(s) with the dummy variables representing the treatments. In the case of a single centered
covariate X and a single treatment factor with a levels, the model is given as follows.

Yij = β0+β1

(

Xij − X ..

)

+γ1W1ij+· · ·+γa−1Wa−1,ij+δ1

(

Xij − X ..

)

W1ij+· · ·+δa−1

(

Xij − X..

)

Wa−1,ij+εij

The δ coefficients represent the difference in slope for the various treatments and that for the reference
category.

i = 1 : E {Y1j} = β0 + β1

(

Xij − X..

)

+ γ1(1) + δ1

(

Xij − X ..

)

(1) = (β0 + γ1) + (β1 + δ1)
(

Xij − X ..

)

i = a : E {Yaj} = β0 + β1

(

Xij − X ..

)

The test for interaction is of the form H0 : γ1 = · · ·γa−1 = 0, and involves comparing the full model
containing the centered X values, a − 1 dummy variables for the treatments, and a − 1 cross-product terms
to the reduced model with the cross-product terms removed.

Example 4.3: Skin Smoothing Study

The interaction model was fit for the skin smoothing study with the following results.

Model 3: Ŷ = 167.611+0.958
(

X − X ..

)

−32.767W1−56.564W2−0.290
(

X − X..

)

W1−0.408
(

X − X..

)

W2

SSE3 = 8719 dfE3 = 60 − 6 = 54 R2
3 = .9477
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Figure 4.3: Plot of Interaction Model - Skin Softening Study

The test for Interaction effects (H0 : δ1 = δ2 = 0) compares the full model (Model 3) with the reduced
model (Model 2). The F -test is given below. The test is highly significant indicating that the slopes differ
by treatment. A plot of the fitted equations based on the original X values is given in Figure 4.3.

H0 : δ1 = δ2 = 0 TS : Fobs =

[

14666−8719
56−54

]

[

8719
54

] =
2973.5

161.5
= 18.4 P (F2,54 ≥ 18.4) < .0001

Since there is a significant interaction, the treatment effects differ depending on the pre-treatment score.
The adjusted means could be compared at various levels of X. Based on Figure 4.3, it appears the higher
the pre-treatment score (higher baseline roughness) the larger the differences in the treatments. All pairs of
treatments are significantly different at X = 140, X = 170, and X = 230, which represent approximately
the lower quartile, median, and upper quartile, respectively, of the baseline scores. Calculations making use
of matrix algebra lead to the results in Table 4.2.

∇
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X=140 1-2 1-3 2-3
Mean 40.32342 -73.4192 -113.743
SE 9.238539 9.811427 10.48674
LB 21.80126 -93.0899 -134.767
UB 58.84558 -53.7484 -92.7179

X=170 1-2 1-3 2-3
Mean 43.86492 -82.1303 -125.995
SE 10.88745 11.5685 12.43188
LB 22.03689 -105.324 -150.92
UB 65.69295 -58.9368 -101.071

X=230 1-2 1-3 2-3
Mean 50.94792 -99.5525 -150.5
SE 14.29506 15.18427 16.42047
LB 22.28806 -129.995 -183.421
UB 79.60778 -69.1098 -117.579

Table 4.2: Comparison of Adjusted means among treatments for Interaction model - Skin Softening Study

4.2 Extended Models

Making use of the regression framework, Analysis of Covariance (aka ANCOVA) models can be generalized to
more than one covariate and more than one treatment factor, although it is much more difficult to visualize
graphically. Suppose a model has 2 Factors: A with a levels and B with b levels and p covariates. An
additive model with respect to the covariates could be written as follows with subscript i representing factor
A level, j factor B level and k representing replicate number within treatment.

Yijk = β0 +

p
∑

m=1

βm

(

Xmijk − Xm...

)

+

a−1
∑

i=1

WA
ijk +

b−1
∑

j=1

WB
ijk +

a−1
∑

i=1

b−1
∑

j=1

WA
ijkWB

ijk + εijk

Here, Xmijk represents the level of the mth covariate for the experimental unit, with WA
ijk and WB

ijk being
dummy variables for the levels of factors A and B.

Example 4.4: Factors Associated with Project Quality

An experiment was conducted to measure the effects of factors that effect project quality (Eubanks, Murphy,
and Mumford, 2010, [11]). The researchers measured the quality of students’ plans for setting up a college
psychology club. There were three factors. Factor A was intuition, which was classified based on the student’s
scores on a series of decisions, with a = 2 levels (High/Low). Factor B was affect, which was assigned at
random to students with b = 2 levels: positive and neutral; these were two different musical passages the
students were exposed to. Factor C was the student’s training method with c = 4 levels: associational model,
mental model, fit appraisal, and control (no training). The model included p = 3 covariates: intelligence,
openness, and class year (1=Freshman, etc). Intelligence and openness were measured using accepted scales
from the literature. There were a total of n.. = 320 participants and the analysis included all main effects,
2-way, and the 3-way interactions among the 3 factors, along with the three covariates.
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∇

4.3 R Programs for Chapter 4 Examples

4.4 Skin Smoothing Study

dsm <- read.csv("deadseaminerals.csv")

attach(dsm); names(dsm)

plot(post_y ~ pre_x, pch=Trt, xlab="Pre-Trt (X)", ylab="Post-Trt (Y)")

abline(v=mean(pre_x))

legend(60,275,c("Gel","Gel+DeadSea","Placebo"),pch=1:3)

xc <- pre_x - mean(pre_x)

## Covariate Only Model

dsm.mod1 <- lm(post_y ~ xc)

summary(dsm.mod1)

anova(dsm.mod1)

## Additive Model

dsm.mod2 <- lm(post_y ~ xc + gel + gelDS)

summary(dsm.mod2)

anova(dsm.mod2)

round(vcov(dsm.mod2),4)

anova(dsm.mod1,dsm.mod2)

dsm.mod2a <- lm(post_y ~ pre_x + gel + gelDS)

x.range <- seq(0,400,0.1)

yh.plac <- coef(dsm.mod2a)[1] + x.range*coef(dsm.mod2a)[2]

yh.gel <- coef(dsm.mod2a)[1] + x.range*coef(dsm.mod2a)[2] + coef(dsm.mod2a)[3]

yh.gelDS <- coef(dsm.mod2a)[1] + x.range*coef(dsm.mod2a)[2] + coef(dsm.mod2a)[4]

plot(post_y ~ pre_x, pch=Trt, xlab="Pre-Trt (X)", ylab="Post-Trt (Y)",

xlim=c(0,400), ylim=c(0,400))

lines(x.range,yh.gel,lty=1)

lines(x.range,yh.gelDS,lty=2)

lines(x.range,yh.plac,lty=5)

legend(10,360,c("Gel","Gel+DeadSea","Placebo"),pch=c(1,2,3),lty=c(1,2,5))

dsm.mod2b <- lm(post_y ~ factor(Trt) + pre_x)

# install.packages("lsmeans")

library(lsmeans)

marginal = lsmeans(dsm.mod2b,

~ Trt:pre_x)

cld(marginal,

alpha = 0.05,

Letters = letters, ### Use lower-case letters for .group

adjust = "tukey") ### Tukey-adjusted comparisons
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## Interaction Model

dsm.mod3 <- lm(post_y ~ xc + gel + gelDS + I(xc*gel) + I(xc*gelDS))

summary(dsm.mod3)

anova(dsm.mod3)

round(vcov(dsm.mod3),4)

anova(dsm.mod2,dsm.mod3)

dsm.mod3a <- lm(post_y ~ pre_x + gel + gelDS + I(pre_x*gel) + I(pre_x*gelDS))

x.range <- seq(0,400,0.1)

yh.plac <- coef(dsm.mod3a)[1] + x.range*coef(dsm.mod3a)[2]

yh.gel <- coef(dsm.mod3a)[1] + x.range*coef(dsm.mod3a)[2] +

coef(dsm.mod3a)[3] + x.range*coef(dsm.mod3a)[5]

yh.gelDS <- coef(dsm.mod3a)[1] + x.range*coef(dsm.mod3a)[2] +

coef(dsm.mod3a)[4] + x.range*coef(dsm.mod3a)[6]

plot(post_y ~ pre_x, pch=Trt, xlab="Pre-Trt (X)", ylab="Post-Trt (Y)",

xlim=c(0,400), ylim=c(0,400))

lines(x.range,yh.gel,lty=1)

lines(x.range,yh.gelDS,lty=2)

lines(x.range,yh.plac,lty=5)

legend(10,360,c("Gel","Gel+DeadSea","Placebo"),pch=c(1,2,3),lty=c(1,2,5))
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Chapter 5

Generalized Linear Models

Previous chapters have been based on the data (or some transformation of the data) being normally dis-
tributed. In this chapter models are fit for data that follow other distributions. When the distributions are
in the exponential family, these are referred to as generalized linear models. In this chapter, models for
Binomial, Poisson, Negative Binomial, Gamma, and Beta random variables will be covered. The chapter
begins with examples of data from each of the families without predictor variables. Then the models will be
fit allowing for predictor variables.

5.1 Examples of Random Variables from Non-Normal Distribu-

tions

In this section, examples of random variables that are modeled by the Binomial, Poisson, Negative Binomial,
Gamma, and Beta distributions are given. The first three distributions are discrete, with the random
variables taking on only a finite or countably infinite set of distinct outcomes. The final two distributions are
continuous and the random variables can take on any value along a continuum. In this section, parameter
estimation and testing examples are given.

5.1.1 Binomial Distribution

A binomial experiment consists of a set of n independent Bernoulli trials, each of which can end in one of
two outcomes: Success or Failure. The probability of success, labeled π, is assumed to be constant across
trials. The random variable Y , is the number of observed Successes in the n trials and can only take on
the values y = 0, 1, . . . , n. In practice, the goal is to estimate and make inference regarding the unknown π
based on sample data. The probability distribution of Y based on a sample of n trials is given below, along
with its mean and variance.

P (Y = y) = p(y) =

(

n!

y!(n − y)!

)

πy (1 − π)
n−y

y = 0, 1, . . . , n 0 < π < 1 E {Y } = nπ V {Y } = nπ (1 − π)

175
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The first term in the probability gives the number of arrangements of the n trials that can end in exactly y
successes, the second term gives the probability of each of those distinct outcomes assuming independence.

An unbiased estimator for π is given below along with its mean, variance and standard error. In large
samples, the estimator’s sampling distribution is approximately normal.

π̂ =
Y

n
E {π̂} = π V {π̂} =

π(1 − π)

n
SE {π̂} =

√

π(1 − π)

n

Once the experiment has been conducted or a sample is taken, the observed number of successes, y, is used
to make inference regarding π.

A large-sample (1 − α)100% Confidence Interval is obtained below.

π̂ ± zα/2ŜE {π̂} ≡ π̂ ± zα/2

√

π̂ (1 − π̂)

n

An exact Confidence Interval can be obtained as the set of π values which are “consistent” with having
observed y successes in n trials and can be obtained with a computer package or spreadsheet.

A large-sample 2-sided test of whether π = π0 can be conducted as follows, again an exact test can be
obtained with a computer package or spreadsheet.

H0 : π = π0 HA : π 6= π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Suppose there are m independent binomial experiments, each with common success probability π. For the
ith experiment there is ni trials and yi observed successes. The joint probability mass function is the product
of the individual probability mass functions.

p (y1, . . . , ym) =

m
∏

i=1

(

ni!

yi! (ni − yi)!

)

πy
i (1 − π)

ni−yi =

(

m
∏

i=1

(

ni!

yi! (ni − yi)!

)

)

πy. (1 − π)
n.−y.

n. =

m
∑

i=1

ni y. =

m
∑

i=1

yi

Once the data (y1, n1) , . . . , (ym, nm) have been observed, then p (y1, . . . , ym) is a function of the unknown
parameter π, and is called the likelihood function, and often denoted by L(π). The Maximum Like-
lihood Estimator (MLE) of π is the value π̂ that maximizes the likelihood function. Calculus is used
to obtain the estimator, however it is often easier to work with the log of the likelihood function. The
logarithm is a monotonic function, so it is maximized at the same value of the variable to be maximized as
the likelihood function.

In the case of the Binomial Distribution, the log-likelihood is given as follows.

l(π) = log (L(π) = log

[(

m
∏

i=1

(

ni!

yi! (ni − yi)!

)

)

πy. (1 − π)
n.−y.

]

=

log

(

m
∏

i=1

(

ni!

yi! (ni − yi)!

)

)

+ y. log(π) + (n. − y.) log (1 − π)
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Take the derivative of l(π) with respect to π, set the derivative to 0, and solve for π̂. The derivative is given
below along with the MLE, which is obtained by algebra once the derivative is set to 0.

dl(π)

dπ
=

y.

π
+

n. − y.

1 − π
⇒ π̂ =

y.

n.

Example 5.1: WNBA Free Throw Shooting - Maya Moore

Maya Moore is a Women’s professional basketball star player. Interest in her in game free throw shooting
skill could involve estimating her true underlying success probability or testing whether or not it is equal to
some null value, say π0 = .80. Note that basketball free throws are unguarded from a constant distance to
the basket. During the 2014 season, Maya attempted n = 181 free throws, having successfully made y = 160
of them. For the purposes of this example, it is assumed that her 181 observed free throw attempts are a
random sample of all free throws she could have taken at that point in her career.

A 95% Confidence Interval for her true underlying success rate π and a test of whether π = 0.80 are given
below.

π̂ =
160

181
= 0.884 ŜE {π̂} =

√

0.884 (1 − 0.884)

181
= 0.0238

95% CI for π: 0.884± 1.96(0.0238) ≡ 0.884± 0.047 ≡ (0.837, 0.931)

H0 : π = 0.80 TS : zobs =
0.884− 0.800
√

0.80(1−0.80)
181

=
0.084

0.0297
= 2.828 2P (Z ≥ 2.828) = .0047

Her true success rate appears to have been between .837 and .931, with strong evidence it exceeds .80.

R output is given below. It reports the estimated logit (log(odds)). The estimate of π is obtained by
back-transforming. Let γ̂ be the estimated logit, then π̂ can be obtained as follows. Note that γ̂ can take
on any value on the real line, while π̂ is constrained to (0, 1).

γ̂ = log

(

π̂

1 − π̂

)

⇒ π̂ =
eγ̂

1 + eγ̂
=

1

1 + e−γ̂

γ̂ = 2.0307 ⇒ π̂ =
e2.0307

1 + e2.0307
=

7.6194

1 + 7.6194
= 0.884

∇

> mm_ft <- c(rep(1,160),rep(0,21))

>

> table(mm_ft)

mm_ft

0 1

21 160



178 CHAPTER 5. GENERALIZED LINEAR MODELS

> mm.mod1 <- glm(mm_ft ~ 1,binomial("logit"))

> summary(mm.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0307 0.2321 8.749 <2e-16 ***

AIC: 131.93

5.1.2 Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect of
the Poisson family is that the mean and variance are the same. This is is problematic in many applications
where the variance can be larger than the mean. The probability distribution, mean and variance of Y are
given below.

P (Y = y) = p(y) =
e−µµy

y!
y = 0, 1, . . . µ > 0 E {Y } = µ V {Y } = µ

When a random sample of n Poisson random variables are observed with common µ, the joint probability mass
function is obtained as the product of the individual probability mass functions. This is also the likelihood
function for µ once y1, . . . , yn are observed. The following are the joint probability mass/likelihood function,
log likelihood function, its derivative and the MLE for µ.

L(µ) = p (y1, . . . , yn) =

n
∏

i=1

e−µ (µ)
yi

yi!
=

e−nµ (µ)
∑

n

i=1
yi

∏n
i=1 yi!

l(µ) = log(L) = −nµ +

n
∑

i=1

yi log(µ) − log

(

n
∏

i=1

yi!

)

dl(µ)

dµ
= −n +

∑n
i=1 yi

µ
⇒ µ̂ =

∑n
i=1 yi

n

An unbiased estimator of µ is given below along with its mean, variance and standard error. The sampling
distribution of the estimator is approximately normal in large samples.

