Billingsley (3rd ed), Exercise 2.3: (a) Suppose that $\Omega \in F$ and that $A, B \in F$ implies $A - B = A \cap B^c \in F$. Show that F is a field.
(b) Suppose that $\Omega \in F$ and that F is closed under the formation of complements and finite disjoint unions. Show that F need not be a field.

Billingsley (3rd ed), Exercise 2.4: Let F_1, F_2, \ldots be classes of sets in a common space Ω.
(a) Suppose that F_n are fields satisfying $F_n \subset F_{n+1}$. Show that $\bigcup_{n=1}^{\infty} F_n$ is a field.
(b) Suppose that F_n are σ-fields satisfying $F_n \subset F_{n+1}$. Show by example that $\bigcup_{n=1}^{\infty} F_n$ need not be a σ-field.

Billingsley (3rd ed), Exercise 2.5: The field $f(\mathcal{A})$ generated by a class \mathcal{A} in Ω is defined as the intersection of all fields in Ω containing \mathcal{A}.
(a) Show that $f(F)$ is indeed a field, that $\mathcal{A} \subset f(\mathcal{A})$ and that $f(\mathcal{A})$ is minimal in the sense that if G is a field and $\mathcal{A} \subset G$, then $f(\mathcal{A}) \subset G$.
(b) Show that for nonempty \mathcal{A}, $f(\mathcal{A})$ is the class of sets of the form $\bigcup_{i=1}^{m} \cap_{j=1}^{n_i} A_{ij}$, where for each i and j either $A_{ij} \in \mathcal{A}$ or $A_{ij}^c \in \mathcal{A}$, and where the m sets $\cap_{j=1}^{n_i} A_{ij}$, $1 \leq i \leq m$, are disjoint. The sets in $f(\mathcal{A})$ can thus be explicitly presented, which is not in general true of the sets in $\sigma(\mathcal{A})$.

Billingsley (3rd ed), Exercise 2.7: Let H be a set lying outside F, where F is a field [or σ-field]. Show that the field [or σ-field] generated by $F \cup \{H\}$ consists of sets of the form

$$(H \cap A) \cup (H^c \cap B), \quad A, B \in F. \quad (2.33)$$

Billingsley (3rd ed), Exercise 2.8: Suppose for each A in \mathcal{A} that A^c is a countable union of elements of \mathcal{A}. The class of intervals in $[0, 1]$ has this property. Show that $\sigma(\mathcal{A})$ coincides with the smallest class over \mathcal{A} that is closed under the formation of countable unions and intersections.

Billingsley (3rd ed), Exercise 2.9: Show that if $B \in \sigma(\mathcal{A})$, then there exists a countable subclass \mathcal{A}_B of \mathcal{A} such that $B \in \sigma(\mathcal{A}_B)$.

Billingsley (3rd ed), Exercise 2.11: A σ-field is countably generated, or separable, if it is generated by some countable class of sets.
(a) Show that the σ-field B of Borel sets is countably generated.
(b) Show that the σ-field of countable and cocountable sets is countably generated if and only if Ω is countable.
(c) Suppose that F_1 and F_2 are σ-fields, $F_1 \subset F_2$, and F_2 is countably generated. Show by example that F_1 may not be countably generated.