
1 Introduction to Matrices

In this section, important definitions and results from matrix algebra that are useful in regression
analysis are introduced. While all statements below regarding the columns of matrices can also be
said of rows, in regression applications we will typically be focusing on the columns.

A matrix is a rectangular array of numbers. The order or dimension of the matrix is the
number of rows and columns that make up the matrix. The rank of a matrix is the number of
linearly independent columns (or rows) in the matrix.

A subset of columns is said to be linearly independent if no column in the subset can
be written as a linear combination of the other columns in the subset. A matrix is full rank
(nonsingular) if there are no linear dependencies among its columns. The matrix is singular if
lineardependencies exist.

The column space of a matrix is the collection of all linear combinations of the columns of a
matrix.

The following are important types of matrices in regression:

Vector – Matrix with one row or column

Square Matrix – Matrix where number of rows equals number of columns

Diagonal Matrix – Square matrix where all elements off main diagonal are 0

Identity Matrix – Diagonal matrix with 1’s everywhere on main diagonal

Symmetric Matrix – Matrix where element aij = aji ∀i, j

Scalar – A single ordinary number

The transpose of a matrix is the matrix generated by interchanging the rows and columns of
the matrix. If the original matrix is A, then its transpose is labelled A′. For example:

A =

[
2 4 7
1 7 2

]
⇒ A′ =




2 1
4 7
7 2




Matrix addition (subtraction) can be performed on two matrices as long as they are of
equal order (dimension). The new matrix is obtained by elementwise addition (subtraction) of the
two matrices. For example:

A =

[
2 4 7
1 7 2

]
B =

[
1 3 0
2 4 8

]
⇒ A + B =

[
3 7 7
3 11 10

]

Matrix multiplication can be performed on two matrices as long as the number of columns
of the first matrix equals the number of rows of the second matrix. The resulting has the same
number of rows as the first matrix and the same number of columns as the second matrix. If



C = AB and A has s columns and B has s rows, the element in the ith row and jth column of C,
which we denote cij is obtained as follows (with similar definitions for aij and bij):

cij = ai1b1j + ai2b2j + · · · aisbsj =
s∑

k=1

aikbkj

For example:

A =

[
2 4 7
1 7 2

]
B =




1 5 6
2 0 1
3 3 3


 ⇒

C = AB =

[
2(1) + 4(2) + 7(3) 2(5) + 4(0) + 7(3) 2(6) + 4(1) + 7(3)
1(1) + 7(2) + 2(3) 1(5) + 7(0) + 2(3) 1(6) + 7(1) + 2(3)

]
=

[
31 31 37
21 11 19

]

Note that C has the same number of rows as A and the same number of columns as B. Note
that in general AB 6= BA; in fact, the second matrix may not exist due to dimensions of matrices.
However, the following equality does hold: (AB)′ = B′A′.

Scalar Multiplication can be performed between any scalar and any matrix. Each element
of the matrix is multiplied by the scalar. For example:

A =

[
2 4 7
1 7 2

]
⇒ 2A =

[
4 8 14
2 14 4

]

The determinant is scalar computed from the elements of a matrix via well–defined (although
rather painful) rules. Determinants only exist for square matrices. The determinant of a matrix A
is denoted as |A|.

For a scalar (a 1 × 1 matrix): |A| = A.
For a 2 × 2 matrix: |A| = a11a22 − a12a21.
For n × n matrices (n > 2):

1. Ars ≡ (n − 1) × (n − 1) matrix with row r and column s removed from A

2. |Ars| ≡ the minor of element ars

3. θrs = (−1)r+s|Ars| ≡ the cofactor of element ars

4. The determinant is obtained by summing the product of the elements and cofactors for any
row or column of A. By using row i of A, we get |A| =

∑n
j=1 aijθij

Example – Determinant of a 3 × 3 matrix
We compute the determinant of a 3 × 3 matrix, making use of its first row.

A =




10 5 2
6 8 0
2 5 1






a11 = 10 A11 =

[
8 0
5 1

]
|A11| = 8(1) − 0(5) = 8 θ11 = (−1)1+1(8) = 8

a12 = 5 A12 =

[
6 0
2 1

]
|A11| = 6(1) − 0(2) = 6 θ12 = (−1)1+2(6) = −6

a13 = 2 A13 =

[
6 8
2 5

]
|A13| = 6(5) − 8(2) = 14 θ13 = (−1)1+3(14) = 14

Then the determinant of A is:

|A| =
n∑

j=1

a1jθ1j = 10(8) + 5(−6) + 2(14) = 78

Note that we would have computed 78 regardless of which row and column we used.
An important result in linear algebra states that if |A| = 0, then A is singular, otherwise A is

nonsingular (full rank).

The inverse of a square matrix A, denoted A−1, is a matrix such that A−1A = I = AA−1

where I is the identity matrix of the same dimension as A. A unique inverse exists if A is square
and full rank.

The identity matrix, when multiplied by any matrix (such that matrix multiplication exists)
returns the same matrix. That is: AI = A and IA = A, as long as the dimensions of the matrices
conform to matrix multiplication.

For a scalar (a 1 × 1 matrix): A−1=1/A.

For a 2 × 2 matrix: A−1 = 1
|A|

[
a22 −a12

−a21 a11

]
.