µ̂ =
Y

n
E {µ̂} = µ V {µ̂} =

µ

n
SE {µ̂} =

√

µ

n

A large-sample (1 − α)100% Confidence Interval for µ is given below. A test of whether µ = µ0 is also
described.

µ̂ ± zα/2ŜE {µ̂} ≡ µ̂ ± zα/2

√

µ̂

n

H0 : µ = µ0 HA : µ 6= µ0 TS : zobs =
µ̂ − µ0
√

µ0

n

RR : |Zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Example 5.2: English Premier League Football Total Goals per Game - 2013/14 Season
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Suppose interest is in estimating the population mean combined goals per game among the 2013/14 English
Premier League (EPL) teams, based on the sample of games played in the season (380 total games). There
are 20 teams, and each team plays each other team twice, once at Home, once Away. Assuming a Poisson
model (which may not be reasonable, as different teams play in different games), estimate the underlying
population mean µ. There were 380 games, with a total of 1063 goals, and sample mean and variance of
2.768 and 3.002, respectively. The number of goals and frequencies are given in Table 5.1.

Goals 0 1 2 3 4 5 6 7 8 9
Games 27 75 82 70 63 39 17 4 1 2

Table 5.1: Frequency Tabulation for EPL 2013/2014 Total Goals per Game

µ̂ =

∑n
i=1 Yi

n
=

1063

380
= 2.768 V̂ {µ̂} =

µ̂

n
=

2.768

380
= 0.007285

A 95% Confidence Interval for µ is obtained below.

µ̂ ± z.025

√

V̂ (µ̂) ≡ 2.768± 1.96
√

0.007285 ≡ 2.768± 0.167 ≡ (2.601, 2.935)

Table 5.2 gives the categories (goals), observed and expected counts, for the Poisson and Negative Binomial
(next subsection) and the Chi-Square Goodness-of-fit tests for the two distributions. The goodness-of-fit test
statistics are computed as follows, where Oi is the Observed count for the ith category, Ei is the Expected
count for the ith category, and N is the total number of observations.

π̂i = P (Y = i) =
eµ̂µ̂i

i!
i = 0 . . . , 6 Ei = N · π̂i i = 0 . . . , 6 O7 = N −

6
∑

i=0

Oi E7 = N −
6
∑

i=0

Ei

X2
GOF =

7
∑

i=0

(Oi − Ei)
2

Ei

Goals Observed Expected(Poisson) Expected(Neg Bin)
0 27 23.85 26.71
1 75 66.02 68.05
2 82 91.39 89.41
3 70 84.34 80.69
4 63 58.37 56.22
5 39 32.32 32.23
6 17 14.91 15.82

≥ 7 7 8.80 10.87

Table 5.2: Frequency Tabulation and Expected Counts for EPL 2013/2014 Total Goals per Game

The degrees of freedom for the Chi-Square Goodness-of-Fit test is one less than the number of categories
minus the number of estimated parameters. In the case of the EPL Total goals per game with a Poisson
distribution, there are 8 categories (0, 1, . . . , 7+) and one estimated parameter (µ), for 8-1-1=6 degrees of
freedom.

X2
GOF-Poi

=
(27 − 23.85)

2

23.85
+ · · ·+ (7 − 8.80)

2

8.80
= 9.695 χ2 (0.05, 6) = 12.592 P

(

χ2
6 ≥ 9.695

)

= .1381
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Fail to reject the hypothesis that total goals per game follows a Poisson distribution. A comparison of the
Poisson model and the Negative Binomial model is given below. Output from an R program estimating the
log of µ is given along with the Negative Binomial case below.

∇

5.1.3 Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rth success occurs. The random variable Y is the number of trials needed until the rth

success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance areas follow.

P (Y = y) = p(y) =
(y − 1)!

(r − 1)!(y − r)!
πr (1 − π)

y − r y = r, r + 1, . . . E {Y } =
r

π
V {Y } =

r (1 − π)

π2
.

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as follows (see e.g. Cameron and Trivedi,
2005, [8], and Agresti, 2002, [1]).

P (Y = y) = p(y) =
Γ
(

α−1 + y
)

Γ (α−1) Γ (y + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)y

Γ(w) =

∫ ∞

0

xw−1e−xdx = (w − 1)Γ (w − 1) .

The mean and variance of this form of the Negative Binomial distribution are as follow.

E {Y } = µ V {Y } = µ (1 + αµ)

If a random sample of n observations from a Negative Binomial distribution with parameters µ and α−1

have been observed, the likelihood function is of the following form based on y1, . . . , yn.

L
(

µ, α−1
)

=
n
∏

i=1

Γ
(

α−1 + yi

)

Γ (α−1) Γ (yi + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)yi

There are not closed-form estimators for µ and α−1, and they are estimated using iterative methods in
standard statistical software packages or in matrix form using a computer matrix language.

Example 5.3: English Premier League Football Total Goals per Game - 2013/14 Season

The Poisson model does appear to fit the data well, and the variance (3.002) is not much larger than
the mean (2.768). As an example, a Negative Binomial model is fit to the data with Maximum Likelihood
estimates for µ and α−1 being 2.768 and 32.00, respectively. Based on these values, the fitted probabilities
lead to the expected counts for the 8 goal categories given in the last column of Table 5.2. As with the
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Poisson model, a goodness-of-fit test can be conducted, the degrees of freedom for the chi-square statistic
are now 8-1-2=5. The statistic is set up below.

X2
GOF-NB

=
(27 − 26.71)

2

26.71
+ · · ·+ (7 − 10.87)

2

10.87
= 9.414 χ2 (0.05, 5) = 11.071 P

(

χ2
5 ≥ 9.414

)

= .0937

Fail to reject the hypothesis that total goals per game follows a Negative Binomial distribution. A comparison
of the Poisson model and the Negative Binomial model leads to a Likelihood Ratio test statistic of 1.256 on
1 degree of freedom (the difference in the numbers of parameters). The P -value is .262, leading to choose the
simpler Poisson model over the more complex Negative Binomial. R output is given below for the Poisson
and Negative Binomial models. Note that the log of µ is being estimated. The output labels α−1 as “Theta.”
Making use of the estimates log (µ̂) and ˆα−1, the mean and variance are estimated as follow.

µ̂ = e1.01828 = 2.768 V̂ {Y } = µ̂

(

1 − µ̂

ˆα−1

)

= 2.768

(

1 +
2.768

32.0

)

= 3.007

∇

> library(MASS)

> mod1 <- glm(totEng~1,family="poisson")

> summary(mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.01828 0.03083 33.03 <2e-16 ***

(Dispersion parameter for poisson family taken to be 1)

AIC: 1466.2

> mod2 <- glm.nb(totEng~1)

> summary(mod2)

Call:

glm.nb(formula = totEng ~ 1, init.theta = 32.00072139, link = log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.01828 0.03214 31.68 <2e-16 ***

(Dispersion parameter for Negative Binomial(32.0007) family taken to be 1)

AIC: 1467

Theta: 32.0

Std. Err.: 30.4

2 x log-likelihood: -1462.983

>

> X2.poi.nb <- -2*(logLik(mod1)-logLik(mod2))

> X2.05 <- qchisq(.95,1)

> X2.pval <- 1-pchisq(X2.poi.nb,1)

>

> print(round(cbind(X2.poi.nb,X2.05,X2.pval),3))

X2.poi.nb X2.05 X2.pval

[1,] 1.256 3.841 0.262

5.1.4 Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale



182 CHAPTER 5. GENERALIZED LINEAR MODELS

parameters:

f(y) =
1

Γ(α)βα
yα−1e−y/β y ≥ 0, α > 0, β > 0 E {Y } = µY = αβ V {Y } = αβ2

Here, Γ(α) is the gamma function Γ(α) =
∫∞

0
yα−1e−ydy and is built-in to virtually all statistical packages

and spreadsheets. It also has two simple properties.

α > 1 : Γ(α) = (α − 1)Γ(α − 1) Γ

(

1

2

)

=
√

π.

Thus, if α is an integer, Γ(α) = (α − 1)!. The second version given here is in terms of shape and rate

parameters.

f(y) =
θα

Γ(α)
yα−1e−yθ y ≥ 0, α > 0, θ > 0 E {Y } = µY =

α

θ
V {Y } =

α

θ2

Once a sample of size n has been obtained, the likelihood function for the second parameterization is the
following.

L (α, θ) =
n
∏

i=1

θα

Γ(α)
yα−1

i e−yiθ =

[

θα

Γ(α)

]n
(

n
∏

i=1

yα−1
i

)

e−
∑

n

i=1
yiθ

Note that different software packages use different parameterizations in generating samples and giving tail-
areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second. As
in the case of the Negative Binomial distribution, the parameters must be estimated iteratively with no
closed-form solutions.

Example 5.4: Running Speeds Among Females at a Marathon

The running speeds (miles per hour) among n = 1045 females who completed the Rock and Roll Marathon
in Washington are all positive and are seen to be skewed right. The histogram and corresponding gamma
distribution are shown in Figure 5.1. Here times are treated as a random sample of times from a larger
conceptual population. Maximum Likelihood estimates of α and θ for the second parameterization are
49.381 and 8.456, respectively. The gamma density with these parameters (multiplied by 1045) is included
in Figure 5.1. The mean and variance of are given speeds are given below.

E {Y } =
49.381

8.456
= 5.840 V {Y } =

49.381

(8.456)2
= 0.691

R Output is given below. Note that it is estimating the log of the mean with the Intercept parameter, and
the reciprocal of α with the dispersion parameter.

α̂ =
1

0.02025082
= 49.381

α̂

θ̂
= e1.764703 = 5.840 ⇒ θ̂ = [0.02025082(5.840)]

−1
= 8.456

∇

> rrf.mod1 <- glm(f.mph ~ 1, family=Gamma(link="log"))

> summary(rrf.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.764703 0.004402 400.9 <2e-16 ***

(Dispersion parameter for Gamma family taken to be 0.02025082)

AIC: 2530
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Histogram of f.mph
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Figure 5.1: Marathon speeds for female runners at 2015 Rock & Roll Marathon in Washington, DC

5.1.5 Beta Distribution

The Beta distribution can be used to model data that are proportions (or percentages divided by 100). The
traditional model for the Beta distribution is as follows.

f (y; α, β) =
Γ (α + β)

Γ (α) Γ (β)
yα−1 (1 − y)

β−1
0 < y < 1; α > 0, β > 0

E {Y } =
α

α + β
V {Y } =

αβ

(α + β)
2
(α + β + 1)

An alternative formulation of the distribution involves setting a re-parameterizing as follows. It is the
formulation used in the betareg package in R.

µ =
α

α + β
φ = α + β ⇒ α = µφ β = (1 − µ)φ

f (y; α, β) =
Γ (φ)

Γ (µφ) Γ ((1 − µ)φ)
yµφ−1 (1 − y)

(1−µ)φ−1

Once a sample of size n has been obtained, the likelihood function for the second parameterization is the
following.

L (α, β) =

n
∏

i=1

Γ (φ)

Γ (µφ) Γ ((1 − µ)φ)
yµφ−1

i (1 − yi)
(1−µ)φ−1

=

[

Γ (φ)

Γ (µφ)Γ ((1 − µ)φ)

]n n
∏

i=1

yµφ−1
i (1 − yi)

(1−µ)φ−1
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In this formulation, the logit (log odds) of the mean (of the proportions) is estimated as the Intercept and
φ is estimated as the precision parameter.

µ =
α

α + β
γ = log

(

µ

1 − µ

)

µ =
eγ

1 + eγ
φ = α + β

Example 5.5: NBA Team/Game Free Throw Proportions

For the National Basketball Association 2016/17 regular season, data is obtained for each team’s free throw
proportion made by game. There are 30 teams, each playing 82 games, thus there are 2460 team/games.
Algorithms can have problems when some proportions are 0 or 1, so in this example, “Wilson-Agresti-Coull”
method is used for the game proportions. This involves the addition of 2 successes and 2 failures to the
observed number of successes and failures. Thus, if a team made 20 free throws out of 24 attempts, the
proportion for that game would be (20 + 2)/(24 + 4) = 22/28 = .7857. Maximum Likelihood estimates for
γ and φ are 0.983 and 27.439, respectively. This leads to the following estimates.

µ̂ =
e0.983

1 + e0.983
= 0.728 α̂ = 27.439(0.728) = 19.967 β̂ = 27.439(1− 0.728) = 7.471

These lead to the following fitted means and variances directly from α̂ and β̂.

µ̂ =
19.967

19.967 + 7.471
=

19.967

27.438
= 0.728 V̂ {Y } =

19.967(7.471)

(27.438)2(27.438 + 1)
=

149.173

21409.373
= 0.00697

A histogram of the team/game proportions and the beta density (multiplied by 2460) are given in Figure 5.2.
R output is given below.

∇

> library(betareg)

> FT.mod1 <- betareg(Ftprop.r ~ 1)

> summary(FT.mod1)

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.98300 0.00849 115.8 <2e-16 ***

Phi coefficients (precision model with identity link):

Estimate Std. Error z value Pr(>|z|)

(phi) 27.4386 0.7714 35.57 <2e-16 ***

Type of estimator: ML (maximum likelihood)

Log-likelihood: 2654 on 2 Df

5.2 Regression Models

In the previous section, measurements were considered to be from the same population, and parameters of
the particular distributions were estimated by maximum likelihood. In this section models are fit that allow
for units to have independent variables (covariates) associated with them, and allow these to be related to
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Figure 5.2: Team/Game free throw proportions and scaled Beta Density

the response variable. For instance, in the Maya Moore binomial free throw example, her probability of
success may depend on whether the game was Home or Away, and/or the number of days between games.
The soccer goal example could be extended to multiple premier leagues and tests could be conducted of
whether the various leagues have the same true mean.

The same types of tests can be conducted as was done for the Normal linear regression model, however the
F -tests and t-tests are replaced with the χ2-tests and z-tests. These are referred to as Likelihood Ratio
and Wald tests. Likelihood Ratio tests compare Complete and Reduced models in terms of the difference in
their evaluated log likelihoods under the two (or more) models. These are similar to F -tests for the Normal
models. Wald tests can be used for individual partial regression coefficients by comparing the estimate with
the null parameter value (typically 0) in standard error units, using z-tests of χ2-tests on the squared z
value. Wald tests can be extended to multiple parameter tests with matrix form which is not covered here.

In this section, regression and ANOVA type models will be covered for the five probability distributions
from Section 5.1. These will make use of the glm, glm.nb, and betareg functions in R that were used in
Section 5.1 to estimate the parameters under the models with no predictor variables.

Each model type has a link function, a function of the mean response that is linear in the predictor
variables. Note that categorical predictors, polynomials, and interactions can be included just as in the
Normal model.

The following notation is used in testing hypotheses and comparing models. The Null Model is the model
with no predictor variables (the models fit in Section 5.1, for instance). The Saturated Model is the model
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with each unit’s predicted value being equal to its observed value (examples will be given for the individual
distributions below). The maximized log-likelihood is obtained for the null model (l0) and for the saturated
model (ls), where ls ≥ l0 by definition. The quantity D0 = −2 (l0 − ls) is referred to as the Null Deviance.
For a particular model M , with say p predictors, the maximized log-likelihood is lM , with l0 ≤ lM ≤ ls,
the quantity DM = −2 (lM − ls) is the Residual Deviance for model M . These are used to test between
different nested models, as the F -tests were used in Normal regression.

To test whether all of the regression coefficients of the predictors in model M are 0, the likelihood ratio
test is conducted as follows.

H0 : β1 = · · · = βp = 0 TS : X2
LR = −2 (l0 − lM ) = D0−DM RR : X2

LR ≥ χ2
α,p P = P

(

χ2
p ≥ X2

LR

)

Similarly, to test whether a group of p − g are note associated with the response after controlling for the g
remaining predictors, let F refer to the Full model with all p predictors and R be the Reduced model with
the subset of g < p predictors. Then labeling lF and lR as the log-likelihoods for the models the test is
conducted as foolows.

