
Chapter 04 - More General Annuities

Section 4.3 - Annuities Payable Less Frequently Than Interest
Conversion

Time

P
ay

m
en

t

0 1 .. k .. 2k ... n

0
1

k = interest conversion periods before each payment
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n = total number of interest conversion periods

n/k = total number of payments (positive integer)

i = rate of interest in each conversion period .

General Method

Example: Payments of $500 are made at the end of each year for 10
years. Interest has a nominal rate of 8%, convertible quarterly.

(a) What is the present value of these future payments?

i(4) = .08 i(4)/4 = .02

(1 + .02)4 = 1.08243216

Therefore 8.243216% is the annual effective interest rate
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Answer = 500a10|.08243216 = $3,318.54

(b) What is the accumulated value of these payments at the end of
10 years?

Answer = 500s10|.08243216 = $7,327.48.

- - - - - - - - - -
Formula Method for Annuity-Immediate

Now view this setting as n periods with spaced payments. The
present value of these n/k payments is

PVn = νk + ν2k + ν3k + · · ·+ ν(n/k)k where ν =
1

1 + i

=
νk (1− (νk )(n/k))

1− νk by SGS
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The accumulated value at time t = n is

(1 + i)n an|i

sk |i
=

sn|i

sk |i

Both of the above formulas are annuity-immediate formulas because
the payments are at the end of each payment period which is k
interest periods long.

Example: (previous in this section)

i = .02 k = 4 n = 40

Accumulated Value = 500
s40|.02

s4|.02
= $7,327.48
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Formula Method for Annuity-due:

Present Value:

1 + νk + ν2k + ν3k + · · ·+ νn−k

=

(
1− (νk )(n/k))

1− νk by SGS

Accumulated Value at time t = n is:

(1 + i)n an|i

ak |i
=

sn|i

ak |i
=

s̈n|i

äk |i

Both of the above formulas are annuity-due formulas because the
payments are at the beginning of each payment period which is k
interest periods long.
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Perpetuities:

Annuity-immediate with payments less frequent than interest
conversion

Present Value = lim
n→∞

(1− νn)

(1 + i)k − 1

Annuity-due with payments less frequent than interest conversion

Present Value = lim
n→∞

(1− νn)

1− νk

=
1

i(1− νk )/i
=

1
iak |i

4-6



Exercise 4-8:

The present value of a perpetuity paying 1 at the end of every 3
years is 125

91 . Find i .
- - - - - - - - - - -

125
91

=
1

is3|i
=

1
(1 + i)3 − 1

So

(1 + i)3 =
91
125

+ 1 =
216
125

1 + i =
6
5

i = .20
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Exercise 4-4:

An annuity-immediate that pays $400 quarterly for the next 10 years
costs $10,000. Calculate the nominal interest rate convertible
monthly earned by this investment.
- - - - - - - - - - -
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Exercise 4-7:

Find an expression for the present value of an annuity-due of $600
per annum payable semiannually for 10 years, if d (12) = .09 .
- - - - - - - - - - -
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Section 4.4 - Annuities Payable More Frequently Than Interest
Conversion

Time

P
ay

m
en

t

1 m .. 2m .. .. mn

1/
m

m = number of payments in each interest conversion period

1/m = amount of each payment

n = total number of interest periods
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i = effective rate of interest for each conversion period .

The annuity-immediate present value at time t = 0 for all payments is

a(m)
n| =

1
m

[
ν

1
m + ν

2
m + · · ·+ ν

m
m + · · ·+ ν

mn
m

]

=
1
m

[
1− νn(

(1 + i)
1
m − 1

)
]

=
1− νn

i(m)
=

ian|i

i(m)

Here i(m) = m
[
(1 + i)

1
m − 1

]
because

(1 + i) =
(

1 +
i(m)

m

)m
.

That is, i(m) is the nominal period interest rate and i is the effective
period interest rate when each interest period is converted mthly .
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Once we know the present value at time t = 0, the accumulated
value at the end of the nth conversion period (i.e. at time t = mn) is

s(m)
n| = (1 + i)na(m)

n|

=
(1 + i)n − 1

i(m)
=

isn|i

i(m)

Example: Payments of $500 are made at the end of each month for
10 years. Interest is set at 6% (APR) convertible quarterly. What is
the accumulated value at the last payment.
- - - - - - - - - - -
The effective interest rate per quarter is .06

4 = .015. The quarters are
the interest conversion periods. So n = 4(10) = 40, m = 3 and
i = .015. Note that

and the accumulated value at the last payment is :

(500)(3)s(3)
40|

=
500(3)[(1 + .015)40 − 1]

.0149256
= $81,807.61.
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The annuity-due present value at time t = 0 for all payments is

ä(m)
n| =

1− νn

d (m)
=

ian|i

d (m)
.

