## SOLUTIONS TO ODDNUMBERED EXERCISES

## Chapter 14

14.1 (b) $t=-2.06 . P=0.047$, which is some evidence that low-progress readers score lower. (c) $W=36$ and $P=0.0473$.
14.3 (b) Mean $=27.5$. Standard deviation $=4.787$. (c) $z=2.19$ or 2.09 with correction. $P=0.0183$.
$14.5 \quad W=30$ and $P=0.34$.
$14.7 \quad W=159 . P=0.0298$.
$14.9 \quad W=32267.5$ and $P=0.0003$.
$14.11 \quad$ (a) $X^{2}=3.955$ with $\mathrm{df}=4$ and $P=0.413$. (b) $W=56,370$ and $P \approx 0.5$.
$14.13 \quad W^{+}=10$ and $P=0.05$.
$14.15 \quad W^{+}=138.5$ and $P=0.002$.
$14.17 \quad W^{+}=1552.2$ and $P<0.001$.
14.19
14.2
$W^{+}=31$ and $P=0.556$.
$W^{+}=56.5$ and $P=0.004$.
$14.23 \quad$ (c) $H=10.66$ and $P=0.005$.
14.25 (c) $H=16.95$ with $\mathrm{df}=3 . P \approx 0.001$.
14.27 The Kruskal-Wallis test is for comparing several groups, not comparing several variables.
14.29 (b) $X^{2}=18.510$, $\mathrm{df}=4$, and $P=0.001$. Reject $H_{0}$. (c) $H=12.72, \mathrm{df}=2$, $P=0.002$. Adjusted for ties, $H=14.43, P=0.001$. Either way, reject $H_{0}$.
$14.31 \quad$ (b) $t=-3.33, \mathrm{df}=35$, and $P=0.0021$. (c) Sum of ranks $=447$ and $P=0.0028$.
$14.33 \quad$ (b) $H=8, \mathrm{df}=2$, and $P=0.018$.
14.35
$H=9.85, \mathrm{df}=2$, and $P=0.007$.
Only L-G and G-B are significant.

## Chapter 15

15. 

(a) 0.31677 . (b) 0.46364 . (c) 0.68323 . (d) 2.15683 .
(a) Proportion $=0.8022$. Odds $=4.05556$. (b) Proportion $=0.68807$. Odds $=$ 2.20588. (c) Ratio $=1.83852$.
(a) -0.0471 to 1.26497 . (b) 0.95404 to 3.54299 .
(a) Proportion $=0.01648$. Odds $=0.01675$. (b) Proportion $=0.00785$. Odds $=$ 0.00791. (c) Odds ratio $=2.118$.
(a) 0.2452 to 1.2558 . (b) $X^{2}=8.47$. $P$ is between 0.0025 and 0.005 .
(a) Estimated log odds ratio $=2.118 . \beta_{1}$ from 1.28 to 3.51 .
(c) Interval for the odds: 1.7176 to 8.6701 .
$y=-0.0282+1.89515 x$.
$y=-1.8040+1.1354 x$.
$y=-10.7799+6.3319 x$.
(a) $X^{2}=33.65$ with df $=3$. (b) $\log ($ odds $)=-6.053+0.3710 \mathrm{HSM}+0.2489 \mathrm{HSS}+$ 0.03605 HSE. $95 \%$ intervals for slope are 0.1158 to $0.6262,-0.0010$ to 0.4988 , and -0.2095 to 0.2816 . (c) Only the coefficient of HSM is different from 0 .
(a) $X^{2}=23.0$ with $\mathrm{df}=3$. (b) $X^{2}=3.6$ with $\mathrm{df}=2$. (c) For modeling the odds of HIGPA, high school grades (specifically HSM and to a lesser extent HSS) are useful, while SAT scores are not.
(a) $\log ($ odds $)=3.4761+0.4157 x . X^{2}=2.16$ with df $=1$. Interval is 0.1392 to 0.9706. (b) $\log ($ odds $)=-6.930+1.009$ Hospital -0.09132 Condition. Interval is 0.30 to 25.12 .