H0 : βg+1 = · · · = βp = 0 TS : X2
LR = −2 (lR − lF ) = DR−DF RR : X2

LR ≥ χ2
α,p−g P = P

(

χ2
p−g ≥ X2

LR

)

A test for a single partial regression coefficient, say βj can be conducted as a special case of the previous
Complete/Reduced test or as a Wald test, which is given below, the first is a z-test, the second is an equivalent
Chi-square test. R and Stata print the z version, while SAS and SPSS print the Chi-Square version.

H0 : βj = 0 TS : zW =
β̂j

ŜE
{

β̂j

} RR : |zW | ≥ zα/2 P = 2P (Z ≥ |zW |)

H0 : βj = 0 TS : X2
W =





β̂j

ŜE
{

β̂j

}



 RR : X2
W ≥ χ2

α,1 P = P
(

χ2
1 ≥ X2

W

)

There are two commonly used types of residuals: Pearson and Deviance. These will be defined in the
special cases in the following subsections, as they depend on the probability distribution being modeled.
These are used to test Goodness-of-Fit for the various models being fit and compared.

There are various Pseudo-R2 statistics used to describe model fit. These include McFadden’s, Cox &
Snell’s, Nagelkerke’s, and Efron’s described below, where lM is the log-likelihood and LM is the likelihood
for model M .

McFadden: R2
McF = 1 − lM

l0
AdjustedV ersion :1 − lM − #parameters

l0

Cox & Snell: R2
CS = 1 −

(

L0

LM

)2/n

L∗ = el∗

Nagelkerke: R2
N =

1 −
(

L0

LM

)2/n

1 − (L0)
2/n

Can be as large as 1

Efron: R2
E = 1 −

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)

2 Similar to definition for OLS Regression
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5.2.1 Logistic Regression for Binomial/Bernoulli Outcomes

In the case where responses are outcomes of a Binomial experiment, or simply a set of individual Bernoulli
trials, one commonly fit model is the Logistic Regression model. In this model, the link function of the
mean that is linear in the predictors is the logit (see Section 5.1.1), where µ = π.

g (π) = log

(

π

1 − π

)

= β0 + β1X1 + · · ·+ βpXp ⇒ π =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

Note that g (π) can take on any values along the real line, π is bounded to be between 0 and 1. Further,
if β1 = · · · = βp = 0, then π is constant (not associated with any of the predictors). Once ML estimates

β̂0, β̂1, . . . , β̂p are obtained, they replace the unknown parameters for the fitted probabilities.

In the linear regression model, the slopes βj represent the change in the mean of Y when Xj is increased
by 1 unit, with all other predictors held constant. In the logistic regression model, this interpretation applies
to the logit (log odds), which is not particularly intuitive. Consider the odds of Success at X for the case
with p = 1 predictor, then at X + 1.

odds(X) =
π(X)

1 − π(X)
=

[

eβ0+β1X

1+eβ0+β1X

]

[

1 − eβ0+β1X

1+eβ0+β1X

] =

[

eβ0+β1X

1+eβ0+β1X

]

[

1
1+eβ0+β1X

] = eβ0+β1X = eβ0eβ1X

odds(X + 1) = eβ0+β1(X+1) = eβ0eβ1(X+1) = eβ0eβ1Xeβ1

Consider the Odds Ratio: OR = odds(X + 1)/odds(X) = eβ1 . Thus, regardless of the level of X, eβ1

represents the multiplicative change in the odds of a Success as X increases 1 unit. When there are p > 1
predictors, eβj represents that change when Xj increases 1 unit, while all other predictors are held constant.
To obtain a Confidence Interval for the Odds Ratio for Xj , first obtain a Confidence Interval for βj, then
exponentiate the end points.

(1−α)100% CI for βj : β̂j±zα/2ŜE
{

β̂j

}

≡
(

βL
j , βU

j

)

⇒ (1−α)100% CI for ORj = eβj :
(

eβL
j , eβU

j

)

If the regression coefficient is significantly different from 0, the Odds Ratio will be significantly different
from 1.

For grouped Binomial data, with m groups and observed numbers of successes and trials (y1, n1) , . . . , (y1, n1),
the fitted values and residuals are obtained as follow, where Xi1, . . . , Xip are the levels of the p predictor
variables for the ith group.

Fitted: ŷi = niπ̂i = ni
eβ̂0+β̂1Xi1+···+β̂pXip

1 + eβ̂0+β̂1Xi1+···+β̂pXip

Residual: ei = yi − ŷi

The Pearson and Deviance residuals and Chi-square statistics for the Logistic Regression model are given
below, in the case of Deviance residuals, the ln represents the natural log and 0ln(0) ≡ 0 and sign(∗) is + if
∗ is positive and − if negative.

Pearson Residual: eP
i =

yi − ŷi
√

niπ̂i (1 − π̂i)
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Pearson Chi-square: X2
P =

m
∑

i=1

(

eP
i

)2
=

m
∑

i=1

(yi − ŷi)
2

niπ̂i (1 − π̂i)
df = m − (p + 1)

Deviance Residual: eD
i = sign (yi − ŷi)

[

2

(

yi ln

(

yi

ŷi

)

+ (ni − yi) ln

(

ni − yi

ni − ŷi

))]

Deviance Chi-square: X2
D =

m
∑

i=1

(

eD
i

)2
df = m− (p + 1)

When the data are based on individual (ungrouped) observations, Chi-square approximations for the
Pearson and Deviance Chi-square statistics for Goodness-of-Fit is questionable (they are based on large
numbers of cases within groups). One commonly used test in this situation is the Hosmer-Lemeshow
Test. The approximate test is conducted as follows.

1. Group individual cases into g groups based on their predicted probabilities (typically, g = 10)

2. For each group, obtain ni (total number of cases), oi (total number of successes), ¯̂πi (average predicted
probability)

The approximate Chi-square statistic has g − 2 degrees of freedom.

TS : X2
HL =

g
∑

i=1

(

oi − ni
¯̂πi

)2

ni
¯̂πi

(

1 − ¯̂πi

)2 RR : X2
HL ≥ χ2

α,g−2 P = P
(

χ2
g−2 ≥ X2

HL

)

Example 5.6: Motorcycles and Erectile Dysfunction

A Japanese study investigated the association between motorcycle riding, age, and presence/absence of
erectile dysfunction (ED) in men (Ochiai, et al, 2006, [26]). Their study involved 234 motorcycle riders
and 752 healthy controls. Subjects were classified by age (20-29, 30-39, 40-49, and 50-59 years). The ED
was classified in 5 categories (No ED, mild, mild-to-moderate, moderate, and severe). For the purposes of
this example, all subjects are given the age of the center of their range (25 for 20-29, and so on). Also,
all ED classifications (mild through severe) are combined into “ED present.” The model being fit will use
motorcycle riding and age to estimate the probability of incidence of ED. Frequency counts are given in
Table 5.3. Note that this is purely looking for association and not causation. Men might choose to ride
motorcycles after developing ED.

Note that for this study, m = 4(2) = 8, representing the combinations of age and motorcycle riding.
Consider the following 4 models, where π is the probability of having from ED, with A=age, and M=1 if
motorcycle rider, 0 if control. Model 1 is the null model with no predictors. Model 2 contains Age as a
predictor. Model 3 is an additive model with Age and Motorcycle Riding. Model 4 includes an interaction
term.The fitted equations and log-likelihoods are given below.

Null Model (1): log

(

π̂

1− π̂

)

= −0.2694 l1 = −69.909 df1 = 8 − 1 = 7

Age Model (2): log

(

π̂

1 − π̂

)

= −0.9155 + 0.0165A l2 = −66.943 df2 = 8 − 2 = 6
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Age/MR Additive Model (3): log

(

π̂

1 − π̂

)

= −1.6027+0.0250A+1.4688M l3 = −23.001 df3 = 8−3 = 5

Age/MR Interaction Model (4): log

(

π̂

1 − π̂

)

= −1.2575 + 0.0164A+ 0.0131M + 0.0395AM

l4 = −20.500 df4 = 8 − 4 = 4

Consider testing whether any of the main effects of age and motorcycle riding or their interaction are
significant. This involves comparing models 1 and 4.

H0 : βA = βM = βAM = 0 TS : X2
LR = −2((−69.909)−(−20.500)) = 98.82 RR : X2

LR ≥ 7.815 P < .0001

Clearly, at least one of these predictors is associated with the probability of ED. Now consider whether
motorcycle riding and/or the interaction are significant after controlling for Age. This test compares models
2 and 4.

H0 : βM = βAM = 0 TS : X2
LR = −2((−66.943)−(−20.500)) = 92.89 RR : X2

LR ≥ 5.991 P < .0001

Again, at least one of the regression coefficients is significantly different from 0. Finally, consider a test of
whether there is a significant interaction, after controlling for main effects. This compares models 3 and 4.

H0 : βAM = 0 TS : X2
LR = −2((−23.001)− (−20.500)) = 5.002 RR : X2

LR ≥ 3.841 P = .0253

The interaction between Age and Motorcycle riding is significant. The Wald statistic (see R output below) is
zW = 2.189, X2

W = (2.189)2 = 4.792, P = .0286. The model 3 fitted probabilities, predicted counts, Pearson
and Deviance residuals and Goodness-of-Fit tests are given in Table 5.4. The model appears to fit the data
very well (both P -values are above 0.5). A plot of the fitted curves is given in Figure 5.3.

Several Pseudo-R2 measures for model 3 are given below with l0 = −69.909, l3 = −20.500.

R2
McF = 1−−20.500

−69.909
= 0.7068 R2

CS = 1−
(

e−69.909

e−20.500

)2/8

= 1.0000 R2
N =

1 −
(

e−69.909

e−20.500

)2/8

1 − (e−69.909)
2/8

= 1.0000

R output is given below.

∇

Controls Motorcycle Riders
Age ED No ED Total ED No ED Total

20-29 35 77 112 35 25 60
30-39 101 205 306 55 32 87
40-49 77 131 208 44 14 58
50-59 53 73 126 27 2 29

Total 266 486 752 161 73 234

Table 5.3: Frequency Tabulation for Motorcycle Riding/Erectile Dysfunction Study
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Age MR ni yi π̂i ŷi eP
i eD

i

25 0 112 35 0.2963 33.19 0.3756 0.1396
35 0 306 101 0.3316 101.47 -0.0567 -0.0032
45 0 208 77 0.3689 76.73 0.0391 0.0015
55 0 126 53 0.4078 51.38 0.2928 0.0855
25 1 60 35 0.5338 32.03 0.7684 0.5941
35 1 87 55 0.6670 58.03 -0.6888 -0.4668
45 1 58 44 0.7779 45.12 -0.3537 -0.1226
55 1 29 27 0.8597 24.93 1.1064 1.4646

GOF Chi-Sq 2.6456 2.7578
df 4 4

X2
.05 9.4877 9.4877

P -value 0.6188 0.5991

Table 5.4: Fitted Values, Pearson and Deviance residuals and Goodness-of-Fit statistics - Motorcycle Rid-
ing/Erectile Dysfunction Study
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Figure 5.3: Observed Proportions and fitted probabilities - Motorcycle Riding/Erectile Dysfunction Study
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> print(cbind(age,mr,y))

age mr ed.1 ed.0

[1,] 25 0 35 77

[2,] 35 0 101 205

[3,] 45 0 77 131

[4,] 55 0 53 73

[5,] 25 1 35 25

[6,] 35 1 55 32

[7,] 45 1 44 14

[8,] 55 1 27 2

>

> mod0 <- glm(y~1, family=binomial("logit"))

> summary(mod0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.26937 0.06427 -4.191 2.78e-05 ***

Null deviance: 101.62 on 7 degrees of freedom

Residual deviance: 101.62 on 7 degrees of freedom

AIC: 141.82

> logLik(mod0)

’log Lik.’ -69.90915 (df=1)

> mod1 <- glm(y~age, family=binomial("logit"))

> summary(mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.915497 0.274247 -3.338 0.000843 ***

age 0.016486 0.006785 2.430 0.015114 *

Null deviance: 101.618 on 7 degrees of freedom

Residual deviance: 95.684 on 6 degrees of freedom

AIC: 137.89

> logLik(mod1)

’log Lik.’ -66.94255 (df=2)

>

> anova(mod0,mod1,test="Chisq")

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ age

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7 101.618

2 6 95.684 1 5.9332 0.01486 *

> mod2 <- glm(y~age+mr, family=binomial("logit"))

> summary(mod2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.602726 0.299229 -5.356 8.5e-08 ***

age 0.025036 0.007186 3.484 0.000494 ***

mr 1.468761 0.163629 8.976 < 2e-16 ***

Null deviance: 101.6176 on 7 degrees of freedom

Residual deviance: 7.8012 on 5 degrees of freedom

AIC: 52.002

> logLik(mod2)

’log Lik.’ -23.00093 (df=3)

> anova(mod1,mod2,test="Chisq")

Analysis of Deviance Table

Model 1: y ~ age

Model 2: y ~ age + mr

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
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1 6 95.684

2 5 7.801 1 87.883 < 2.2e-16 ***

> mod3 <- glm(y~age+mr+age:mr, family=binomial("logit"))

> summary(mod3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.257466 0.334854 -3.755 0.000173 ***

age 0.016436 0.008141 2.019 0.043509 *

mr 0.013092 0.676970 0.019 0.984570

age:mr 0.039497 0.018047 2.189 0.028628 *

Null deviance: 101.6176 on 7 degrees of freedom

Residual deviance: 2.7998 on 4 degrees of freedom

AIC: 49.001

> logLik(mod3)

’log Lik.’ -20.50026 (df=4)

> anova(mod2,mod3,test="Chisq")

Analysis of Deviance Table

Model 1: y ~ age + mr

Model 2: y ~ age + mr + age:mr

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 5 7.8012

2 4 2.7998 1 5.0014 0.02533 *

Example 5.7: NFL Field Goal Attempts - 2008 Regular Season

Data were obtained on all n = 1039 field goal attempts by kickers during the 2008 National Football League
(NFL) regular season. Two variables were used as predictors: the distance of the kick (yards) and a home
game indicator (1 if Home game, 0 if Away). While kickers surely have different skill levels, they are all
professionals, so kicker effects are ignored here. Unlike the Mortorcycle/ED data, these data are treated
as being ungrouped. Three models were considered: Null Model (1) with no predictors, a model with only
distance (2), and a model with Distance and Home (3).

π̂1 =
e1.8679

1 + e1.8679
l1 = −408.8614 df1 = 1039− 1 = 1038

π̂2 =
e6.7627−0.1208D

6.7627− 0.1208D
l2 = −343.4635 df2 = 1039− 2 = 1037

π̂3 =
e6.8987−0.1208D−0.2596H

6.8987− 0.1208D− 0.2596H
l3 = −342.5926 df3 = 1039− 3 = 1036 ŜE

{

β̂H

}

= 0.1972

The likelihood ratio tests for Distance (alone) and Home given Distance are given below, as well as a 95%
Confidence Interval for the Home Field Odds Ratio (controlling for Distance).

HD
0 : βD = 0 TS : X2

LR = −2((−408.8614)− (−343.4635)) = 130.80 RR : X2
LR ≥ 3.841 P < .0001

HH
0 : βH = 0 TS : X2

LR = −2((−343.4635)− (−342.5926)) = 1.7418 RR : X2
LR ≥ 3.841 P = .1869

HH
0 : βH = 0 TS : X2

W =

(−0.2569

0.1972

)2

= 1.6971 RR : X2
W ≥ 3.841 P = .1927

(1 − α)100% CI for βH : − 0.2569± 1.96(0.1972) ≡ −0.2569± 0.3865 ≡ (−0.6434, .1296)

(1 − α)100% CI for ORH :
(

e−0.6434, e0.1296
)

≡ (0.526, 1, 138)

There is no evidence of a Home Field effect, controlling for Distance (the point estimate was actually
negative).
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The Hosmer-Lemeshow test is given below, with g = 10 groups. The groups are set up so that all kicks
of the same yardage are in the same group. A plot of the fitted equation and the sample proportions of
Successes at each of the yardage distances is given in Figure 5.4. McFadden’s Pseudo-R2 based on the model
with Distance as the only predictor is R2

McF = 1 − ((−343.46)/(−408.86)) = 0.1600 The R output is given
below.