The annuity-due accumulated value at the end of the nth conversion
period (i.e. at time t = mn) is

s̈(m)
n| =

(1 + i)n − 1
d (m)

=
isn|i

d (m)

Here d is the effective rate of discount per interest period and d (m) is
the nominal rate of discount per interest period when convertible
mthly in each period.
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It easily follows that the extension to an annuity-immediate
perpetuity produces a present value of

and the extension to an annuity-due perpetuity produces

ä(m)
∞| =

1
d (m)

Exercise 4-14: Find i when

3a(2)
n| = 2a(2)

2n|
= 45s(2)

1|
.

- - - - - - - - - - - - - -
These equalities produce
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3(1− νn)

i(2)
=

2(1− ν2n)

i(2)
=

45i
i(2)

Using the first and third of these terms produces

3(1− νn) = 45i which implies νn = 1− 15i .

Now using the first and second terms above yields

3(1− νn) = 2(1− ν2n). Setting x = νn this becomes

Therefore,

x = νn =
1
2

= 1− 15i which implies

15i =
1
2

or i =
1

30
.
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Section 4.5 - Continuous Payment Annuities

Consider a mthly annuity-immediate paying a total of 1 annually over
n years.

Time

Pa
ym

en
t

0 2/m ... mn/m

1/m

Examine the payments made in the interval from t to t + ∆, where
0 < t < t + ∆ < n .
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The total of the payments between t and t + ∆ is∑ 1
m

=
(# of mthly interval ends between t and t+∆)

m
When m is very large, this total payment is approximately

So when m is very large, it is (approximately) as though the payment
of 1 made each year is smeared evenly over that year and where the
payment total in any interval is the area under this line above the
interval.
Continuous Model:

Time

Pay
me

nt

0 t t+d n

0
1
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When finding the present value of all payments, we must discount
the payment made at time t by the factor ν t . Thus the present value
of all payments becomes

an| =

∫ n

0
1 · ν tdt

=
ν t

ln(ν)

∣∣∣n
0

=
1

ln(ν)
(νn − 1) and therefore

Here the annual effective interest rate i is fixed and δ = ln(1 + i) is
the force of interest. Note that

lim
m→∞

a(m)
n| = lim

m→∞

1− νn

i(m)
=

1− νn

δ
= an|

because limm→∞ i(m) = limm→∞ d (m) = δ. With continuous
payments, the distinction between an annuity-immediate and an
annuity-due is moot, that is

an| = lim
m→∞

a(m)
n| = lim

m→∞
ä(m)

n| .
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It likewise follows that

sn| = lim
m→∞

s(m)
n| = lim

m→∞
s̈(m)

n|

Finally, since δ = ln(1 + i) implies that ν = e−δ and (1 + i) = eδ, it
follows that

an| =
(1− νn)

δ
=

1− e−nδ

δ
and

sn| =
[(1 + i)n − 1]

δ
=

enδ − 1
δ

,

where in these expressions n does not have to be an integer.
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Exercise 4-18:

If an| = 4 and sn| = 12, find δ.
- - - - - - - - - - -

4 = an| =
1− e−nδ

δ
implies e−nδ = 1− 4δ

12 = sn| =
enδ − 1

δ
implies enδ = 12δ + 1

Putting these two expressions together produces

or 48δ2 − 8δ = 0.

This yields

δ =
8
48

= .166̄.
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Exercise 4-20:

Find the value of t , 0 < t < 1, such that 1 paid at time t has the
same present value as 1 paid continuously between time 0 and 1.
- - - - - - - - - - -
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Section 4.6 - Payments in Arithmetic Progression

Suppose an annuity pays k at the end of period k for k = 1,2, · · · ,n.

