
Department of Statistics PhD Qualifying Exam January 2009
University of Florida

Instructions:

1. You have exactly four hours to answer questions in this examination.

2. There are 8 problems of which you must answer 6.

3. Only your first 6 problems will be graded.

4. Write your chosen identifying number on every page in the form SN-x, where x is your
number.

5. Do not write your name anywhere on your exam.

6. Write only on one side each sheet of paper. For each problem you do, start the problem
on a new page. At the end of the exam, for each problem, staple together all pages for
that problem in order.

7. Clearly label each part of each question with the question number and the part, e.g.,
1(a).

8. You must show your work to receive credit.

9. While the eight questions are equally weighted, within a given question, the parts may
have different weights.

10. Do not write near the upper left corner of the page where the pages will be stapled
together.
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1. Consider a standard linear model

Yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn(0, σ2I),

where X is of full rank. Let β̂ be the usual least squares estimate of β.

(a) Suppose that σ is known. Show that the likelihood function is proportional to

exp

(
− 1

2σ2
‖X(β̂ − β)‖2

)
.

(b) Suppose now that σ is unknown. Show that the maximum likelihood estimate of the
variance is given by

σ̂2
mle =

‖Y − Ŷ ‖2

n
,

where Ŷ is the vector of fitted values, and deduce that

E(σ̂2
mle) < σ2.

(c) Construct a confidence interval for σ.
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2. Suppose the pairs (Yi, Xi), i = 1, . . . , n are iid realization of a random vector (Y,X) with
a distribution π on R2, and that Y and X both have a finite second moment. We wish to
estimate µ = E(Y ). Suppose we know E(X), and without loss of generality, we can assume
that E(X) = 0. For any β ∈ R, the random variable Y − βX has expectation µ, and hence

Ȳ − βX̄ (1)

is an unbiased estimate of µ.

(a) Find the value of β, call it βopt, for which the estimate (1) has smallest variance.

(b) Show that, if the correlation between Y and X is not 0, then if we use βopt, the variance
of estimate (1) is strictly smaller than the variance of Ȳ .

(c) In general βopt is not known, and must be estimated. Let α̂ and β̂ be the usual estimates
of the coefficients when we do simple linear regression of Y on X. Note that we do not
assume that a linear regression model of the form

Yi = α+ βXi + εi, i = 1, . . . , n εi
iid∼ N(0, σ2)

is true: we do not assume that the errors are homoscedastic, that they are normally
distributed, or even that they have mean 0. In fact we do not assume anything except
that the pairs (Yi, Xi) are iid from π. The values α̂ and β̂ are just the usual expressions
that arise when we do simple linear regression; they are simply functions of the data
(Yi, Xi), i = 1 . . . , n.

Show that α̂ is asymptotically equivalent to (1) with the optimal β, i.e. show that as
n→∞, the two quantities n1/2(α̂−µ) and n1/2(Ȳ −βoptX̄ −µ) have the same limiting
distribution.

3. Prove the following: if {Xn : n ≥ 1} is uniformly integrable, then so is {Sn/n : n ≥ 1}, where
Sn =

∑n
j=1Xj .
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4. Let {Xn : n ≥ 1} be a sequence of independent random variables with

P (Xn = 1) = P (Xn = −1) =
1

4
, P (Xn = n) = P (Xn = −n) =

1

4n2
,

and

P (Xn = 0) =
1

2

(
1− 1

n2

)
.

Note that E(Xn) = 0 and Var(Xn) = 1.

(a) Show that the triangular array {Xnj : 1 ≤ j ≤ n, n ≥ 1}, with Xnj = Xj/
√
n, 1 ≤ j ≤ n,

n ≥ 1, does not satisfy the Lindeberg condition.

(b) Show that nevertheless there exists a σ2 > 0 such that∑n
j=1Xj√
n

 N(0, σ2),

where  denotes convergence in distribution.

5. Recall that distributions in an exponential dispersion family have densities of the form

f(y; θ, φ) = exp

{
1

φ

[
θy − b(θ)

]
+ c(y;φ)

}
, (∗)

for θ ∈ Θ ⊂ R and 1/φ ∈ Λ ⊂ R. In a generalized linear model (GLM), we assume that
Y1, . . . , Yn are independent and that Yi has density f(y; θi, φi), where f has the form (∗)
and φi = φ/wi, where w1, . . . , wn are known postive weights. This defines the random, or
stochastic part of the GLM.

(a) Suppose that Y has density given by (∗). Show that E(Y ) = b′(θ) and Var(Y ) = φ b′′(θ).

(b) Describe the systematic part of the GLM relating the mean µi = E(Yi) to the vector xi
of predictor values for the ith observation.

(c) Derive the maximum likelihood estimating equations (score equations) for the vector of
regression coefficients β. Show that their solution does not depend on the value of φ.

(d) Derive the “expected” Fisher information matrix for β, assuming that φ is known and
express your result matrix form.

(e) What is the canonical link function for the density given in (∗)? Show that if φ is known
and the canonical link is used, then there is a simple sufficient statistic for the vector
of regression parameters, β, and give its form. Show also that the likelihood equations
and the observed Fisher information for β can be simplified when the canonical link is
used and give the simplified forms.



Department of Statistics PhD Qualifying Exam January 2009 5

6. Suppose that Y is a binary response following a probit-normal model, i.e., a generalized linear
mixed model (GLMM) with a probit link and linear predictor η = xTβ+zTU , where x ∈ Rp
and z ∈ Rq are known covariates, β ∈ Rp is a vector of unknown regression parameters, and
U ∼ Nq(0,Σu). Show that the marginal model for Y is a probit GLM and find an expression
for the coefficient vector of the marginal GLM in terms of the parameters of the GLMM.

7. Let X ∼ N(µ, σ2), σ2 known. For each c ≥ 0 define an interval estimator for µ by C(x) =
[x− cσ, x+ cσ], and consider the loss function L(µ,C) = b× Length(C)− I(µ ∈ C).

(a) Show that the risk function of C is given by

R(µ,C) = 2bcσ − P (−c ≤ Z ≤ c),

where Z is a standard normal random variable.

(b) Show that for bσ > 1/
√

2π, the risk function is minimized at c = 0, so the best “interval
estimator” for this case is the point x.

(c) Show that for bσ ≤ 1/
√

2π, the risk function is minimized at c =
√
−2 log(

√
2πbσ)

(d) How does the interval in part (c) compare with the usual 1− α interval?

8. Suppose that we observe Xij ∼ N(θi, σ
2), i = 1, . . . , p, j = 1, . . . , ni, where p ≥ 3, σ2 is

known and the ni are not necessarily equal. Consider two versions of the Stein estimator

1. δu =
(

1− cσ2∑
i X̄i

)
X̄,

2. δw =
(

1− cσ2∑
i niX̄i

)
X̄,

where X̄i = (1/ni)
∑

j Xij and X̄ is the vector of these means. We use “u” for unweighted
and “w” for weighted

(a) Show that δu is minimax if c ≤ 2(p− 2).

(b) Show that δw is minimax and, in fact, has smaller risk than δu.

(c) If we assume that θi ∼ N(0, τ2), independent, what is the Bayes estimator of θi? What
is the marginal distribution of X̄i?

(d) Based on part (c), can you justify either δu or δw as an empirical Bayes estimator?