∇

Group (i) DistRange ni π̂i oi niπ̂i HL X2

1 18-23 117 0.9847 116 115.2043 0.358088
2 24-26 84 0.9762 82 81.99916 3.6E-07
3 27-30 117 0.9649 112 112.8906 0.200031
4 31-33 102 0.9470 96 96.59051 0.068071
5 34-36 89 0.9272 83 82.5218 0.03807
6 37-39 108 0.8984 99 97.02217 0.396656
7 40-42 93 0.8580 79 79.79007 0.055076
8 43-45 98 0.8114 86 79.51427 2.804541
9 46-48 96 0.7434 59 71.36537 8.349341
10 49-76 135 0.6156 88 83.10177 0.751015

H-L GOF 13.02089
df 8

X2
.05 15.50731

P -value 0.111133

Table 5.5: Hosmer-Lemeshow test for NFL Field Goal Attempts - 2008 Regular Season

> fga.mod1 <- glm(GOOD ~ 1, binomial("logit"))

> summary(fga.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.86792 0.09113 20.5 <2e-16 ***

Null deviance: 817.72 on 1038 degrees of freedom

Residual deviance: 817.72 on 1038 degrees of freedom

AIC: 819.72

> logLik(fga.mod1)

’log Lik.’ -408.8614 (df=1)

>

> fga.mod2 <- glm(GOOD ~ distance, binomial("logit"))

> summary(fga.mod2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.76271 0.54443 12.422 <2e-16 ***

distance -0.12084 0.01229 -9.836 <2e-16 ***

Null deviance: 817.72 on 1038 degrees of freedom

Residual deviance: 686.93 on 1037 degrees of freedom

AIC: 690.93

> logLik(fga.mod2)

’log Lik.’ -343.4635 (df=2)

>

> fga.mod3 <- glm(GOOD ~ distance + homekick, binomial("logit"))

> summary(fga.mod3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.89871 0.55851 12.352 <2e-16 ***
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Figure 5.4: Fitted equation relating P(Success to Distance) and observed proportions - NFL Field Goal
Attempts
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distance -0.12083 0.01233 -9.795 <2e-16 ***

homekick -0.25959 0.19716 -1.317 0.188

Null deviance: 817.72 on 1038 degrees of freedom

Residual deviance: 685.19 on 1036 degrees of freedom

AIC: 691.19

> logLik(fga.mod3)

’log Lik.’ -342.5926 (df=3)

Overdispersion

When the model is based on grouped data and the Pearson Chi-square statistic based on the sum of squared
Pearson residuals is much larger than m− (p+1), its degrees of freedom, there is evidence of overdispersion.
This is when the data are more variable than expected based on the binomial model. This can be evidence
of a mis-specified model, with missing important predictors and/or polynomial and/or interaction terms.

One remedy is to fit a quasibinomial model and adjust the standard errors of the regression coeffi-
cients used in the Wald tests for the individual coefficients. An approximate F -test for multiple regression
coefficients can be conducted as well (see e.g. Faraway, 2006, Section 2.11, [12]).

σ̂2 =
X2

P

m− (p + 1)
ŜE

∗
{

β̂j

}

= σ̂ŜE
{

β̂j

}

Z∗
W =

β̂j

ŜE
∗
{

β̂j

} F ∗
LR =

[

DR−DF

dfR−dfF

]

σ̂2

Here DR and DF are the deviances for the Reduced and Full models and dfR and dfF are their residual
degrees of freedom (m − #parms

) .

Example 5.8: Toxicity of Chemicals on Beetles

A study considered the effects of two chemicals on beetles (Hewlett, 1969, [15]). There were m = 13
combinations of levels of pyrethrin (X1) and piperonyl butoxide (X2), with approximately 150 beetles exposed
in each combination (and 200 in the control condition). The data, fitted values, Pearson residuals and χ2

P

statistic are given in Table 5.6 for the following second order model in the logit form.

log

(

π

1 − π

)

= β0 + β1X1 + β2X2 + β12X1X2 + β11X
2
1 + β22X

2
2

The Pearson Goodness-of-Fit test rejects the null, and there is evidence of overdispersion with σ̂2 =
40.7113/7 = 5.8159. For the quasibinomial model, the estimated standard errors of the regression coef-
ficients are multiplied by σ̂ =

√
5.8159 = 2.4116. From the R output below and the original binomial fit, the

estimate, standard error, and Wald test statistic for β12 are given below, followed by the adjustment for the
quasibinomial model.

Binomial: β̂12 = 0.3897 ŜE
{

β̂12

}

= 0.1722 ZW = 2.263 2P (Z ≥ 2.263) = .0237

Quasibinomial: β̂12 = 0.3897 ŜE
∗
{

β̂12

}

= 2.4116(0.1722) = 0.4153 Z∗
W = 0.938 2P (Z ≥ 0.938) = .3793

The scaling of the standard error by 2.4 reduces the zW statistic, and it is no longer significant for the
interaction term. The residual deviance for the Full model (with interaction and quadratic terms) is
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DF = 36.157 with degrees of freedom dfF = 13 − 6 = 7. For the Reduced model with only main ef-
fects (β12 = β11 = β22 = 0), the deviance is DR = 304.11 with degrees of freedom dfR = 13 − 3 = 10. The
approximate F -test is given below.

H0 : β12 = β11 = β22 = 0 TS : F ∗
LR =

[

304.11−36.157
10−7

]

5.8159
= 15.357 P (F3,7 ≥ 15.357) = .0018

There is evidence at least one of the higher order terms is significant. R output is given below.

∇

i pyreth (X1) pipBut (X2) numExps (ni) Mortality (yi) yi/ni π̂i niπ̂i eP
i

1 1.5 0 150 138 0.9200 0.9096 136.4459 0.4426
2 1.06 0 149 75 0.5034 0.6475 96.4833 -3.6840
3 0.75 0 150 32 0.2133 0.2365 35.4755 -0.6678
4 1.1 0.25 151 129 0.8543 0.7772 117.3589 2.2766
5 0.78 0.25 151 65 0.4305 0.3628 54.7821 1.7294
6 0.55 0.25 150 19 0.1267 0.1013 15.1975 1.0289
7 0.8 2.5 149 143 0.9597 0.9365 139.5334 1.1643
8 0.57 2.5 150 112 0.7467 0.7094 106.4097 1.0053
9 0.4 2.5 140 37 0.2643 0.3528 49.3938 -2.1921
10 0.65 10 150 141 0.9400 0.9654 144.8115 -1.7030
11 0.46 10 150 117 0.7800 0.7622 114.3282 0.5124
12 0.32 10 149 56 0.3758 0.3669 54.6652 0.2269
13 0 0 200 1 0.0050 0.0006 0.1141 2.6228

X2
P 40.7113

df 7
χ2(.05) 14.0671
P -value 0.0000

Table 5.6: Beetle Mortality in relation pyrethrine and piperonyl butoxide concentration

> trib.mod1 <- glm(y.trib ~ 1, binomial("logit"))

> summary(trib.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.14202 0.04496 3.159 0.00158 **

Null deviance: 1038.1 on 12 degrees of freedom

Residual deviance: 1038.1 on 12 degrees of freedom

AIC: 1100.1

> logLik(trib.mod1)

’log Lik.’ -549.0736 (df=1)

> trib.mod2 <- glm(y.trib ~ pyreth + pipBut,

+ binomial("logit"))

> summary(trib.mod2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.77521 0.21048 -17.94 <2e-16 ***

pyreth 4.53425 0.24630 18.41 <2e-16 ***

pipBut 0.28567 0.01706 16.74 <2e-16 ***

Null deviance: 1038.05 on 12 degrees of freedom
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Residual deviance: 304.11 on 10 degrees of freedom

AIC: 370.21

> logLik(trib.mod2)

’log Lik.’ -182.1043 (df=3)

> trib.mod4 <- glm(y.trib ~ pyreth + pipBut,

+ quasibinomial("logit"))

> summary(trib.mod4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.77521 1.12229 -3.364 0.0072 **

pyreth 4.53425 1.31330 3.453 0.0062 **

pipBut 0.28567 0.09098 3.140 0.0105 *

Null deviance: 1038.05 on 12 degrees of freedom

Residual deviance: 304.11 on 10 degrees of freedom

AIC: NA

> logLik(trib.mod4)

’log Lik.’ NA (df=3)

>

> trib.mod5 <- glm(y.trib ~ pyreth + pipBut + I(pyreth*pipBut) +

+ I(pyreth^2) + I(pipBut^2),

+ binomial("logit"))

> summary(trib.mod5)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.46808 0.85850 -8.699 < 2e-16 ***

pyreth 10.27147 1.74038 5.902 3.59e-09 ***

pipBut 1.38568 0.19737 7.021 2.21e-12 ***

I(pyreth * pipBut) 0.38969 0.17221 2.263 0.02365 *

I(pyreth^2) -2.50217 0.86490 -2.893 0.00382 **

I(pipBut^2) -0.11212 0.01187 -9.443 < 2e-16 ***

Null deviance: 1038.053 on 12 degrees of freedom

Residual deviance: 36.157 on 7 degrees of freedom

AIC: 108.25

> logLik(trib.mod5)

’log Lik.’ -48.12553 (df=6)

> e.p5 <- resid(trib.mod5,type="pearson")

> e.d5 <- resid(trib.mod5,type="deviance")

> sum(e.p5^2)

[1] 40.71129

> sum(e.d5^2)

[1] 36.15705

>

> trib.mod6 <- glm(y.trib ~ pyreth + pipBut + I(pyreth*pipBut) +

+ I(pyreth^2) + I(pipBut^2),

+ quasibinomial("logit"))

> summary(trib.mod6)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.46808 2.07037 -3.607 0.00866 **

pyreth 10.27147 4.19712 2.447 0.04428 *

pipBut 1.38568 0.47599 2.911 0.02262 *

I(pyreth * pipBut) 0.38969 0.41531 0.938 0.37933

I(pyreth^2) -2.50217 2.08582 -1.200 0.26931

I(pipBut^2) -0.11212 0.02863 -3.916 0.00578 **

Null deviance: 1038.053 on 12 degrees of freedom

Residual deviance: 36.157 on 7 degrees of freedom

AIC: NA

> # logLik(trib.mod5)

> anova(trib.mod4, trib.mod6, test="F")

Analysis of Deviance Table
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Model 1: y.trib ~ pyreth + pipBut

Model 2: y.trib ~ pyreth + pipBut + I(pyreth * pipBut) + I(pyreth^2) +

I(pipBut^2)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 10 304.115

2 7 36.157 3 267.96 15.358 0.001838

5.2.2 Poisson Regression for Counts

When data are counts, a Poisson Regression model is often fit. The mean of the distribution must be positive,
but the log of the mean can take on positive or negative values, so the log of the mean is typically modeled
as a linear function of the predictors.

log(µ) = β0 + β1X1 + · · ·+ βpXp ⇒ µ = eβ0+β1X1+···+βpXp

The interpretation of the regression coefficients is that the mean of Y changes multiplicatively by eβj when
Xj increases by 1 unit, holding all other predictors constant. The Poisson distribution is restricted to have
its mean and variance to be the same. In many applications, data display overdispersion where the variance
exceeds the mean. Adjustments can be made as in the case of the Logistic Regression model described in
the previous subsection, or a 2-parameter Negative Binomial model can be fit, which allows for the variance
to be larger than the mean. The Negative Binomial will be described in the next subsection.

When there is a fixed number of n distinct X levels, the Pearson and Likelihood-Ratio (Deviance) Goodness-
of-Fit statistics given below have approximate chi-square distributions with n − p′ degrees of freedom (see
e.g. Agresti, 1996, pp.89-90, [3]).

Pearson: X2
P =

n
∑

i=1

(yi − µ̂i)
2

µ̂i
=

n
∑

i=1

e2
iP eiP =

yi − λ̂i
√

λ̂i

Deviance: X2
D = G2 = 2

n
∑

i=1

[

yi ln
yi

µ̂i
− (yi − µ̂i)

]

=

n
∑

i=1

e2
iD eiD = sign{yi−µ̂i}

[

2yi ln
yi

µ̂i
− (yi − µ̂i)

]1/2

When the independent variable(s) have many distinct level(s) or combinations, observations can be grouped
based on their X levels in cases where there is p = 1 independent variable, or grouped based on their predicted
means in general. The sums of events (y) and their corresponding predicted values (µ̂i) are obtained for
each group. Pearson residuals are obtained for each group based on the sums of their observed and predicted
values. If we have g groups and p predictors, the approximate Pearson chi-square statistic will have g − p′

degrees of freedom (see e.g. Agresti, 1996, p. 90, [3]).

Example 5.9: NASCAR Crashes - 1972-1979 Seasons - Poisson Model

NASCAR is a professional stock car racing organization in the United States. The top division is currently
called the Monster Energy Cup. We consider all races during the 1972-1979 season (Winner, 2006, [36]).
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The response is the number of Caution Flags (a proxy for crashes) for each race (Y ), and the predictors
considered are: Number of Drivers, Track Length, and Number of Laps. During this period, there were
n = 151 races. Table 5.7 contains summaries (quantiles) and correlations for D, T ,L, and Y . The pairs of
independent variables with high correlations are Track Length is highly correlated with Laps (−.901) and
Drivers (.731). The following models are fit, using R’s glm function.

Model 1: log (µ̂i) = 1.5657 µ̂i = e1.5657 = 4.7861 l1 = −353.6927 D1 = 215.49 df1 = 151− 1 = 150

Model 2: log (µ̂i) = −0.7963 + 0.0365D + 0.1145T + 0.0026L µ̂i = e−0.7963+0.0365D+0.1145T+0.0026L

l2 = −331.5551 D2 = 171.22 df2 = 151 − 4 = 147

ŜE
{

β̂D

}

= 0.00843 ZWD =
0.0365

0.00843
= 5.081 ŜE

{

β̂L

}

= 0.00034 ZWD =
0.0021

0.00034
= 6.153

A test of whether any of the three predictors are related to the number of crashes is given below, followed
by the partial tests for the individual predictors.

H0 : βD = βT = βL = 0 TS : X2
LR = −2 (l1 − l2) = D1 − D2 = 44.27 P

(

X2
3 ≥ 44.27

)

< .0001

H0j : βj = 0 ZWD =
0.0365

0.0125
= 2.924 ZWT =

0.1145

0.1684
= 0.680 ZWL =

0.0026

0.0008
= 3.289

There is evidence that as the number of drivers D and number of laps L increase, so do the number of
crashes. Note that track length and number of laps have a large negative correlation, when laps is already
in the model, adding track length does not improve the fit. A third model is fit, removing track length.

Model 3: log (µ̂i) = −0.6876 + 0.0428D + 0.0021L µ̂i = e−0.6876+0.0428D+0.0021L

l3 = −331.7863 D3 = 171.68 df3 = 151 − 3 = 148

The Pearson residuals and Goodness-of-Fit test based on g = 12 groups and 12 − 3 = 9 degrees of freedom
and the group means and variances are given in Table 5.8. There is evidence that the Poisson model is not a
good fit. The Pearson Chi-square statistic based on the raw (not grouped) data is χ2

P = 159.17 with degrees
of freedom df = 151 − 3 = 148.

σ̂2 =
159.17

148
= 1.0755 σ̂ =

√
1.0755 = 1.0371

The quasipoisson model will only make minor adjustments to the Poisson model.

ŜE
∗
{

β̂D

}

= 1.0371(0.00843) = 0.000874 Z∗
WD =

0.0365

0.00874
= 4.899

ŜE
∗
{

β̂L

}

= 1.0371(0.00034) = 0.00036 Z∗
WD =

0.0021

0.00036
= 5.933

R output is given below.

