
Chapter 11 - Duration, Convexity and Immunization
Section 11.2 - Duration

Consider two opportunities for an investment of $1,000.

A: Pays $610 at the end of year 1 and $1,000 at the end of year 3

B: Pays $450 at the end of year 1, $600 at the end of year 2 and
$500 at the end of year 3.

Both have a yield rate of i = .25 because (1.25)−1 = .8,

1000 = (.8)(610) + (.8)3(1000)

and

1000 = (.8)(450) + (.8)2(600) + (.8)3(500).
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The repayment patterns of these two investments are quite different
and we seek to compare them on the basis of the timing of the
repayments. Getting the repayments sooner would be advantageous
if reinvestment yield rates are above the current yield of this
investment (in the above setting i = .25), whereas delaying the
repayments is advantageous if the reinvestment interest rates are
lower than the current yield rate.

Method of Equated Time (See section 2.4) provides a simple answer
to measure the timing of the repayments:

Here Rt denotes a return (Rt > 0 is a payment back to the investor
made at time t ).
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Example: (from page 11-1)

A : t = 1(610)+3(1000)
610+1000 = 2.24

B : t = 1(450)+2(600)+3(500)
450+600+500 = 2.03.

The money is returned faster under investment B.
- - - - - - - - - - -

A better index would also take into account the current value of the
future repayments:

Macaulay Duration:

Here the investment yield rate is used in ν. The quantity d is a
decreasing function of i .
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Example: (from page 11-1)
A : d = 1(.8)(610)+3(.8)3(1000)

(.8)(610)+(.8)3(1000) = 2.024

B : d = 1(.8)(450)+2(.8)2(600)+3(.8)3(500)
(.8)(450)+(.8)2(600)+(.8)3(500) = 1.896.

- - - - - - - - - - -
Both t and d are weighted averages of the return times. In t the
weights are the return amounts and in d the weights are the

- - - - - - - - - - -

The (net) present value of a set of returns is:

It represents the value of an investment today. We now focus on it as
a function of the current interest rate i .
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Since interest rates frequently change, the volatility of the present
value to changes in i is very important. It is measured with

Volatility:

The minus sign is included because P(i) is a decreasing function of i
and hence P ′(i) < 0. So including the minus sign makes the ν value
positive and therefore makes larger values of ν indicate more
volatility (susceptibility to changes in i), relative to the magnitude of
P(i).

We now relate volatility to duration by examining their defining
expressions.
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ν ≡ −P ′(i)
P(i)

=
− d

di (
∑n

t=1
1

(1+i)t Rt)

(
∑n

t=1
1

(1+i)t Rt)

Thus our measure of volatility ν is often called modified duration,
even though its purpose is quite different from that of duration.

Example: (from page 11-1)
A : ν = (.8)(2.024) = 1.6192

B : ν = (.8)(1.896) = 1.517.
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It does make sense that an investment that takes longer to achieve
its return will be more susceptible to changes in the interest rate i .
Note also that by the definition of ν,

P ′(i) = −P(i)ν implies

limh→0
P(i+h)−P(i)

h = −P(i)ν or

P(i + h)− P(i) .= −hνP(i) which produces

when h is small. Typically, this approximation produces a value that
is below the actual value of P(i + h) when h 6= 0.
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With continuous compounding at a constant force of interest δ,

d = ν =

∑n
t=1 te−δtRt

(
∑n

t=1 e−δtRt)

that is, Macaulay duration and modified duration are the same. See
pages 455-456 in the textbook.

- - - - - - - - - - -
Example:
Consider a zero coupon bond that makes one payment of C at the
end of n periods, with a effective interest rate of i for each period.

t =
nC
C

= n

d =
nνnC
νnC

= n

ν = nν
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Example:
Consider an annuity immediate with payments of k at the end of
each of n periods and an interest rate of i .

t =
∑n

t=1 tk∑n
t=1 k

=
k n(n+1)

2
nk

=
n + 1

2

d =

∑n
t=1 tν tk∑n
t=1 ν

tk

ν = dν
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Example:
Consider a perpetuity immediate with payments of k at the end of
each period and an interest rate of i and ν = 1

1+i .

t =
∑∞

t=1 tk∑∞
t=1 k

(This is undefined.)

d =

∑∞
t=1 tν tk∑∞
t=1 ν

tk
=

ν
∑∞

t=1 tν t−1

limn→∞(ν(1−ν
n)

(1−ν) )
= (1− ν)

∞∑
t=1

[ d
dν

ν t
]

