STA 6166 - Exam 3 - Fall 2016 PRINT Name

Conduct all Tests at $\alpha=0.05$ significance level.

Q.1. An experiment is conducted to compare 6 styles of keyboards in terms of comfort ratings for people who are professional computer programmers. A random sample of 5 programmers is obtained, and each programmer uses each keyboard in random order and assigns each keyboard a comfort rating. Give the sources of variation, their degrees of freedom and the critical F-value to test for differences among the population mean comfort ratings of the keyboard styles.

Source
Degrees of Freedom
F(0.05)
Q.2. A pharmaceutical firm is interested in the proportion (π) of all potential users of a new drug being marketed that will suffer from a particular adverse event. Based on a study with a sample of 800 subjects, 120 suffered from this adverse event. Compute a 95% Confidence Interval for the population proportion of all potential users who would suffer from this event.
Q.3. Among samples of size 10 from the NHL, NBA, and EPL athletes, the rank sums of their BMIs are:
$\mathrm{T}_{\mathrm{NHL}}=215 \mathrm{~T}_{\mathrm{NBA}}=148.5 \mathrm{~T}_{\mathrm{EPL}}=101.5$. Conduct the Kruskal-Wallis test to test $\mathrm{H}_{0}: \mathrm{M}_{\mathrm{NHL}}=\mathrm{M}_{\mathrm{NBA}}=\mathrm{M}_{\mathrm{EPL}}$
\qquad
\qquad
Q.4. An experiment compared 4 navigational techniques (CPB, DPB, ENCC, and G\&C) for utilizing web-based maps. The experiment had 18 subjects, where each subject used each of the navigational techniques, and was conducted as a Randomized Complete Block Design. The response measured was the time it took for the subject to complete the task.
p.4.a. Complete the following ANOVA table for testing whether there are significant differences among the true mean completion times among the navigational techniques. $\mathrm{H}_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$

Source	df	SS	MS	F	F(.05)	Reject H0?
Trts (NavTechs)		23362				
Blocks (Subjects)		18500		\#N/A	\#N/A	\#N/A
Error				\#N/A	\#N/A	\#N/A
Total		90567	\#N/A	\#N/A	\#N/A	\#N/A

p.4.b. The means for the 4 treatments are $\bar{y}_{1 .}=177.9 \quad \bar{y}_{2 .}=165.0 \quad \bar{y}_{3 .}=133.3 \quad \bar{y}_{4 .}=140.8$

Use Tukey's method to determine which pairs of treatments have significantly different means.

Tukey's W: \qquad Trt3 Trt4 Trt2 Trt1
p.4.c. Compute the Relative Efficiency of the Randomized Block Design (relative to the Completely Randomized Design). How many subjects would be needed per treatment (and overall) to have the same precision of estimates of the Navigation Technique means?
\qquad
\qquad
\qquad
Q.5. An experiment was conducted, comparing 3 menu labeling conditions in a restaurant (No Calorie Label, Calorie Label Only, and Calorie Label Plus Information). There were $\mathrm{n}_{\mathrm{i}}=30$ people within each condition in a Completely Randomized Design. The sample means and standard deviations for the 3 conditions in terms of $\mathrm{Y}=$ Total Post-dinner Calories are given below.
$\bar{y}_{1 .}=180 \quad \bar{y}_{2 .}=290 \quad \bar{y}_{3 .}=180 \quad s_{1}=310, \quad s_{2}=390 \quad s_{3}=310$
p.5.a. Compute the Between Treatment sum of squares, its degrees of freedom, and Mean Square.
$\mathrm{SSB}=$ \qquad $\mathrm{df}_{\mathrm{B}}=$ \qquad MSB $=$ \qquad
p.5.b. Compute the Within Treatment sum of squares, its degrees of freedom and Mean Square.

SSW $=$ \qquad $\mathrm{df}_{\mathrm{w}}=$ \qquad MSW = \qquad
Test $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ versus H_{A} : Not all μ_{i} are equal
\qquad
\qquad
Q.6. A study measured distance covered among a sample of 5 University level soccer players (blocks) on 3 soccer field sizes (treatments) in simulated games. The field sizes were: $30 \times 20 \mathrm{~m}, 40 \times 30 \mathrm{~m}$, and 50 x 40 m . The data are given below. Use Friedman's test to determine whether population medians differ among the 3 field sizes.

Player	Size1	Size2	Size3
1	1288	1748	1696
2	1705	2105	2167
3	1141	1558	1493
4	1340	1755	1748
5	1573	1963	2036

Test Statistic: \qquad Rejection Region: \qquad
Q.7. A manufacturing company is considering buying components from one of two potential firms. They are interested in comparing the true defective proportions of components for the 2 firms (π_{1} and π_{2}). They obtain random samples of $\mathrm{n}_{1}=$ $\mathrm{n}_{2}=500$ components from each firm. The numbers of components not meeting specification are $\mathrm{y}_{1}=100$ for firm 1 and $y_{2}=80$ for firm 2. Test whether there is evidence to conclude that either firm has a higher/lower true defective proportion than the other firm? $\mathrm{H}_{0}: \pi_{1}-\pi_{2}=0 \quad \mathrm{H}_{\mathrm{A}}: \pi_{1}-\pi_{2} \neq 0$