∇

> race.mod1 <- glm(cautions ~ 1, poisson("log"))

> summary(race.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.56751 0.03716 42.18 <2e-16 ***

Null deviance: 215.49 on 150 degrees of freedom
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Quantiles Correlations

Variable Min 25% Med Mean 75% Max TrkLen Drivers Laps Cautions

TrkLen 0.526 0.625 1.366 1.446 2.500 2.660 1 0.731 -0.901 -0.317
Drivers 22 30 36 35.2 40 50 0.731 1 -0.508 0.160
Laps 95 200 367 339.7 420 500 -0.901 -0.508 1 0.297
Cautions 0 3 5 4.795 6 12 -0.317 0.160 0.297 1

Table 5.7: NASCAR Caution Flag, Track Length, Drivers, Laps: Summaries and Correlations

Group # Races Total Obs Total Expected eP
i Mean Variance

1 15 37 46.155 -1.348 2.467 3.552
2 11 50 39.374 1.693 4.545 2.273
3 11 39 42.136 -0.483 3.545 3.473
4 14 58 57.210 0.104 4.143 4.901
5 16 53 67.806 -1.798 3.312 4.763
6 4 20 17.308 0.647 5.000 0.667
7 17 80 76.852 0.359 4.706 5.346
8 21 129 108.131 2.007 6.143 5.529
9 2 10 10.815 -0.248 5.000 2.000
10 8 40 45.360 -0.796 5.000 2.857
11 24 167 154.125 1.037 6.958 6.216
12 8 41 58.729 -2.313 5.125 9.839

X2
P 19.856

df 9
X2

.05 16.919
P -value 0.0188

Table 5.8: NASCAR Caution Flag Goodness-of-Fit Test and Group Means and Variances
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Residual deviance: 215.49 on 150 degrees of freedom

AIC: 709.39

> logLik(race.mod1)

’log Lik.’ -353.6927 (df=1)

>

> race.mod2 <- glm(cautions ~ drivers + trklen + laps, poisson("log"))

> summary(race.mod2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7962699 0.4116942 -1.934 0.05310 .

drivers 0.0365253 0.0124932 2.924 0.00346 **

trklen 0.1144986 0.1684236 0.680 0.49662

laps 0.0025963 0.0007893 3.289 0.00100 **

Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.22 on 147 degrees of freedom

AIC: 671.11

> logLik(race.mod2)

’log Lik.’ -331.5551 (df=4)

> race.mod3 <- glm(cautions ~ drivers + laps, poisson("log"))

> summary(race.mod3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6876335 0.3776880 -1.821 0.0687 .

drivers 0.0428077 0.0084250 5.081 3.75e-07 ***

laps 0.0021136 0.0003435 6.153 7.59e-10 ***

Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.68 on 148 degrees of freedom

AIC: 669.57

> logLik(race.mod3)

’log Lik.’ -331.7863 (df=3)

>

> round(gof.grp,3)

# Races Total Obs Total Exp Pearson r Mean Variance

[1,] 15 37 46.155 -1.348 2.467 3.552

[2,] 11 50 39.374 1.693 4.545 2.273

[3,] 11 39 42.136 -0.483 3.545 3.473

[4,] 14 58 57.210 0.104 4.143 4.901

[5,] 16 53 67.806 -1.798 3.312 4.763

[6,] 4 20 17.308 0.647 5.000 0.667

[7,] 17 80 76.852 0.359 4.706 5.346

[8,] 21 129 108.131 2.007 6.143 5.529

[9,] 2 10 10.815 -0.248 5.000 2.000

[10,] 8 40 45.360 -0.796 5.000 2.857

[11,] 24 167 154.125 1.037 6.958 6.216

[12,] 8 41 58.729 -2.313 5.125 9.839

> race.mod3a <- glm(formula = cautions ~ drivers + laps,

+ family=quasipoisson("log"))

> summary(race.mod3a)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6876335 0.3916893 -1.756 0.0812 .

drivers 0.0428077 0.0087373 4.899 2.49e-06 ***

laps 0.0021136 0.0003562 5.933 2.02e-08 ***
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Models with Varying Exposures

In many studies, interest is in comparing rates of events in groups or observations with different amounts of
exposure to the outcome of interest. In these cases, the response is the number of of observations per unit
of exposure. A log linear model is assumed for the expectation of the ratio. The fixed exposure (in the log
model) is referred to as an offset. The model is as follows.

Sample Rate:
Yi

ti
E

{

Yi

ti

}

=
µi

ti
log

(

µi

ti

)

= log (µi) − log (ti) = β0 + β1Xi1 + · · ·+ βpXip

Note that we will place log (ti) on the right-hand side of the equal sign, but do not want to put a regression
coefficient on it. In statistical software packages, an offset option is typically available. The predicted values
for the observations are given below.

Ŷi = tiµ̂i = exp{log (ti) + β̂0 + β̂1Xi1 + · · ·+ β̂pXip} = ti exp{β̂0 + β̂1Xi1 + · · ·+ β̂pXip}

Inferences are conducted as in the previously described Poisson model.

Example 5.10: Friday the 13th, Gender, and Traffic Deaths

A study reported incidences of traffic deaths by gender on Friday the 13th and other Fridays in Finland
over the years 1971-1997 (Nayha (2002)). The response was the number of traffic deaths and the exposure
was the number of person-days (100000s). The groups were the 4 combinations of Friday type (Xi1 = 1 if
Friday the 13th, 0 otherwise) and Gender (Xi2 = 1 if Female, 0 if Male). The model contains an interaction
term, Xi3 = Xi1Xi2, which allows the Friday the 13th effect to differ by Gender (and vice versa). Table 5.9
gives the data, exposure, the independent variables, the predicted mean, and Total Death Rate per 100000
exposures for the four classifications/groups.

For Males and Females, the Friday the 13th effects are given below.

Males:
exp{β0 + β1}

exp{β0}
= exp{β1} Females:

exp{β0 + β1 + β2 + β3}
exp{β0 + β2}

= exp{β1 + β3}

Thus, a significant interaction (β3 6= 0) implies the Friday the 13th effect is not the same among Males and
Females. To obtain 95% Confidence Intervals for the Male and Female Friday the 13th effects, first obtain
95% CIs for β1 and β1 + β3, then exponentiate the endpoints.

β1 : β̂1 ± 1.96ŜE
{

β̂1

}

β1 + β3 : β̂1 + β̂3 ± 1.96

√

V̂
{

β̂1

}

+ V̂
{

β̂3

}

+ 2 ˆCOV
{

β̂1, β̂3

}

The R Program and Output are given below. The Friday the 13th effect is not significant for Males, as the
95% CI for their Risk Ratio (0.8442,1.3110) contains 1. For Females, there is evidence of a Friday the 13th
effect, as the 95% CI for their Risk Ratio (1.1793,2.2096) is entirely above 1.
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### Program

Y.13 <- c(41,82,789,2423)

t.13 <- c(86.5,79.9,2687.1,2483.7)

X0.13 <- c(1,1,1,1)

X1.13 <- c(1,1,0,0)

X2.13 <- c(1,0,1,0)

X3.13 <- c(1,0,0,0)

f13.mod1 <- glm(Y.13 ~ X1.13 + X2.13 + X3.13, offset=log(t.13),

family=poisson("log"))

summary(f13.mod1)

vcov(f13.mod1)

beta1.hat <- coef(f13.mod1)[2]

se.beta1.hat <- sqrt(vcov(f13.mod1)[2,2])

beta13.hat <- beta1.hat + coef(f13.mod1)[4]

se.beta13.hat <- sqrt(vcov(f13.mod1)[2,2]+vcov(f13.mod1)[4,4]+

2*vcov(f13.mod1)[2,4])

ll.beta1 <- beta1.hat - 1.96*se.beta1.hat

ul.beta1 <- beta1.hat + 1.96*se.beta1.hat

ll.beta13 <- beta13.hat - 1.96*se.beta13.hat

ul.beta13 <- beta13.hat + 1.96*se.beta13.hat

f13.eff.m <- cbind(beta1.hat,se.beta1.hat,ll.beta1,ul.beta1,

exp(beta1.hat),exp(ll.beta1),exp(ul.beta1))

f13.eff.f <- cbind(beta13.hat,se.beta13.hat,ll.beta13,ul.beta13,

exp(beta13.hat),exp(ll.beta13),exp(ul.beta13))

f13.eff <- rbind(f13.eff.m,f13.eff.f)

rownames(f13.eff) <- c("Males","Females")

colnames(f13.eff) <- c("Estimate","Std Err","LL","UL",

"Risk Ratio", "LL RR", "UL RR")

round(f13.eff,4)

### Output

> summary(f13.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.02474 0.02032 -1.218 0.2232

X1.13 0.05069 0.11228 0.451 0.6517

X2.13 -1.20071 0.04099 -29.293 <2e-16 ***

X3.13 0.42819 0.19562 2.189 0.0286 *

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0258e+03 on 3 degrees of freedom

Residual deviance: 1.8230e-13 on 0 degrees of freedom

AIC: 37.942

Number of Fisher Scoring iterations: 2

> vcov(f13.mod1)

(Intercept) X1.13 X2.13 X3.13

(Intercept) 0.0004127115 -0.0004127115 -0.0004127115 0.0004127115

X1.13 -0.0004127115 0.0126078244 0.0004127115 -0.0126078244

X2.13 -0.0004127115 0.0004127115 0.0016801386 -0.0016801386

X3.13 0.0004127115 -0.0126078244 -0.0016801386 0.0382654231

> round(f13.eff,4)

Estimate Std Err LL UL Risk Ratio LL RR UL RR

Males 0.0507 0.1123 -0.1694 0.2708 1.0520 0.8442 1.3110

Females 0.4789 0.1602 0.1649 0.7928 1.6143 1.1793 2.2096

∇
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Group i Yi ti Xi1 Xi2 Xi3 log
(

λ̂i

)

TDRi = λ̂i

Friday 13th/Female 1 41 86.5 1 1 1 -0.7466 0.4740
Friday 13th/Male 2 82 79.9 1 0 0 0.0259 1.0263

Other Friday/Female 3 789 2687.1 0 1 0 -1.2255 0.2936
Other Friday/Male 4 2423 2483.7 0 0 0 -0.0247 0.9756

Table 5.9: Friday the 13th and Gender for Finland Traffic Deaths

5.2.3 Negative Binomial Model

In this subsection, the two-parameter Negative Binomial model is fit to the NASCAR lead change data. The
log link is used, as was used for the Poisson model. The predictors are Drivers, Track Length, and Laps,
for the n = 151 races.

Example 5.11: NASCAR Lead Changes - 1972-1979 Seasons - Negative Binomial Model

For the Lead Change outcome from the NASCAR 1972-1979 seasons there is much more overdispesion
than in the case of the Crash outcome. For the Poisson model, all three predictors are highly significant
with ZW values greater than 5 (R Output given below). The Pearson Chi-Square statistic for the ungrouped
data is X2

P = 721.89 with df = 151 − 4 = 147. This leads to the following overdispersion parameter and
adjustments.

σ̂2 =
721.89

147
= 4.911 σ̂ =

√
4.911 = 2.2160 ŜE

∗
{

β̂j

}

= 2.2160ŜE
{

β̂j

}

After the adjustment to the standard errors of the regression coefficients, all Z∗
W statistics remain at least

2.440.

When the data are grouped into g = 10 groups of races based on their predicted counts, the approximate
(grouped) Pearson Chi-Square statistic is X2

P = 107.4 based on g−p′ = 10−4 = 6. The P -value is virtually
0.

A Negative Binomial model is fit, leading to the following fitted equation and parameter estimates.

µ̂i = e−0.5038+0.0597Di+0.5153Ti+0.0017Li ˆα−1 = 5.248 V̂ {Yi} = µ̂i

(

1 +
µ̂i

5.248

)

The residual deviance for this model is D = 162.8 on 151− 4 = 147 degrees of freedom. This appears to fit
the data well (as the ratio 162.8/147 ≈ 1). The grouped Goodness-of-Fit Pearson Chi-Square statistic with
g = 10 groups leads to X2

P = 1.79, which is very small. The ratio of the variances to the mean and their
group expected values are consistent (given in R output below).

∇

## Poisson Model

> race.mod2 <- glm(leadchng ~ drivers + trklen + laps, poisson("log"))

> summary(race.mod2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -0.490253 0.217796 -2.251 0.0244 *

drivers 0.051612 0.005679 9.089 < 2e-16 ***

trklen 0.610414 0.082949 7.359 1.85e-13 ***

laps 0.002138 0.000415 5.152 2.58e-07 ***

Null deviance: 1388.59 on 150 degrees of freedom

Residual deviance: 687.61 on 147 degrees of freedom

AIC: 1395.2

> logLik(race.mod2)

’log Lik.’ -693.597 (df=4)

> (pearson.x2 <- sum((leadchng - muhat)^2/muhat))

[1] 655.6059

> (pearson.x2a <- sum(resid(race.mod2,type="pearson")^2))

[1] 655.6059

> (deviance.x2 <- sum(resid(race.mod2)^2))

[1] 687.6124

## Grouped Poisson Model

# Races Total Obs Total Exp Pearson r Mean Variance

[1,] 15 113 130.541 -0.302 7.533 23.410

[2,] 15 138 151.055 -0.195 9.200 34.457

[3,] 14 178 155.015 0.334 12.714 41.297

[4,] 17 321 270.637 0.422 18.882 56.360

[5,] 19 485 390.052 0.554 25.526 89.930

[6,] 15 191 326.424 -0.943 12.733 48.210

[7,] 16 353 407.890 -0.306 22.062 74.329

[8,] 16 491 453.298 0.189 30.688 183.696

[9,] 11 349 373.342 -0.148 31.727 201.818

[10,] 13 574 541.275 0.138 44.154 229.474

> (pearson.X2.mg <- sum(pearson.r^2))

[1] 109.6503

> qchisq(.95,10-3-1)

[1] 12.59159

> (pval.mg <- 1-pchisq(pearson.X2.mg,10-3-1))

[1] 0

> ### quasipoisson takes SE(beta)*sqrt(phi)

> ### phi = pearson.x2/df

> race.mod2a <- glm(formula = leadchng ~ drivers + trklen + laps,

+ family=quasipoisson("log"))

> summary(race.mod2a)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4902529 0.4599522 -1.066 0.28823

drivers 0.0516117 0.0119924 4.304 3.05e-05 ***

trklen 0.6104140 0.1751757 3.485 0.00065 ***

laps 0.0021381 0.0008764 2.440 0.01590 *

Null deviance: 1388.59 on 150 degrees of freedom

Residual deviance: 687.61 on 147 degrees of freedom

AIC: NA

## Negative Binomial Model

race.mod4 <- glm.nb(leadchng ~ drivers + trklen + laps, link=log)

> summary(race.mod4)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.5037750 0.4486264 -1.123 0.26147

drivers 0.0596900 0.0136021 4.388 1.14e-05 ***

trklen 0.5152983 0.1789336 2.880 0.00398 **

laps 0.0017422 0.0008671 2.009 0.04452 *
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Null deviance: 308.06 on 150 degrees of freedom

Residual deviance: 162.80 on 147 degrees of freedom

AIC: 1098.1

Theta: 5.248

Std. Err.: 0.809

2 x log-likelihood: -1088.054

> logLik(race.mod4)

’log Lik.’ -544.0272 (df=5)

## Grouped data - Negative Binomial model

> round(gof.grp.nb,3)

# Races Obs Exp Pearson r Mean Var Var/Mean Exp V/M

[1,] 15 113 130.541 -0.302 7.533 23.410 3.107 2.435

[2,] 15 138 151.055 -0.195 9.200 34.457 3.745 2.753

[3,] 14 178 155.015 0.334 12.714 41.297 3.248 3.422

[4,] 17 321 270.637 0.422 18.882 56.360 2.985 4.597

[5,] 19 485 390.052 0.554 25.526 89.930 3.523 5.863

[6,] 15 191 326.424 -0.943 12.733 48.210 3.786 3.426

[7,] 16 353 407.890 -0.306 22.062 74.329 3.369 5.203

[8,] 16 491 453.298 0.189 30.688 183.696 5.986 6.846

[9,] 11 349 373.342 -0.148 31.727 201.818 6.361 7.044

[10,] 13 574 541.275 0.138 44.154 229.474 5.197 9.411

>

> pearson.r <- (sum.mg - sum.muhat.mg) / sqrt(sum.muhat.mg + sum.muhat.mg^2*0.1905)

> (pearson.X2.mg <- sum(pearson.r^2))

[1] 1.785865

> qchisq(.95,10-3-1)

[1] 12.59159

> (pval.mg <- 1-pchisq(pearson.X2.mg,10-3-1))

[1] 0.9383018

5.2.4 Gamma Model

In the case of fitting a Gamma model to continuous, strictly positive data, three common link functions are
used: the identity, the inverse, and the log. These are given below (the log link has been given above).