= (1−ν) d
dν

[ ∞∑
t=1

ν t
]
= (1−ν) d

dν

[ ν

1− ν

]
= (1−ν)(1− ν) + ν

(1− ν)2
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Exercise 11-6: The current price of an annual coupon bond is 100.
The derivative of the price of the bond with respect to the yield to
maturity is -650. The yield to maturity is an effective rate of 7%.
(a) Calculate the Macaulay duration of the bond.
(b) Estimate the price of the bond using the approximation formula

on page 11-7 when the yield is 8% instead of 7%.
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Section 11.2 - Convexity

Typically the present value of a set of cash flows decreases as a
function of the interest rate i . In fact, this function is most often a
convex decreasing function. A second order Taylor series expansion
will capture the curvature in addition to the trend and will often well
approximate the changes in the function as i changes, at least for
small changes in i . In the previous section we let

ν = −P ′(i)
P(i)

where the minus sign was inserted because P ′(i) is usually
negative. Similarly, we now let

which is called the convexity of the present value of the cash flow.
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The second order Taylor series approximation of P(i) then produces

We also note that

dν
di

=
d
di

[
− P ′(i)

P(i)

]

=
−P(i)P ′′(i) + [P ′(i)]2

[P(i)]2

Recall that ν describes the sensitivity of P(i) to changes in i .
Likewise, c plays a role in describing the sensitivity of ν to changes
in i .
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Note that

P(i) =
n∑

t=1

(1 + i)−tRt ,

P ′(i) =
n∑

t=1

−t(1 + i)−(t+1)Rt and

P ′′(i) =
n∑

t=1

t(t + 1)(1 + i)−(t+2)Rt .

Example: Annuity Immediate (See page 11-9)

c =

∑n
t=1 t(t + 1)ν t+2k∑n

t=1 ν
tk

=
(1− ν)
ν(1− νn)

n∑
t=1

t(t + 1)ν t+2
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In continuous compounding settings with a constant force of interest
described by δ,

P(δ) =
n∑

t=1

e−δtRt ,

P ′(δ) =
n∑

t=1

te−δtRt and

P ′′(δ) =
n∑

t=1

t2e−δtRt .

In these settings, the Macaulay convexity is defined as:

P ′′(δ)
P(δ)

=

∑n
t=1 t2e−δtRt∑n

t=1 e−δtRt
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Exercise 11-11: A loan is to be repaid with payments of $1,000 at
the end of year 1, $2,000 at the end of year 2, and $3,000 at the end
of year 3. The effective rate of interest is i = .25. Find (a) the
amount of the loan, (b) the duration, (c) the modified duration, and
(d) the convexity.
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Section 11.4 - Interest Sensitive Cash Flows

Some cash flow settings have present values that are quite sensitive
to changes in i because the returns themselves depend on i .
Examples are callable bonds and mortgages without a prepayment
penalty. To better capture the volatile nature of the present value, the
function P ′(i) is approximated via

P ′(i) .=
P(i + h)− P(i − h)

2h

and for small h the effective volatility is described by

where the order in the numerator is reversed to make the ratio
positive.
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Similarly for small h, the effective convexity is described by

ce
.
=

P(i−h)−P(i)
h − P(i)−P(i−h)

h
hP(i)

Again the order of these differences is chosen to make this positive,
since P(i − h) + P(i + h) > 2P(i) for a decreasing convex function.
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Example:
A homebuyer takes out a 30-year $100,000 loan at 6% convertible
monthly. At the end of 15 years, the homebuyer can pay off the loan
if interest rates fall, but will keep the existing loan if they rise or stay
the same. Find de and ce using 7% and 5%, that is h = .01.
- - - - - - -

100,000 = P(.06) =
360∑
t=1

(1.005)−t (monthly pmt) produces

(monthly pmt) =
100,000∑360

t=1(1.005)−t
=

(1− ν)100,000
ν(1− ν360)

= 599.55

where here ν = (1 + .06
12 )
−1 = (1.005)−1.

We then compute

P(.07) =
360∑
t=1

(1 +
.07
12

)−t(599.55) = 90,116.90.
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In addition we find

= 111,685.14

where we have used the outstanding loan balance at the end of 15

years to be

(599.55)a180| .05
12

= 75,816.24.

It follows that

de
.
=

111,685.14− 90,116.90
(.02)(100,000)

= 10.784 and

ce
.
=

111,685.14 + 90,116.90− 2(100,000)
(.01)2(100,000)

= 180.204.
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Section 11.5 - Analysis of Portfolios

Companies, investment funds, etc. all have multiple securities, each
of which produce a separate cash flow. The present value of the
portfolio is the sum of the present values of the securities that
comprise it, that is

P = P1(i1) + P2(i2) + · · ·+ Pm(im),

with each security having its individual yield rate. The modified
duration of the portfolio is :

ν =
−P ′

P
=

P1(i1)
P

(−P ′1(i1)
P1(i1)

)
+ · · ·+ Pm(im)

P

(−P ′m(im)
Pm(im)

)
=

P1(i1)
P

(
ν1

)
+ · · ·+ Pm(im)

P

(
νm

)
which is a weighted average of the modified durations with weights
that are the fraction of the total present value in the individual
security.
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Also the convexity of the portfolio becomes

c =
P ′′

P
=

P1(i1)
P

(
c1

)
+ · · ·+ Pm(im)

P

(
cm

)
,

a weighted average of the individual convexities.