Time

P
ay

m
en

t

0 1 2 3 .. n−1 n

1
n

The present value of this annuity with arithmetic increasing
payments is

(Ia)n| = ν + 2ν2 + 3ν3 + · · ·+ (n − 1)νn−1 + nνn.
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Note that
(Ia)n|

ν
= 1 + 2ν + 3ν2 + · · ·+ nνn−1 and thus

(Ia)n|

ν
− (Ia)n| = 1 + ν + ν2 + ν3 + · · ·+ νn−1 − nνn

= än| − nνn.

It follows that(1− ν
ν

)
(Ia)n| = i(Ia)n| = än| − nνn and thus

The accumulated value at time t = n is:

(Is)n| = (1 + i)n(Ia)n|

=
s̈n| − n

i
=

(1 + i)sn| − n
i

.

4-23



Consider a annuity-immediate with general arithmetic progression
payment amounts: P at time t = 1, P + Q at time t = 2, P + 2Q at
time t = 3, · · · , and P + (n − 1)Q at time t = n.

Time

P
ay

m
en

t

0 1 2 3 .. n−1 n

The present value at t = 0 is
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and the accumulated value at t = n is

(1 + i)n[present value] = (1 + i)n
[
Pan| + Q

(an| − nνn

i

)]
= Psn| + Q

(sn| − n
i

)
Next examine a decreasing annuity-immediate with a payment of
n + 1− k at time t = k , for k = 1,2, · · · ,n. This is a special case of
the previous formula with P = n and Q = −1.
The present value becomes

(Da)n| = nan| −
(an| − nνn

i

)
and the accumulated value is

(Ds)n| = (1 + i)n(Da)n| = nsn| −
(sn| − n

i

)
.
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For a perpetuity-immediate with general arithmetic progression
payment amounts, the present value is

as long as P > 0 and Q > 0 because

lim
n→∞

an| =
1
i

and lim
n→∞

nνn = 0.

Exercise 4-24: Find the present value of a perpetuity that pays 1 at
the end of the first year, 2 at the end of the second year, increasing
until a a payment of n at the end of the nth year and thereafter
payments are level at n per year forever.
- - - - - - - - - - -

(Ia)n| +
nνn

i
=
ν−1an| − nνn + nνn

i
=

an|

d
.
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Exercise 4-27:

An annuity-immediate has semiannual payments of

800 750 700 · · · 350

with i(2) = .16 . If a10|.08 = A, find the present value of the annuity in
terms of A.
- - - - - - - - - - - -
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Section 4.7 - Payments in Geometric Progression

Suppose an annuity-immediate pays (1 + k)k−1 at the end of period
k for k = 1,2, · · · ,n.

Time

P
ay

m
en

t

0 1 2 3 .. n−1 n

The present value of these payments is

ν + (1 + k)ν2 + (1 + k)2ν3 + · · ·+ (1 + k)n−1νn
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= ν

[
1−

(
(1 + k)ν

)n

1− (1 + k)ν

]

=
1

1 + i

[
1−

(1+k
1+i

)n

1−
(1+k

1+i

) ]

The accumulated value at t = n is:

(1 + i)n[present value] =


(1+i)n−(1+k)n

(i−k) if k 6= i

n(1 + i)n−1 if k = i

When dealing with an annuity-due, the present value and the
accumulated value are obtained by multiplying the respective
expressions for an annuity-immediate by (1 + i).
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The present value of a perpetuity with geometrically changing
payments only converges to a finite value when k < i , in which case
it is

(
1 + i
i − k

)
for a Perpetuity-Due.

Example: A perpetuity-due pays $1000 for the first year and
payments increase by 3% for each subsequent year until the 20th

payment. After that the payments are the same as the 20th. Find the
present value if the effective annual interest rate is 5%.
- - - - - - - - - - -

1000(1 + .05)

[
1−

(1.03
1.05

)20

.05− .03

]
+

1000(1.03)19

(1.05)19(.05)

= 16,763.02 + 13,878.44 = $30,641.46
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Exercise 4-32:
An employee age 40 earns $40,000 per year and expects to receive
3% annual raises at the end of each year for the next 25 years. The
employee contributes 4% of annual salary at the beginning of each
year for the next 25 years into a retirement plan. How much will be
available for retirement at age 65 if the fund earns a 5% effective
annual rate of interest?
- - - - - - - - - - -
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Section 4.7.5 - Varying Blocks of Equal Payments

Suppose each period consists of m equal sub-periods and for the
sub-periods within a given period the payments are equal. But the
payment amount changes from period to period either in arithmetic
or geometric progression.