Identity: µ = β0 + β1X1 + · · ·+ βpXp Inverse :µ =
1

β0 + β1X1 + · · ·+ βpXp

For the identity link, the predicted values for the individual cases make use of the regression equation
directly, while for the reciprocal link, the inverse of regression equation is used.

Example 5.12: Napa Marathon Velocities - Gamma Model

The Napa Valley marathon in 2015 had 977 Males and 905 Females complete the 26.2 mile race. Consider
a model relating runners’ speeds in miles per hour (Y =mph) to Gender (M = 1 if Male, 0 if Female), Age
(A, in Years), and an interaction term (AM , allowing for different slopes with respect to age for Males and
Females. Figure 5.5 plots the reciprocal of mph and the log of mph separately for Males and Females. Both
the inverse link and log link models are fit below using the glm function in R. Note that the “default” link
for the gamma regression model in the glm function is the inverse link.

First, models with Age, a dummy variable for Male, and the AM cross-product term for the interaction
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were fit. The P -values for the cross-product terms were not significant based on the Wald tests (P=.1493 for
identity, P=.0741 for log). The fitted equations, log-likelihoods, residual deviances, and degrees of freedom
for the two link functions and the interaction models are given below.

Identity Link/Interaction Model: µ̂ = (.1571 + .0003025A− .02281M + .0001751AM)
−1

lII = −2732.766 DII = 53.699 df = 1878

Log Link/Interaction Model: µ̂ = e1.8494−.0018A+.1522M−.0013AM

*
lLI = −2732.232 DLI = 53.668 df = 1878

Identity Link/Additive Model: µ̂ = (.1531 + .0004048A− .01574M)
−1

lIA = −2733.829 DIA = 53.759 df = 1879

Log Link/Additive Model: µ̂ = e1.8776−.0025A+.0972M lLA = −2733.85 DLA = 53.760 df = 1879

The fits for the two link functions are very similar. The Additive models are appropriate for this data. This
implies that the slopes for males and females are the same in the linear form of the models. The mean and
variance for the Log Link/Additive model is given below. Note that the dispersion parameter reported by
R is the reciprocal of the dispersion parameter.

α̂ =
1

.02879762
= 34.725 µ̂i = e1.8776−.0025A+.0972M V̂ {Yi} =

(µ̂i)
2

α̂

For instance, the predicted means and variances for 25 year old females and 40 year old males are computed
here.

25 year old males: µ̂ = e1.8776−.0025(25)+.0972(1) = 6.769 V̂ {Y } =
(6.769)2

34.725
= 1.319

40 year old females: µ̂ = e1.8776−.0025(40)+.0972(0) = 5.916 V̂ {Y } =
(5.916)2

34.725
= 1.008

The R output is given below.

∇

## Identity Link/Interaction Model

> napa.mod7 <- glm(mph~Age*gender,family=Gamma)

> summary(napa.mod7)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.571e-01 3.711e-03 42.331 < 2e-16 ***

Age 3.025e-04 9.275e-05 3.261 0.00113 **

genderM -2.281e-02 5.068e-03 -4.501 7.19e-06 ***

Age:genderM 1.751e-04 1.214e-04 1.443 0.14930

(Dispersion parameter for Gamma family taken to be 0.02878207)

Null deviance: 58.586 on 1881 degrees of freedom

Residual deviance: 53.699 on 1878 degrees of freedom

AIC: 5475.6

> logLik(napa.mod7)

’log Lik.’ -2732.776 (df=5)

## Log Link/Interaction Model
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> napa.mod8 <- glm(mph ~ Age*gender, family=Gamma(link="log"))

> summary(napa.mod8)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8494178 0.0220581 83.843 < 2e-16 ***

Age -0.0018116 0.0005461 -3.317 0.000927 ***

genderM 0.1521938 0.0315083 4.830 1.47e-06 ***

Age:genderM -0.0013388 0.0007422 -1.804 0.071404 .

(Dispersion parameter for Gamma family taken to be 0.02876127)

Null deviance: 58.586 on 1881 degrees of freedom

Residual deviance: 53.668 on 1878 degrees of freedom

AIC: 5474.5

> logLik(napa.mod8)

’log Lik.’ -2732.232 (df=5)

## Identity Link/Additive Model

> napa.mod5 <- glm(mph~Age + gender,family=Gamma)

> summary(napa.mod5)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.531e-01 2.496e-03 61.34 < 2e-16 ***

Age 4.048e-04 5.988e-05 6.76 1.83e-11 ***

genderM -1.574e-02 1.296e-03 -12.15 < 2e-16 ***

(Dispersion parameter for Gamma family taken to be 0.02879748)

Null deviance: 58.586 on 1881 degrees of freedom

Residual deviance: 53.759 on 1879 degrees of freedom

AIC: 5475.7

> logLik(napa.mod5)

’log Lik.’ -2733.829 (df=4)

## Log Link/Additive Model

> napa.mod6 <- glm(mph ~ Age + gender, family=Gamma(link="log"))

> summary(napa.mod6)

Call:

glm(formula = mph ~ Age + gender, family = Gamma(link = "log"))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.877592 0.015512 121.044 < 2e-16 ***

Age -0.002532 0.000370 -6.844 1.04e-11 ***

genderM 0.097190 0.007997 12.154 < 2e-16 ***

(Dispersion parameter for Gamma family taken to be 0.02879762)

Null deviance: 58.586 on 1881 degrees of freedom

Residual deviance: 53.760 on 1879 degrees of freedom

AIC: 5475.7

> logLik(napa.mod6)

’log Lik.’ -2733.85 (df=4)
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Figure 5.5: Data and Fitted Models by Gender and Link Function - 2015 Napa Marathon

5.3 Beta Regression

When data are rates or proportions, a regression model based on the Beta Distribution can be fit (Ferrari
and Cribari-Neto, 2004, [13]). The mean and variance for a beta random variable are given below.

E {Y } = µ =
α

α + β
V {Y } =

αβ

(α + β + 1) (α + β)
2

A re-parameterization of the model is used in estimating the regression model. Below is the re-parameterized
likelihood function.

φ = α + β ⇒ α = µφ β = (1 − µ)φ ⇒ E {Y } = µ V {Y } =
µ (1 − µ)

φ + 1

Several link functions can be used, the logit link is used here as was done with the logistic regression function.

log

(

µ

1 − µ

)

= β0 + β1X1 + · · ·βP XP → µ =
eβ0+β1X1+···βP XP

1 + eβ0+β1X1+···βP XP

In R, the “Precision Coefficient” is φ̂.

Example 5.13: Ford Prize Winnings in NASCAR Races: 1992-2000

The NASCAR Winston Cup series had n = 267 races during the years 1992-2000 (Winner, 2006, [36]). For
each race, we obtain Y , the proportion of the prize money won by Ford cars. Variables used as predictors
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include: X1, the proportion of cars in the race that are Fords, X2, the track length (miles), X3, the bank
of the turns of the track (degrees), X4, the number of laps, and dummy variables for the years 1993-2000.
R output for the model is given below. Almost all predictors are significant with the exceptions of Bank
and Year1994. Model 1 is the null model (intercept only) and Model 2 is the full model with the full set of
predictors.

For the null model, the following parameter estimates are obtained, as well as mean and variance.

µ̂ =
e−0.10959

1 + e−0.10959
= .4726 φ̂ = 62.548 α̂ = .4726(62.548) = 29.562 β̂ = (1−.4726)(62.548) = 32.988

V̂ {Y } =
α̂β̂

(

α̂ + β̂
)2 (

α̂ + β̂ + 1
)

=
µ̂ (1 − µ̂)

φ̂ + 1
=

.4726(1− .4726)

62.548 + 1
= 0.003922

A Pseudo-R2 measure can be obtained from the correlation between the logit transformed race proportions
and the (linear) predicted values for them.

Y ∗
i = log

(

Yi

1 − Yi

)

Ŷi∗ = β̂0 + β̂1Xi1 + · · ·+ β̂pXip Pseudo-R2 = r2
Y ∗

i
,Ŷ ∗

i

= .3906

∇

## Null model

> beta.mod1 <- betareg(FPrzp ~ 1)

> summary(beta.mod1)

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.10959 0.01538 -7.128 1.02e-12 ***

Phi coefficients (precision model with identity link):

Estimate Std. Error z value Pr(>|z|)

(phi) 62.548 5.371 11.65 <2e-16 ***

Type of estimator: ML (maximum likelihood)

Log-likelihood: 360.9 on 2 Df

Number of iterations: 13 (BFGS) + 2 (Fisher scoring)

> (X2.P1 <- sum(resid(beta.mod1,type="pearson")^2))

[1] 265.6367

> (X2.D1 <- sum(resid(beta.mod1,type="deviance")^2))

[1] 264.766

## Full model (Year is a factor variable, with 1992 as reference)

> beta.mod2 <- betareg(FPrzp ~ FDrvp + TrkLng + Bank + Laps + Year)

> summary(beta.mod2)

Call:

betareg(formula = FPrzp ~ FDrvp + TrkLng + Bank + Laps + Year)

Standardized weighted residuals 2:

Min 1Q Median 3Q Max

-3.7996 -0.6602 0.0031 0.6532 5.2351

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7312457 0.2074226 -3.525 0.000423 ***
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FDrvp 2.5440987 0.4128540 6.162 7.17e-10 ***

TrkLng -0.1106140 0.0405332 -2.729 0.006353 **

Bank -0.0019614 0.0015161 -1.294 0.195767

Laps -0.0007601 0.0002544 -2.988 0.002808 **

Year1993 -0.2225534 0.0817810 -2.721 0.006502 **

Year1994 -0.0441460 0.0852535 -0.518 0.604584

Year1995 -0.1924006 0.0844577 -2.278 0.022722 *

Year1996 -0.2031800 0.0785715 -2.586 0.009712 **

Year1997 -0.1441680 0.0571996 -2.520 0.011721 *

Year1998 -0.1585144 0.0550342 -2.880 0.003973 **

Year1999 -0.1892330 0.0602789 -3.139 0.001694 **

Year2000 -0.1904757 0.0571511 -3.333 0.000860 ***

Phi coefficients (precision model with identity link):

Estimate Std. Error z value Pr(>|z|)

(phi) 102.877 8.861 11.61 <2e-16 ***

Type of estimator: ML (maximum likelihood)

Log-likelihood: 427.4 on 14 Df

Pseudo R-squared: 0.3906

Number of iterations: 23 (BFGS) + 2 (Fisher scoring)

> (X2.P2 <- sum(resid(beta.mod2,type="pearson")^2))

[1] 264.143

> (X2.D2 <- sum(resid(beta.mod2,type="deviance")^2))

[1] 265.6407

5.4 R Programs for Chapter 5 Examples

5.4.1 Maya Moore Free Throw Shooting

mm_ft <- c(rep(1,160),rep(0,21))

table(mm_ft)

mm.mod1 <- glm(mm_ft ~ 1,binomial("logit"))

summary(mm.mod1)

5.4.2 English Premier League Football Total Goals per Game - 2013/14 Season

goals <- c(rep(0,27),rep(1,75),rep(2,82),rep(3,70),rep(4,63),

rep(5,39),rep(6,17),rep(7,4),rep(8,1),rep(9,2))

library(MASS)

mod1 <- glm(goals~1,family="poisson")

summary(mod1)

mod2 <- glm.nb(goals~1)

summary(mod2)

X2.poi.nb <- -2*(logLik(mod1)-logLik(mod2))

X2.05 <- qchisq(.95,1)

X2.pval <- 1-pchisq(X2.poi.nb,1)

print(round(cbind(X2.poi.nb,X2.05,X2.pval),3))
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5.4.3 Example 5.4: Running Speeds Among Females at a Marathon

goals <- c(rep(0,27),rep(1,75),rep(2,82),rep(3,70),rep(4,63),

rep(5,39),rep(6,17),rep(7,4),rep(8,1),rep(9,2))

library(MASS)

mod1 <- glm(goals~1,family="poisson")

summary(mod1)

mod2 <- glm.nb(goals~1)

summary(mod2)

X2.poi.nb <- -2*(logLik(mod1)-logLik(mod2))

X2.05 <- qchisq(.95,1)

X2.pval <- 1-pchisq(X2.poi.nb,1)

print(round(cbind(X2.poi.nb,X2.05,X2.pval),3))

5.4.4 NBA Team/Game Free Throw Proportions

nbateam <- read.csv("http://www.stat.ufl.edu/~winner/data/nba_teamgame_20167.csv")

attach(nbateam); names(nbateam)

table(GameType)

Ftm.r <- Ftm[GameType == 1]

Fta.r <- Fta[GameType == 1]

Ftprop.r <- (Ftm.r + 2) / (Fta.r + 4)

N <- length(Ftprop.r)

mean(Ftprop.r); var(Ftprop.r)

hist(Ftprop.r, breaks=30)

summary(Ftprop.r)

library(betareg)

FT.mod1 <- betareg(Ftprop.r ~ 1)

summary(FT.mod1)

(gamma <- coef(FT.mod1)[1])

(phi <- coef(FT.mod1)[2])

(mu <- exp(gamma)/(1+exp(gamma)))

(alpha <- mu * phi)

(beta <- (1-mu) * phi)

(sigma2 <- (alpha*beta) / ((phi^2)*(phi+1)))

mean(Ftprop.r); var(Ftprop.r)

f.xft <- seq(0.2,1.0,0.02)

fb.yft <- dbeta(f.xft, alpha, beta)

hist(Ftprop.r, xlim=c(0.2,1.0), breaks=seq(0.2,1.0,0.02),

xlab="Wilson-Agresti-Coull Proportion",main="")

lines(f.xft,fb.yft*N*0.02)

5.4.5 Motorcycles and Erectile Dysfunction

age <- c(25,35,45,55,25,35,45,55)

mr <- c(0,0,0,0,1,1,1,1)

ed.0 <- c(77,205,131,73,25,32,14,2)

ed.1 <- c(35,101,77,53,35,55,44,27)
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# Note that y is made up of (number of Ss, # of Fs)

y <- cbind(ed.1,ed.0)

print(cbind(age,mr,y))

mod0 <- glm(y~1, family=binomial("logit"))

summary(mod0)

logLik(mod0)

mod1 <- glm(y~age, family=binomial("logit"))

summary(mod1)

logLik(mod1)

anova(mod0,mod1,test="Chisq")

mod2 <- glm(y~age+mr, family=binomial("logit"))

summary(mod2)

logLik(mod2)

anova(mod1,mod2,test="Chisq")

mod3 <- glm(y~age+mr+age:mr, family=binomial("logit"))

summary(mod3)

logLik(mod3)

anova(mod2,mod3,test="Chisq")

age.f <- factor(age)

mr.f <- factor(mr)

## Saturated model

mod4 <- glm(y ~ age.f*mr.f, family=binomial("logit"))

summary(mod4)

l0 <- logLik(mod0)

l3 <- logLik(mod3)

R2.CS <- 1 - (exp(l0)/exp(l3))^(2/8)

pi_hat <- ed.1/(ed.0+ed.1)

plot(age,pi_hat,type="n",xlim=c(20,60), ylim=c(0,1),

xlab="Age", ylab="Prob(ED)")

points(age[mr==0],pi_hat[mr==0],pch=12)

points(age[mr==1],pi_hat[mr==1],pch=16)

ageseq=seq(20,60,0.1)

logodds.mr1 <- -1.257466+0.016436*ageseq+0.013092+0.039497*ageseq

logodds.mr0 <- -1.257466+0.016436*ageseq

lines(ageseq,(exp(logodds.mr1)/(1+exp(logodds.mr1))))

lines(ageseq,(exp(logodds.mr0)/(1+exp(logodds.mr0))),lty=5)

legend(20,.95,c("MR=0","MR=1"),pch=c(12,16),lty=c(5,1))