When assessing a portfolio, separate securities have different start
dates and conversion periods. Thus it becomes necessary to
measure duration at any point in time, not just at start dates or
conversion periods. When measuring duration of any single security,
we note that its duration decreases over time. We also note that, as
an average time until future payment, the duration increases slightly
right after a payment is made, creating a zig-zag plot of d over time.
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Since the securities in a portfolio differ in their yield rates and
conversion periods, it is difficulty to measure the effect of increasing
i by 100 basis points (100 basis points = 1%). So when assessing a
portfolio, it is typical to first standardize the conversion periods and
yield rates to annual values before they are altered.

Exercise 11-22: A $60K portfolio is constructed with $10K used to
buy 2-year zero coupon bonds, $20 used to buy 5-year zero coupon
bonds and $30K used to buy 10-year zero coupon bonds. The yield
rates of the bonds are unknown. Calculate the Macaulay convexity
of the portfolio at inception.
- - - - -

c =
10
60

(22e2δ110
e2δ110

)
+

20
60

(52e5δ220
e5δ220

)
+

30
60

(102e10δ330
e10δ330

)

=
1
6
(4) +

2
6
(25) +

3
6
(100) = 59.
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Exercise 11-20:
A 3-year loan at 10% effective is being repaid with level annual
payments at the end of each year.
(a) Calculate the jump in duration at the time of the first payment.
(b) Rework (a) at the time of the second payment.
(c) Compare the answers to (a) and (b) and verbally explain the
relationship.

11-24



Section 11.6 - Matching Assets and Liabilities

Financial institutions must have the assets available to cover
liabilities when they arise. Many types of liabilities are known in
advance. It is therefore possible to set up investments, like bonds,
so that the inflow of cash from the bonds will match the outflow
needed to cover the liabilities due at each point in time. This strategy
is called

Example A company has a $10,000 liability due at the end of year 1
and a $12,000 liability due at the end of year 2. It can purchase
1-year zero coupon bonds at 8% effective and 2-year zero coupon
bonds at 9% effective. What is the cost of implementing an absolute
matching strategy today?

$10,000
1.08

+
$12,000
(1.09)2 = $9,259.26 + $10,100.16 = $19,359.42.
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Example:
Suppose the liabilities in the previous example are financed with a
1-year zero coupon bond with a yield rate of 6% and a 2-year 5%
annual coupon bond with a yield rate of 7%. What is the cost today?
- - - - - - - -
(a) 2-year bond: At the end of year 2 we need

So F= 11,428.57 . Also with ν = 1
1.07 , the price of this 2-year bond is

(b) 1-year bond: At the end of year 1 we need

= (11,428.57)(.05) + P1yr (1.06)

producing P1yr = 8,894.88

(c) Total Cost today = 8,894.88 + 11,015.31 = 19,910.19 .
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Section 11.7 - Immunization

Redington immunization is a strategy for portfolio management
intended to make the portfolio immune to small changes in the
interest rate i . Let the return at time t be denoted by

Rt = At − Lt ,

the difference between asset amount At and liability amount Lt . As
before we denote the present value under interest rate i as

P(i) =
∑

t

ν tRt .

The Taylor series expansion of this function around the value
i = i0 > 0, takes the form

P(i0 + ε) = P(i0) + εP ′(i0) +
ε2

2
P ′′(i0) +

ε3

6
P ′′′(i0) + · · · .

The curvature of P(i) at i = i0 is can be approximated by the first
three terms.
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Redington immunization:
An asset management strategy that choose assets so that at the
current interest rate i0,

When this is possible, it creates a present value function P(i) with a
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Under this strategy, small changes in i can only improve the present
value. A competitive, efficient market makes achieving this condition
difficult, but it is a desirable goal. In many settings assets are more
amenable to management than are liabilities. Thus the strategy is to
make

where A(i0)[L(i0)] denotes the present value of the asset [liability]
stream at the current interest rate i0.

Example:
Suppose you have a liability of L2 due at t = 2, but you can create
assets x at t = 1 and y at t = 3. If i0 is the current effective annual
interest rate, what values should be assigned to x and y to create
Redington immunization at i = i0?
- - - - - - - - -
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Note that

P(i) =
x

(1 + i)
− L2

(1 + i)2 +
y

(1 + i)3 ,

P ′(i) = − x
(1 + i)2 +

2L2

(1 + i)3 −
3y

(1 + i)4 , and

P ′′(i) =
2x

(1 + i)3 −
6L2

(1 + i)4 +
12y

(1 + i)5 .