Case A:

During the first period each sub-period payment is k1, during the
second period each sub-period payment is k2, · · · , and during the
nth period each sub-period payment is kn.
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To find the present value of these payments, we first accumulate the
payments within each period to the end of their period using the

applicable for each
sub-period. This produces an accumulation of at the end of
the j th period for j = 1,2, · · · ,n .

The present value is obtained by including the common factor sm|i∗
and using either the methods of section 4.6, if the km’s vary in
arithmetic progression, or the methods of section 4.7, if the km’s vary
in geometric progression. These computations would be based on
i , the effective interest rate of each complete period.
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Example:
A person will receive $1, 000 at the end of each quarter of the first
year. Every year thereafter the quarterly payments will increase by
$500. During the 11th year ( the final year) the payments will be
$6,000 at the end of each quarter. If the effective annual interest rate
is 5%, find the present value of this series of payments.
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Case B:

During the first period each sub-period payment is k1, during the
second period each sub-period payment is k2, · · · , and during the
nth period each sub-period payment is kn.
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To find the present value of these payments, we first discount the
payments within each period to the beginning of their period using
the applicable for each
sub-period. This produces a present value of at the
beginning of the j th period for j = 1,2, · · · ,n .

The present value is obtained by including the common factor äm|i∗
and using either the methods of section 4.6, if the km’s vary in
arithmetic progression, or the methods of section 4.7, if the km’s vary
in geometric progression. These computations would be based on i ,
the effective interest rate of each complete period.
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Example:
A person will receive $2, 000 at the beginning of each month of the
first year. Every year thereafter the quarterly payments will increase
by 10%, but they always remain the same within a year. The
payments cease after 20 years. If the effective annual interest rate is
6%, find the present value of this series of payments.
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Section 4.8 - More General Varying Annuities

Consider settings in which the interest conversion periods and the
payment periods do not coincide.

For example, suppose we have m payments within each interest
conversion period and payments varying in arithmetic progression
over interest conversion periods. Let

Time

P
ay

m
en

t

1 m .. 2m .. .. mn

1/
m
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m = ( number of payments per interest conversion period)

n = ( number of interest conversion periods)

i = ( effective interest rate per conversion period)
k
m

= ( amount of each payment in the k th conversion period)

The present value of these payments is:

(Ia)
(m)
n| =

1
m

[
(ν

1
m + ν

2
m + · · ·+ ν

m
m ) + 2(ν

m+1
m + ν

m+2
m + · · ·+ ν

2m
m )

+ · · ·+ n(ν
m(n−1)+1

m + ν
m(n−1)+2

m + · · ·+ ν
nm
m )
]

=
1
m

(ν
1
m + ν

2
m + · · ·+ ν

m
m )[1 + 2ν + · · ·+ nνn−1]

=
1
m
ν

1
m (1− ν

m
m )

(1− ν
1
m )

ν−1(Ia)n|
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=
1
m

(1− ν)(än| − nνn)

(ν−
1
m − 1)(iν)

Suppose every payment increases in arithmetic progression with a
payment amount of k

m2 made at time t = k .

Time

P
ay

m
en

t

1 m .. 2m .. .. mn
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The present value of these payments is:

(I(m)a)
(m)
n| =

ä(m)
n| − nνn

i(m)
. Exercise 4-34

Example: Suppose a deposit of $1000 is made on the first of the
months of January, February and March, $1,200 at the beginning of
each month in the second quarter, $1,400 at the beginning of each
month in the third quarter and $1,600 each month in the fourth
quarter. If the account has a nominal 8% rate of interest
compounded quarterly, what is the balance at the end of the year?
- - - - - - - - - - -

n = 4 m = 3 i = .08/4 = .02 ν = (1.02)−1

i(3) = 3[(1.02)
1
3 − 1] = .019868

The present value at t = −1 is
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= 2400
(

1− (1.02)−4

.019868

)
+ 600

 1−(1.02)−4

1−(1.02)−1 − 4(1.02)−4

.019868



= 9,199.20 + 5,692.58 = $14,891.78

At t = 0 the value is

(1.02)
1
3 (14,891.78) = $14,990.40

and its value at t = 12 is

(1.02)
13
3 (14,891.78) = $16,226.10

which is the balance at the end of the year.
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Exercise 4-38:

A perpetuity provides payments every six-months starting today. The
first payment is 1 and each payment is 3% greater than the
immediately preceding payment. Find the present value of the
perpetuity if the effective rate of interest is 8% per annum.
- - - - - - - - - - -
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Section 4.9 - Continuous Annuities with Varying Payments
and/or Force of Interest

The accumulation function a(t) and its reciprocal, the discount
function d(t) = 1

a(t) play fundamental roles in the assessment of a
series of payments when viewed from some specific time.