5.4.6 NFL Field Goal Attempts - 2008 Regular Season

fga <- read.csv("http://www.stat.ufl.edu/~winner/data/nfl2008_fga.csv")

attach(fga); names(fga)

n <- length(GOOD)

fga.mod1 <- glm(GOOD ~ 1, binomial("logit"))

summary(fga.mod1)

logLik(fga.mod1)

fga.mod2 <- glm(GOOD ~ distance, binomial("logit"))

summary(fga.mod2)

logLik(fga.mod2)

fga.mod3 <- glm(GOOD ~ distance + homekick, binomial("logit"))
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summary(fga.mod3)

logLik(fga.mod3)

pihat <- predict(fga.mod2,type="response")

pi_good <- data.frame(pihat,GOOD,distance)

write.csv(pi_good, file="fga_fit.csv")

########

mindist <- min(distance); maxdist <- max(distance)

n.dist <- numeric(maxdist-mindist+1)

y.dist <- numeric(maxdist-mindist+1)

pi_hat.dist <- numeric(maxdist-mindist+1)

fga.dist <- numeric(maxdist-mindist+1)

cnt.dist <- 0

for (i in mindist:maxdist) {

cnt.dist <- cnt.dist+1

n.dist[cnt.dist] <- length(distance[distance==i])

y.dist[cnt.dist] <- sum(GOOD[distance==i])

fga.dist[cnt.dist] <- i

if (n.dist[cnt.dist] == 0) pi_hat.dist[cnt.dist] <- NA

else pi_hat.dist[cnt.dist] <- y.dist[cnt.dist] / n.dist[cnt.dist]

}

pi_hat.dist

fga.dist

x.seq <- seq(18,80,0.1)

pi_hat.seq <- predict(fga.mod2, list(distance=x.seq), type="response")

plot(pi_hat.dist ~ fga.dist, xlab="Distance (yards)", ylab="P(Success)")

lines(x.seq,pi_hat.seq)

5.4.7 Toxicity of Chemicals on Beetles

tribol <- read.table("http://www.stat.ufl.edu/~winner/data/tribol_tox.dat",

header=F,col.names=c("pyreth","pipBut","numExps","numMor"))

attach(tribol)

y.trib <- cbind(numMor,numExps-numMor)

trib.mod1 <- glm(y.trib ~ 1, binomial("logit"))

summary(trib.mod1)

logLik(trib.mod1)

e.p1 <- resid(trib.mod1,type="pearson")

e.d1 <- resid(trib.mod1,type="deviance")

sum(e.p1^2)

sum(e.d1^2)

trib.mod2 <- glm(y.trib ~ pyreth + pipBut,

binomial("logit"))

summary(trib.mod2)

logLik(trib.mod2)

e.p2 <- resid(trib.mod2,type="pearson")

e.d2 <- resid(trib.mod2,type="deviance")

sum(e.p2^2)

sum(e.d2^2)

trib.mod3 <- glm(y.trib ~ pyreth + pipBut + I(pyreth*pipBut),

binomial("logit"))

summary(trib.mod3)

logLik(trib.mod3)
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e.p3 <- resid(trib.mod3,type="pearson")

e.d3 <- resid(trib.mod3,type="deviance")

sum(e.p3^2)

sum(e.d3^2)

anova(trib.mod1,trib.mod2)

anova(trib.mod2,trib.mod3)

trib.mod4 <- glm(y.trib ~ pyreth + pipBut,

quasibinomial("logit"))

summary(trib.mod4)

logLik(trib.mod4)

e.p4 <- resid(trib.mod4,type="pearson")

e.d4 <- resid(trib.mod4,type="deviance")

sum(e.p4^2)

sum(e.d4^2)

trib.mod5 <- glm(y.trib ~ pyreth + pipBut + I(pyreth*pipBut) +

I(pyreth^2) + I(pipBut^2),

binomial("logit"))

summary(trib.mod5)

logLik(trib.mod5)

e.p5 <- resid(trib.mod5,type="pearson")

e.d5 <- resid(trib.mod5,type="deviance")

sum(e.p5^2)

sum(e.d5^2)

trib.mod6 <- glm(y.trib ~ pyreth + pipBut + I(pyreth*pipBut) +

I(pyreth^2) + I(pipBut^2),

quasibinomial("logit"))

summary(trib.mod6)

# logLik(trib.mod5)

e.p6 <- resid(trib.mod6,type="pearson")

e.d6 <- resid(trib.mod6,type="deviance")

sum(e.p6^2)

sum(e.d6^2)

5.4.8 NASCAR Crashes - 1972-1979 Seasons - Poisson Model

race1 <- read.fwf("http://www.stat.ufl.edu/~winner/data/race7579.dat",

width=c(8,8,8,8,8,8,8,8,8,12,40),

col.names=c(’srace’, ’yr’, ’yrace’, ’drivers’, ’trklen’, ’laps’, ’roadtrk’,

’cautions’, ’leadchng’, ’trkid’, ’track’))

race <- data.frame(drivers=race1$drivers, trklen=race1$trklen, laps=race1$laps,

cautions=race1$cautions)

attach(race)

race.mod1 <- glm(cautions ~ 1, poisson("log"))

summary(race.mod1)

logLik(race.mod1)

race.mod2 <- glm(cautions ~ drivers + trklen + laps, poisson("log"))

summary(race.mod2)

logLik(race.mod2)

anova(race.mod2, test="Chisq")

drop1(race.mod2, test="Chisq")

race.mod3 <- glm(cautions ~ drivers + laps, poisson("log"))

summary(race.mod3)

logLik(race.mod3)
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anova(race.mod3, test="Chisq")

drop1(race.mod3, test="Chisq")

muhat <- predict(race.mod3, type="response")

#print(cbind(cautions, muhat))

(pearson.x2 <- sum((cautions - muhat)^2/muhat))

(pearson.x2a <- sum(resid(race.mod3,type="pearson")^2))

(deviance.x2 <- sum(resid(race.mod3)^2))

mean.grp <- rep(0,length(cautions))

for (i in 1:length(cautions)) {

if (muhat[i] < 3.50) mean.grp[i] <- 1

else if (muhat[i] < 3.70) mean.grp[i] <- 2

else if (muhat[i] < 4.00) mean.grp[i] <- 3

else if (muhat[i] < 4.15) mean.grp[i] <- 4

else if (muhat[i] < 4.30) mean.grp[i] <- 5

else if (muhat[i] < 4.40) mean.grp[i] <- 6

else if (muhat[i] < 4.70) mean.grp[i] <- 7

else if (muhat[i] < 5.25) mean.grp[i] <- 8

else if (muhat[i] < 5.50) mean.grp[i] <- 9

else if (muhat[i] < 6.00) mean.grp[i] <- 10

else if (muhat[i] < 6.80) mean.grp[i] <- 11

else mean.grp[i] <- 12

}

count.mg <- rep(0,max(mean.grp))

sum.mg <- rep(0,max(mean.grp))

sum.muhat.mg <- rep(0,max(mean.grp))

mean.mg <- rep(0,max(mean.grp))

var.mg <- rep(0,max(mean.grp))

for (i in 1:max(mean.grp)) {

count.mg[i] <- length(cautions[mean.grp == i])

sum.mg[i] <- sum(cautions[mean.grp == i])

sum.muhat.mg[i] <- sum(muhat[mean.grp == i])

mean.mg[i] <- mean(cautions[mean.grp == i])

var.mg[i] <- var(cautions[mean.grp == i])

}

pearson.r <- (sum.mg - sum.muhat.mg) / sqrt(sum.muhat.mg)

(pearson.X2.mg <- sum(pearson.r^2))

qchisq(.95,12-2-1)

(pval.mg <- 1-pchisq(pearson.X2.mg,12-2-1))

gof.grp <- cbind(count.mg,sum.mg,sum.muhat.mg,pearson.r,mean.mg,var.mg)

colnames(gof.grp) <- c("# Races","Total Obs", "Total Exp", "Pearson r",

"Mean","Variance")

round(gof.grp,3)

### quasipoisson takes SE(beta)*sqrt(phi)

### phi = pearson.x2/df

race.mod3a <- glm(formula = cautions ~ drivers + laps,

family=quasipoisson("log"))

summary(race.mod3a)

anova(race.mod3a, test="Chisq")

5.4.9 NASCAR Lead Changes - 1972-1979 Seasons - Negative Binomial Model

race1 <- read.fwf("http://www.stat.ufl.edu/~winner/data/race7579.dat",

width=c(8,8,8,8,8,8,8,8,8,12,40),
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col.names=c(’srace’, ’yr’, ’yrace’, ’drivers’, ’trklen’, ’laps’, ’roadtrk’,

’cautions’, ’leadchng’, ’trkid’, ’track’))

race <- data.frame(drivers=race1$drivers, trklen=race1$trklen, laps=race1$laps,

leadchng=race1$leadchng)

attach(race)

race.mod1 <- glm(leadchng ~ 1, poisson("log"))

summary(race.mod1)

logLik(race.mod1)

race.mod2 <- glm(leadchng ~ drivers + trklen + laps, poisson("log"))

summary(race.mod2)

logLik(race.mod2)

anova(race.mod2, test="Chisq")

drop1(race.mod2, test="Chisq")

race.mod3 <- glm(leadchng ~ drivers + laps, poisson("log"))

summary(race.mod3)

logLik(race.mod3)

anova(race.mod3, test="Chisq")

drop1(race.mod3, test="Chisq")

muhat <- predict(race.mod2, type="response")

#print(cbind(leadchng, muhat))

(pearson.x2 <- sum((leadchng - muhat)^2/muhat))

(pearson.x2a <- sum(resid(race.mod2,type="pearson")^2))

(deviance.x2 <- sum(resid(race.mod2)^2))

mean.grp <- rep(0,length(leadchng))

for (i in 1:length(leadchng)) {

if (muhat[i] < 9.4) mean.grp[i] <- 1

else if (muhat[i] < 10.5) mean.grp[i] <- 2

else if (muhat[i] < 11.6) mean.grp[i] <- 3

else if (muhat[i] < 20) mean.grp[i] <- 4

else if (muhat[i] < 21) mean.grp[i] <- 5

else if (muhat[i] < 23) mean.grp[i] <- 6

else if (muhat[i] < 26) mean.grp[i] <- 7

else if (muhat[i] < 32) mean.grp[i] <- 8

else if (muhat[i] < 36) mean.grp[i] <- 9

else mean.grp[i] <- 10

}

count.mg <- rep(0,max(mean.grp))

sum.mg <- rep(0,max(mean.grp))

sum.muhat.mg <- rep(0,max(mean.grp))

mean.mg <- rep(0,max(mean.grp))

var.mg <- rep(0,max(mean.grp))

for (i in 1:max(mean.grp)) {

count.mg[i] <- length(leadchng[mean.grp == i])

sum.mg[i] <- sum(leadchng[mean.grp == i])

sum.muhat.mg[i] <- sum(muhat[mean.grp == i])

mean.mg[i] <- mean(leadchng[mean.grp == i])

var.mg[i] <- var(leadchng[mean.grp == i])

}

gof.grp <- cbind(count.mg,sum.mg,sum.muhat.mg,pearson.r,mean.mg,var.mg)

colnames(gof.grp) <- c("# Races","Total Obs", "Total Exp", "Pearson r",

"Mean","Variance")

round(gof.grp,3)

pearson.r <- (sum.mg - sum.muhat.mg) / sqrt(sum.muhat.mg)
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(pearson.X2.mg <- sum(pearson.r^2))

qchisq(.95,10-3-1)

(pval.mg <- 1-pchisq(pearson.X2.mg,10-3-1))

### quasipoisson takes SE(beta)*sqrt(phi)

### phi = pearson.x2/df

race.mod2a <- glm(formula = leadchng ~ drivers + trklen + laps,

family=quasipoisson("log"))

summary(race.mod2a)

anova(race.mod2a, test="Chisq")

drop1(race.mod2a, test="Chisq")

### Negative Binomial Model

library(MASS)

race.mod4 <- glm.nb(leadchng ~ drivers + trklen + laps, link=log)

summary(race.mod4)

logLik(race.mod4)

anova(race.mod4, test="Chisq")

drop1(race.mod4, test="Chisq")

race.mod5 <- glm.nb(leadchng ~ drivers + laps, link=log)

summary(race.mod5)

logLik(race.mod5)

anova(race.mod5, test="Chisq")

drop1(race.mod5, test="Chisq")

anova(race.mod3, race.mod5, test="Chisq")

mean.grp <- rep(0,length(leadchng))

for (i in 1:length(leadchng)) {

if (muhat[i] < 9.4) mean.grp[i] <- 1

else if (muhat[i] < 10.5) mean.grp[i] <- 2

else if (muhat[i] < 11.6) mean.grp[i] <- 3

else if (muhat[i] < 20) mean.grp[i] <- 4

else if (muhat[i] < 21) mean.grp[i] <- 5

else if (muhat[i] < 23) mean.grp[i] <- 6

else if (muhat[i] < 26) mean.grp[i] <- 7

else if (muhat[i] < 32) mean.grp[i] <- 8

else if (muhat[i] < 36) mean.grp[i] <- 9

else mean.grp[i] <- 10

}

muhat.nb <- predict(race.mod4, type="response")

count.mg <- rep(0,max(mean.grp))

sum.mg <- rep(0,max(mean.grp))

sum.muhat.mg <- rep(0,max(mean.grp))

mean.mg <- rep(0,max(mean.grp))

var.mg <- rep(0,max(mean.grp))

var.mean.mg <- rep(0,max(mean.grp))

exp.v.m.mg <- rep(0,max(mean.grp))

for (i in 1:max(mean.grp)) {

count.mg[i] <- length(leadchng[mean.grp == i])

sum.mg[i] <- sum(leadchng[mean.grp == i])

sum.muhat.mg[i] <- sum(muhat.nb[mean.grp == i])

mean.mg[i] <- mean(leadchng[mean.grp == i])

var.mg[i] <- var(leadchng[mean.grp == i])

var.mean.mg[i] <- var.mg[i]/mean.mg[i]

exp.v.m.mg[i] <- 1 + mean.mg[i]*0.1905

}

gof.grp.nb <- cbind(count.mg,sum.mg,sum.muhat.mg,pearson.r,mean.mg,var.mg,

var.mean.mg, exp.v.m.mg)
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colnames(gof.grp.nb) <- c("# Races","Obs", "Exp", "Pearson r",

"Mean","Var","Var/Mean","Exp V/M")

round(gof.grp.nb,3)

pearson.r <- (sum.mg - sum.muhat.mg) /

sqrt(sum.muhat.mg + sum.muhat.mg^2*0.1905)

(pearson.X2.mg <- sum(pearson.r^2))

qchisq(.95,10-3-1)

(pval.mg <- 1-pchisq(pearson.X2.mg,10-3-1))