We seek to find x and y such that

P(i0) = 0, and P ′(i0) = 0

assuming that L2 and ν0 = 1
1+i0

are fixed, known values.
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Setting P(i0) = 0 produces

ν0x + ν3
0y − ν2

0L2 = 0 or

x + ν2
0y − ν0L2 = 0 (1)

Then setting P ′(i0) = 0 produces

−ν2
0x − 3ν4

0y + 2ν3
0L2 = 0 or
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The simultaneous solution of equations (1) and (2) for x and y yields

−3ν2
0y + 2ν0L2 + ν2

0y − ν0L2 = 0 or

y =
ν0L2

2ν2
0
=

L2

2ν0

Moreover, at this solution

P ′′(i0) = 2
ν0L2

2
ν3

0 − 6L2ν
4
0 + 12

L2

2ν0
ν5

0

= L2ν
4
0> 0

So the conditions of Redington immunization are satisfied.
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Specific Example: (using the above setting)

If L2 = $10,000 and i0 = .05, then Redington immunization is
satisfied at i0 = .05 with assets of

x =
($10,000)
(1.05)2

= $4,761.90 at t = 1 and

y =
($10,000)(1.05)

2
= $5,250.00 at t = 3.
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Exercise 11-30: A company owes $100 to be paid at times 2, 4, and
6. The company plans to meet these obligations with an investment
program that produces assets of A1 at time 1 and A5 at time 5. The
current effective rate of interest is 10%.
(a) Determine A1 and A5 so that P(.1) = 0 and P ′(.1) = 0 .
(b) Does this investment program satisfy the conditions of Redington
immunization at i0 = .10 ?
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Section 11.8 - Full Immunization

The previous solution yields a local minimum for the function P(i) at
interest rate i = i0. In certain continuous growth settings, it maybe
possible to achieve a for P(i) at i = i0, making the

Setting: Suppose you have continuous compounding with constant
force of interest δ = ln(1 + i), where i is the effective annual rate of
interest . Then

a(t) = eδt for t > 0

Suppose you have liability L0 due at time t0. Suppose also that you
have asset A at time t = (t0 − a) and asset B at time t = (t0 + b)
where a > 0, b > 0 and (t0 − a) > 0. Here a and b are both known,
but A and B are both unknown.
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Now

P(δ) = Ae−(t0−a)δ + Be−(t0+b)δ − L0e−t0δ

and

P ′(δ) = −t0P(δ) + e−t0δ[Aaeaδ − Bbe−bδ]

For a specified force of interest value δ = δ0, we seek to find A and B
so that both

P(δ0) = 0 and P ′(δ0) = 0.
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So if a and b are known, we get two linear equations in the two
unknowns A and B, namely:

eaδ0A + e−bδ0B − L0 = 0 (3)

and

These two equations have solutions:

A0 =
(b

a )L0

eaδ0(1 + b
a )

and

B0 =
L0

e−bδ0(1 + b
a )
.
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Using this solution and an arbitrary value of δ, the present value
function as a function of δ, is

We now examine the part in the square bracket, namely

f (δ) ≡ [A0eaδ + B0e−bδ − L0]

Note that

f ′(δ) = A0aeaδ − B0be−bδ and

f ′′(δ) = A0a2eaδ + B0b2e−bδ > 0 for all δ > 0.

Therefore, the function f (δ) is strictly convex. Since f (δ0) = 0 and
f ′(δ0) = 0 (see (3) and (4) on the previous page) the variable value
δ = δ0 is the unique minimum for f (δ) among variable values δ > 0.
That is, f (δ0) = 0 and f (δ) > 0, for all positive values of δ 6= δ0 .
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Since

P(δ) = e−t0δf (δ)

It follows that

Therefore the present value function P(δ) has a unique minimum at
δ = δ0. At any other force of interest (interest rate) the present value
is always an improvement over its value at δ = δ0.
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Example: (See page 11-33)
At t0 = 2 suppose there is a liability of L2 = $10,000.
Also let a = 1, b = 1 and i0 = .05 (or δ0 = ln(1 + .05) ).
Then

A0 =
L2

eδ0(2)
=
ν0L2

2
= $4,761.90

and

B0 =
L2

e−δ0(2)
=

L2

2ν0
= $5,250.00.

With these assets, A0 at time t = 1 and B0 at time t = 3, the present
value function has a minimum value of 0 at δ0 = ln(1+ .05) (i0 = .05)
and it is greater than zero at all other force of interest (interest rate)
values.
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