Consider a series of payments in which ptj denotes a payment made
at time t = tj for j = 1,2, · · · ,n. The present value of this series of
payments is

PV =
n∑

j=1

ptj
1

a(tj)
= a(0)PV because a(0) = 1.

Likewise consider the future value of this sequence at the final
payment, i.e. at t = tn.

FV =
n∑

j=1

ptj
a(tn)

a(tj)
= a(tn)

n∑
j=1

ptj
1

a(tj)
= a(tn)PV .
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In general, when assessing the value of the sequence of payments
from the perspective of some particular point in time t = t0, the value
is

This discussion is used to motivate a generalization of the
continuous payment model discussed in section 4.5. In continuous
payment settings the payments may not be smeared evenly over the
number line (the assumption made in section 4.5). Some points in
time may receive payments made at a higher rate than other points.
This is described in terms of a function f (t) ≥ 0 that expresses the
smear of payment over the time line with 0 ≤ t ≤ n. The smear could
take on many shapes as illustrated below.
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Time

P
ay

 R
at

e

0 t t+d n
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The present value of the smear of payment is

and the value at any other point in time t = t0 is

Value(t0) =

∫ n

0
f (t)

a(t0)

a(t)
dt = a(t0)PV .

Next attention is focused on the accumulation function a(t). In
continuous settings this is most often described in terms of the force
of interest function δt .

Recall from section 1.9 that

δt =
a′(t)
a(t)

or equivalently a(t) = e
∫ t

0 δr dr .
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Therefore in terms of the force of interest function,

and when examining the payments from any other vision point t = t0,

Value(t0) = a(t0)PV = e
∫ t0

0 δr dr PV .

- - - - - - - - - - - -
Special Cases: (1) Constant Force of Interest

Here δt = δ for all t . Moreover

a(t) = e
∫ t

0 δdr = eδ
∫ t

0 dr = eδt

which produces
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(2) Force of Interest and Payment Function both Constant

Here δt = δ and f (t) = 1 for all t . Therefore

PV =

∫ n

0
e−δtdt = −1

δ
e−δt

]n

0
=

a result found in section 4.5 where it was noted that n need not be
an integer. Moreover if n→∞ then

PV = a∞| =
1
δ
.
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(3) Constant Force of Interest and a Linear Payment Function

Here δt = δ and f (t) = t for all t . Therefore using integration by parts

PV ≡ (I a)n| =

∫ n

0
t e−δtdt = − t

δ
e−δt

]n

0
+

1
δ

∫ n

0
e−δtdt

= −n
δ

e−δn +

(
− 1
δ2 e−δt

]n

0

)
=

1
δ2 (1− e−δn)− n

δ
e−δn

=
1
δ

(1− νn

δ
− nνn

)
(recalling ν = e−δ)
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Example: Continuous deposits are made of 100et/5 for 5 years into
an account with a constant force of interest of δ = .05 . What is the
accumulated value at 5 years?
- - - - - - - - - - - -
First find the present value at t = 0:

PV =

∫ 5

0

(
f (t)

1
a(t)

)
dt

= 100
∫ 5

0
e(.15)tdt

= 100
1

(.15)
e(.15)t

]5

0

=

(
100
.15

)[
e(.75) − 1

]
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Also,

a(5) = e
∫ 5

0 (.05)dr = e(.25)

Therefore

Value(5) = a(5)PV

= e(.25)
(

100
.15

)[
e(.75) − 1

]
= 956.17094

So the balance is $956.17 .
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Exercise 4-43:

A one-year deferred continuously varying annuity is payable for 13
years. The rate of payment at time t is t2 − 1 per annum, and the
force of interest at time t is (1 + t)−1. Find the present value of the
annuity.
- - - - - - - - - - -
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