For n × n matrices (n > 2):

1. Replace each element with its cofactor (θrs)

2. Transpose the resulting matrix

3. Divide each element by the determinant of the original matrix

Example – Inverse of a 3 × 3 matrix
We compute the inverse of a 3 × 3 matrix (the same matrix as before).

A =




10 5 2
6 8 0
2 5 1


 |A| = 78

|A11| = 8 |A12| = 6 |A13| = 14



|A21| = −5 |A22| = 6 |A23| = 40

|A31| = −16 |A32| = −12 |A33| = 50

θ11 = 8 θ12 = −6 θ13 = 14 θ21 = 5 θ22 = 6 θ23 = −40 θ31 = −16 θ32 = 12 θ33 = 50

A−1 =
1
78




8 5 −16
−6 6 12
14 −40 50




As a check:

A−1A =
1
78




8 5 −16
−6 6 12
14 −40 50







10 5 2
6 8 0
2 5 1


 =




1 0 0
0 1 0
0 0 1


 = I3

To obtain the inverse of a diagonal matrix, simply compute the recipocal of each diagonal
element.

The following results are very useful for matrices A,B,C and scalar λ, as long as the matrices’
dimensions are conformable to the operations in use:

1. A + B = B + A

2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. C(A + B) = CA + CB

5. λ(A + B) = λA + λB

6. (A′)′ = A

7. (A + B)′ = A′ + B′

8. (AB)′ = B′A′

9. (ABC)′ = C′B′A′

10. (AB)−1 = B−1A−1

11. (ABC)−1 = C−1B−1A−1

12. (A−1)−1 = A

13. (A′)−1 = (A−1)′

The length of a column vector x and the distance between two column vectors u and v are:

l(x) =
√

x′x l((u − v)) =
√

(u − v)′(u − v)

Vectors x and w are orthogonal if x′w = 0.



1.1 Linear Equations and Solutions

Suppose we have a system of r linear equations in s unknown variables. We can write this in matrix
notation as:

Ax = y

where x is a s × 1 vector of s unknowns; A is a r × s matrix of known coefficients of the s
unknowns; and y is a r × 1 vector of known constants on the right hand sides of the equations.
This set of equations may have:

• No solution

• A unique solution

• An infinite number of solutions

A set of linear equations is consistent if any linear dependencies among rows of A also appear
in the rows of y. For example, the following system is inconsistent:




1 2 3
2 4 6
3 3 3







x1

x2

x3


 =




6
10
9




This is inconsistent because the coefficients in the second row of A are twice those in the first row,
but the element in the second row of y is not twice the element in the first row. There will be no
solution to this system of equations.

A set of equations is consistent if r(A) = r([Ay]) where [Ay] is the augmented matrix [A|y].
When r(A) equals the number of unknowns, and A is square:

x = A−1y

1.2 Projection Matrices

The goal of regression is to transform a n-dimensional column vector Y onto a vector Ŷ in a
subspace (such as a straight line in 2-dimensional space) such that Ŷ is as close to Y as possible.
Linear transformation of Y to Ŷ, Ŷ = PY is said to be a projection iff P is idempotent and
symmetric, in which case P is said to be a projection matrix.

A square matrix A is idempotent if AA = A. If A is idempotent, then:

r(A) =
n∑

i=1

aii = tr(A)

where tr(A) is the trace of A. The subspace of a projection is defined, or spanned, by the columns
or rows of the projection matrix P.

Ŷ = PY is the vector in the subspace spanned by P that is closest to Y in distance. That is:

SS(RESIDUAL) = (Y − Ŷ)′(Y − Ŷ)



is at a minimum. Further:
e = (I−P)Y

is a projection onto a subspace orthogonal to the subspace defined by P.

Ŷ′e = (PY)′(I−P)Y = Y′P′(I −P)Y = Y′P(I −P)Y = Y′(P −P)Y = 0

Ŷ + e = PY + (I −P)Y = Y

1.3 Vector Differentiation

Let f be a function of x = [x1, . . . , xp]′. We define:

df

dx
=




∂f
∂x1
∂f
∂x2
...

∂f
∂xp




From this, we get for p × 1 vector a and p × p symmetric matrix A:

d(a′x)
dx

= a
d(x′Ax)

dx
= 2Ax

“Proof” – Consider p = 3:

a′x = a1x1 + a2x2 + a3x3
d(a′x)
dxi

= ai ⇒ d(a′x)
dx

= a

x′Ax =
[

x1a11 + x2a21 + x3a31 x1a12 + x2a22 + x3a32 x1a13 + x2a23 + x3a33

]



x1

x2

x3


 =

= x2
1a11 + x1x2a21 + x1x3a31 + x1x2a12 + x2

2a22 + x2x3a32 + x1x3a13 + x2x3a23 + x2
3a33

⇒
∂x′Ax

∂xi
= 2aiixi + 2

∑

j 6=i

aijxj (aij = aji)

⇒
∂x′Ax

∂x
=




∂x′Ax
∂x1

∂x′Ax
∂x2

∂x′Ax
∂x3


 =




2a11x1 + 2a12x2 + 2a13x3

2a21x1 + 2a22x2 + 2a23x3

2a31x1 + 2a32x2 + 2a33x3


 = 2Ax