5.4.10 Napa Marathon Velocities - Gamma Model

napaf2015 <- read.csv("http://www.stat.ufl.edu/~winner/data/napa_marathon_fm2015.csv",

header=T)

attach(napaf2015); names(napaf2015)

gender <- factor(Gender)

summary(mph[gender=="F"])

summary(mph[gender=="M"])

length(mph[gender=="F"])

length(mph[gender=="M"])

napa.mod1 <- glm(mph~1,family=Gamma)

summary(napa.mod1)

deviance(napa.mod1)

napa.mod2 <- glm(mph~Age,family=Gamma)

summary(napa.mod2)

napa.mod3 <- glm(mph ~ Age, family=Gamma(link="log"))

summary(napa.mod3)

napa.mod4 <- glm(mph~gender,family=Gamma)

summary(napa.mod4)

deviance(napa.mod4)

napa.mod5 <- glm(mph~Age + gender,family=Gamma)

summary(napa.mod5)

logLik(napa.mod5)

napa.mod6 <- glm(mph ~ Age + gender, family=Gamma(link="log"))

summary(napa.mod6)

logLik(napa.mod6)

napa.mod7 <- glm(mph~Age*gender,family=Gamma)

summary(napa.mod7)

logLik(napa.mod7)

napa.mod8 <- glm(mph ~ Age*gender, family=Gamma(link="log"))

summary(napa.mod8)

logLik(napa.mod8)

age1 <- min(Age):max(Age)

genderf1m2 <- rep(1,length(mph))

for (i in 1:length(mph)) {

if (Gender[i] == "M") male[i] <- 2

}

par(mfrow=c(2,2))

yhat.F.inv <- 1/(coef(napa.mod5)[1] + coef(napa.mod5)[2]*age1)

yhat.M.inv <- 1/((coef(napa.mod5)[1]+coef(napa.mod5)[3]) +
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coef(napa.mod5)[2]*age1)

plot(Age[gender=="M"],mph[gender=="M"],xlab="Age",ylab="mph",

main="Males - Inverse link",

pch=1,cex=0.7,xlim=c(16,76),ylim=c(3,12))

lines(age1,yhat.M.inv,lty=1,lwd=2)

plot(Age[gender=="F"],mph[gender=="F"],xlab="Age",ylab="mph",

main="Females - Inverse link",

pch=1,cex=0.7,xlim=c(16,76),ylim=c(3,12))

lines(age1,yhat.F.inv,lty=1,lwd=2)

yhat.F.log <- exp(coef(napa.mod6)[1] + coef(napa.mod6)[2]*age1)

yhat.M.log <- exp((coef(napa.mod6)[1]+coef(napa.mod6)[3]) +

coef(napa.mod6)[2]*age1)

plot(Age[gender=="M"],mph[gender=="M"],xlab="Age",ylab="mph",

main="Males - Log link",

pch=1,cex=0.7,xlim=c(16,76),ylim=c(3,12))

lines(age1,yhat.M.log,lty=1,lwd=2)

plot(Age[gender=="F"],mph[gender=="F"],xlab="Age",ylab="mph",

main="Females - Log link",

pch=1,cex=0.7,xlim=c(16,76),ylim=c(3,12))

lines(age1,yhat.F.log,lty=1,lwd=2)

anova(napa.mod5,napa.mod7,test="Chisq")

anova(napa.mod6,napa.mod8,test="Chisq")

mu8 <- predict(napa.mod8,type="response")

(dev.8 <- sum((log(mph/mu8))-((mph-mu8)/mu8)))

deviance(napa.mod8)

mu6 <- predict(napa.mod6,type="response")

(dev.6 <- sum((log(mph/mu6))-((mph-mu6)/mu6)))

5.4.11 Ford Prize Winnings in NASCAR Races: 1992-2000

ford <- read.csv("http://www.stat.ufl.edu/~winner/data/nas_ford_1992_2000a.csv",

header=T)

attach(ford); names(ford)

library(betareg)

Year <- factor(Year)

Track_id <- factor(Track_id)

beta.mod1 <- betareg(FPrzp ~ 1)

summary(beta.mod1)

(X2.P1 <- sum(resid(beta.mod1,type="pearson")^2))

(X2.D1 <- sum(resid(beta.mod1,type="deviance")^2))

beta.mod2 <- betareg(FPrzp ~ FDrvp + TrkLng + Bank + Laps + Year)

summary(beta.mod2)

(X2.P2 <- sum(resid(beta.mod2,type="pearson")^2))

(X2.D2 <- sum(resid(beta.mod2,type="deviance")^2))



Chapter 6

Nonlinear Regression

In many applications, theory leads to a nonlinear relationship between the response variable and a predictor
variable or a set of predictors. These relationships can be based on growth models, differential equations, or
simply observation. Note that these models go beyond polynomial models considered in Chapter 2, which
are still linear with respect to the regression coefficients. Normal based models can be written in a general
form as follows.

Y = g (X1, . . . , Xp; β1, . . . , βq) + ε eps ∼ N
(

0, σ2
)

Nonlinear least squares can be used to estimate the parameters β1, . . . , βq. This is done by calculus using
matrix form of the models. Several examples are given here to illustrate nonlinear regression models. The
usual (approximate) F -tests, t-tests, and Confidence Intervals can be used to make inference regarding
parameters.

An important difference from previous models is that starting values must be given for parameters. Software
packages are very good at solving for nonlinear least squares estimates as long as the signs and magnitudes
are reasonable. It is especially important with models with exponential terms.

6.1 Examples of Nonlinear Regression Models

Example 6.1: Kentucky Derby Winning Times 1896-2016

It has been argued in the academic literature that there are limits to performance in animals (e.g. Denny,
2008, [10]). Denny studied historical results involving speed among horses, dogs, and humans with a wide
variety of theoretically based nonlinear models relating performance to year. One model considered for
Velocity was an “S-shaped” logistic function, of the following form, where Yt is the winning velocity (meters
per second) in year t.

Yt = β1 + (β2 − β1))

[

exp {β3 (t − β4)}
1 + exp {β3 (t − β4)}

]

+ εt

221
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Figure 6.1: Kentucky Derby winning velocities and fitted logistic function - Years 1896-2016

In this model, β1 is the lower asymptote (minimum mean speed), β2 is the upper asymptote (maximum
mean speed), β3 is a shape parameter determining the steepness of the curve between lower and upper
asymptotes. Finally, β4 is the year when the curve is steepest, as well as half way between the lower and
upper asymptotes. Here we consider the winning speeds of the Kentucky Derby for years 1896-2016, all years
that the horse race was run at a distance of 1.25 miles. The variable t represents Year. The fitted equation
below and is plotted with velocity data in Figure 6.1.

Ŷ = 15.36 + (16.49− 15.36)

[

e.0638(t−1924)

1 + e.0638(t−1924)

] √
MSE = 0.2376

In terms of the mean velocities have a lower asymptote of 15.36, and upper asymptote of 16.49, and the year
where the mean is halfway between the two asymptotes being 1924. The R output is given below.

∇

> Speed125 <- 1609.34*Length125/Time125

> summary(Speed125)

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.88 16.04 16.30 16.20 16.49 16.85

>

> kd.mod1 <- nls(Speed125 ~ b1 + (b2-b1)*exp(b3*(Year125-b4))/

+ (1+exp(b3*(Year125-b4))), start=c(b1=1,b2=20,b3=1,b4=1940))

> summary(kd.mod1)

Parameters:
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Estimate Std. Error t value Pr(>|t|)

b1 1.536e+01 2.823e-01 54.405 < 2e-16 ***

b2 1.649e+01 4.639e-02 355.370 < 2e-16 ***

b3 6.382e-02 2.297e-02 2.778 0.00637 **

b4 1.924e+03 9.271e+00 207.486 < 2e-16 ***

Residual standard error: 0.2376 on 117 degrees of freedom

> AIC(kd.mod1)

[1] 1.564131

Example 6.2: Beer Foam Heights Over Time for 3 Beer Brands

A study (Leike, 2002, [18]) reported results of an experiment measuring beer foam height over a 6 minute
period for 3 brands of beer (Erdinger Weissbier, Augustinerbrau Munchen, and Budweiser). The data are
given in Table 6.1. There are a total of n = 3(15) = 45 observations when “stacking” the data for 3 brands.
An exponential decay model with additive errors is fit, allowing for different curves for the 3 brands, with
ti representing time, and dummy variables: Xi1 = 1 if Erdinger, 0 otherwise; Xi2 = 1 if Augustinerbrau, 0
otherwise; and Xi3 = 1 if Budweiser, 0 otherwise. The fitted equations for the 3 brands are given below the
model. Since the exponents have negative signs before β11, β12, β13 these will have to be given positive and
small starting values.

Yi = β01Xi1 exp{−β11Xi1ti} + β02Xi2 exp{−β12Xi2ti} + β03Xi3 exp{−β13Xi3ti} + εi i = 1, . . . , 45

Erdinger: Ŷ = 16.50e−.00396t August: Ŷ = 13.23e−.006758t Bud: Ŷ = 13.37e−.005625t

The R program and output are given below. Note that the algorithm fails when ti = 0, so replace it with
ti = 0.0001. A plot of the data and the fitted curves are given in Figure 6.2. Based on the plot and the
coefficients given above, it appears that Augustinerbrau and Budweiser have similar curves. A simpler model
would combine the dummy variables for brands 2 and 3 into a single dummy variable by adding them and
fitting the following model with Xi23 = Xi2 + Xi3. The fitted equation is given below.

Yi = β01Xi1 exp{−β11Xi1ti} + β023Xi23 exp{−β123Xi22ti} + εi

Erdinger: Ŷ = 16.50e−.00396t August/Bud: Ŷ = 13.29e−.006148t SSEF = 6.0277 SSER = 10.3060

The plot in Figure 6.3 gives the data and fitted curves for the Reduced model. It appears that the curve
tends to “miss low” typically for one of the two brands and “miss high” for the other.

A Complete versus Reduced model is used to test between the two models. For the Full model, the error
degrees of freedom is dfF = 45 − 6 = 39 and for the Reduced model, it is dfR = 45 − 4 = 41. The
(approximate) test is given below. The hypothesis of common curves for Augustinerbrau and Budweiser is
rejected.

H0 : β02 = β03, β12 = β13 TS : Fobs =

[

10.3060−6.0277
41−39

]

6.0277
39

=
2.1392

0.1546
= 13.84

RR : Fobs ≥ F.05,2,39 = 3.238 P < .0001

∇
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Time (sec) Erdinger Augustinerbrau Budweiser

0 17.0 14.0 14.0
15 16.1 11.8 12.1
30 14.9 10.5 10.9
45 14.0 9.3 10.0
60 13.2 8.5 9.3
75 12.5 7.7 8.6
90 11.9 7.1 8.0
105 11.2 6.5 7.5
120 10.7 6.0 7.0
150 9.7 5.3 6.2
180 8.9 4.4 5.5
210 8.3 3.5 4.5
240 7.5 2.9 3.5
300 6.3 1.3 2.0
360 5.2 0.7 0.9

Table 6.1: Beer Foam Heights for 3 Brands of Beer over Time
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Figure 6.2: Beer Foam Height versus Time for 3 beer brands - Exponential Decay Model.
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Figure 6.3: Beer Foam Height versus Time, with Brands 2 and 3 combined into a single brand

## Full Model

> foam.mod1 <- nls(foamHt ~ b01*brand1*exp(-b11*brand1*foamTime) +

+ b02*brand2*exp(-b12*brand2*foamTime) +

+ b03*brand3*exp(-b13*brand3*foamTime),

+ start=c(b01=10,b02=10,b03=10,b11=0.01,b12=0.01,b13=0.01))

> summary(foam.mod1)

Formula: foamHt ~ b01 * brand1 * exp(-b11 * brand1 * foamTime) + b02 *

brand2 * exp(-b12 * brand2 * foamTime) + b03 * brand3 * exp(-b13 *

brand3 * foamTime)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b01 1.650e+01 2.080e-01 79.32 <2e-16 ***

b02 1.323e+01 2.469e-01 53.61 <2e-16 ***

b03 1.337e+01 2.346e-01 57.02 <2e-16 ***

b11 3.396e-03 1.172e-04 28.98 <2e-16 ***

b12 6.758e-03 2.534e-04 26.67 <2e-16 ***

b13 5.625e-03 2.117e-04 26.57 <2e-16 ***

Residual standard error: 0.3931 on 39 degrees of freedom

> deviance(foam.mod1)

[1] 6.02771

## Reduced Model

> foam.mod2 <- nls(foamHt ~ b01*brand1*exp(-b11*brand1*foamTime) +

+ b023*brand23*exp(-b123*brand23*foamTime),

+ start=c(b01=10,b023=10,b11=0.01,b123=0.01))

> summary(foam.mod2)

Formula: foamHt ~ b01 * brand1 * exp(-b11 * brand1 * foamTime) + b023 *

brand23 * exp(-b123 * brand23 * foamTime)

Parameters:

Estimate Std. Error t value Pr(>|t|)
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b01 1.650e+01 2.652e-01 62.20 <2e-16 ***

b023 1.329e+01 2.167e-01 61.30 <2e-16 ***

b11 3.396e-03 1.494e-04 22.73 <2e-16 ***

b123 6.148e-03 2.082e-04 29.53 <2e-16 ***

Residual standard error: 0.5014 on 41 degrees of freedom

> deviance(foam.mod2)

[1] 10.30604

> anova(foam.mod2,foam.mod1)

Analysis of Variance Table

Model 1: foamHt ~ b01 * brand1 * exp(-b11 * brand1 * foamTime) + b023 * brand23 * exp(-b123 * brand23 * foamTime)

Model 2: foamHt ~ b01 * brand1 * exp(-b11 * brand1 * foamTime) + b02 * brand2 * exp(-b12 * brand2 * foamTime) +

b03 * brand3 * exp(-b13 * brand3 * foamTime)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 41 10.3060

2 39 6.0277 2 4.2783 13.841 2.869e-05 ***

6.2 R Programs for Chapter 6 Examples

6.2.1 Kentucky Derby Winning Times 1896-2016

kd <- read.csv("http://www.stat.ufl.edu/~winner/data/kentuckyderby.csv",

header=TRUE)

attach(kd); names(kd)

Year125 <- Year[Length==1.25]

Time125 <- Time[Length==1.25]

Length125 <- Length[Length==1.25]

Year125.0 <- Year125-min(Year125)

Speed125 <- 1609.34*Length125/Time125

summary(Speed125)

kd.mod1 <- nls(Speed125 ~ b1 + (b2-b1)*exp(b3*(Year125-b4))/

(1+exp(b3*(Year125-b4))), start=c(b1=1,b2=20,b3=1,b4=1940))

summary(kd.mod1)

AIC(kd.mod1)

plot(Year125,Speed125, xlab="Year", ylab="Meters/Second")

lines(Year125,predict(kd.mod1,Year125))

plot(Year125,resid(kd.mod1))

qqnorm(resid(kd.mod1)); qqline(resid(kd.mod1))

6.2.2 Beer Foam Heights Over Time for 3 Beer Brands

beerfoam <- read.csv("http://www.stat.ufl.edu/~winner/data/beerfoam2a.csv")

attach(beerfoam); names(beerfoam)

for (i in 1:length(foamTime)) {

if (foamTime[i] == 0) foamTime[i] <- 0.0001

}
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foam.mod1 <- nls(foamHt ~ b01*brand1*exp(-b11*brand1*foamTime) +

b02*brand2*exp(-b12*brand2*foamTime) +

b03*brand3*exp(-b13*brand3*foamTime),

start=c(b01=10,b02=10,b03=10,b11=0.01,b12=0.01,b13=0.01))

summary(foam.mod1)

deviance(foam.mod1)

time.x <- 0:360

yhat.b1 <- coef(foam.mod1)[1] * exp(-coef(foam.mod1)[4]*time.x)

yhat.b2 <- coef(foam.mod1)[2] * exp(-coef(foam.mod1)[5]*time.x)

yhat.b3 <- coef(foam.mod1)[3] * exp(-coef(foam.mod1)[6]*time.x)

plot(foamTime,foamHt,pch=beerBrnd, xlab="Foam Time (seconds)",

ylab="Foam Height")

lines(time.x,yhat.b1,lty=1)

lines(time.x,yhat.b2,lty=2)

lines(time.x,yhat.b3,lty=5)

legend(240,16,c("Erd","Aug","Bud"),pch=c(1,2,3),lty=c(1,2,5))

### Reduced Model

brand23=brand2 + brand3

foam.mod2 <- nls(foamHt ~ b01*brand1*exp(-b11*brand1*foamTime) +

b023*brand23*exp(-b123*brand23*foamTime),

start=c(b01=10,b023=10,b11=0.01,b123=0.01))

summary(foam.mod2)

deviance(foam.mod2)

time.x <- 0:360

yhat.b1 <- coef(foam.mod2)[1] * exp(-coef(foam.mod2)[3]*time.x)

yhat.b23 <- coef(foam.mod2)[2] * exp(-coef(foam.mod2)[4]*time.x)

plot(foamTime,foamHt,pch=beerBrnd, xlab="Foam Time (seconds)",

ylab="Foam Height")

lines(time.x,yhat.b1,lty=1)

lines(time.x,yhat.b23,lty=5)

legend(240,16,c("Erd","Aug/Bud"),pch=c(1,2),lty=c(1,5))

anova(foam.mod2,foam.mod1)
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