Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write your chosen identifying number on every page.
- 5. Do not write your name anywhere on your exam.
- 6. Write only on one side each page of paper, and start each question on a new page.
- 7. Clearly label each part of each question with the question number and the part, e.g., 1(a).
- 8. You must show your work to receive credit.
- 9. While the eight questions are equally weighted, within a given question, the parts may have different weights.
- 10. Do not write near the upper left corner of the page where the pages will be stapled together.

- **1.** (a) Suppose X has pdf $f(x|\theta)$. Consider the mixture prior $\pi(\theta) = \sum_{i=1}^{k} w_i \pi_i(\theta)$, where $\pi_i(\theta)$ are themselves pdf's and $w_i \ge 0$, $\sum_{i=1}^{k} w_i = 1$.
 - (i) Find the posterior $\pi(\theta|x)$ explicitly as a weighted average of the component posteriors $\pi_i(\theta|x)$.
 - (ii) Find also $E_{\pi}(\theta|x)$ and $V_{\pi}(\theta|x)$ in terms of $E_{\pi_i}(\theta|x)$ and $V_{\pi_i}(\theta|x)$, $i = 1, \dots, k$.
 - (b) Prove or give a counterexample to the following statements:
 - (i) A minimax decision rule is always Bayes with respect to some proper prior.
 - (ii) An admissible decision rule with constant risk is minimax.
 - (iii) If C_1, \dots, C_k are all complete, then $C_1 \cap \dots \cap C_k$ is essentially complete.
 - (iv) An admissible decision rule is always Bayes with respect to some proper prior.
- **2.** Let $X_1, \dots, X_n, Y_1, \dots, Y_n$ be mutually independent where X_i is exponential with mean σ/θ_i and Y_i is exponential with mean $\sigma\theta_i$, $i = 1, \dots, n$. In the above, $\theta_1, \dots, \theta_n, \sigma$ are all unknown.
 - (a) Write down the likelihood function $L(\theta_1, \dots, \theta_n, \sigma)$.
 - (b) Show that the MLE $\hat{\sigma}_n$ of σ is given by $\hat{\sigma}_n = n^{-1} \sum_{i=1}^n (X_i Y_i)^{1/2}$.
 - (c) Show that $\hat{\sigma}_n \to (\pi/4)\sigma$ in probability as $n \to \infty$.
 - (d) Give an intuitive explanation of the result in (c).
- **3.** Consider the balanced fixed-effects one-way model,

$$y_{ij} = \mu + \alpha_{(i)} + \epsilon_{i(j)}, \ i = 1, 2, \dots, k; \ j = 1, 2, \dots, n,$$

where $\alpha_{(i)}$ is a fixed unknown parameter (i = 1, 2, ..., k), $\epsilon_{i(j)} \sim N(0, \sigma_{\epsilon}^2)$, and the $\epsilon_{i(j)}$'s are mutually independent. Let $SS_{treat} = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2$ be the treatment sum of squares.

- (a) Express SS_{treat} as a quadratic form in $\bar{\mathbf{y}}$, the vector of treatment sample means for the k treatments.
- (b) Partition SS_{treat} into k 1 independent sums of squares each with one degree of freedom. What distribution does each sum of squares have? Please be specific.
- (c) Deduce that the one-degree-of-freedom sums of squares in part (b) represent sums of squares of orthogonal contrasts among the true means of the treatments.
- (d) Obtain (1-α)100% simultaneous confidence intervals on the k-1 orthogonal contrasts in part
 (c) using Scheffé's procedure. What can you say about the actual joint coverage probability for these k 1 confidence intervals?
- (e) If the *F*-test concerning the treatment effect is significant at the α -level, does it necessarily follow that every single confidence interval in part (d) must not contain zero? Why or why not?

4. Consider the linear model

$$y_{ijkl} = \mu + \alpha_{(i)} + \beta_{(j)} + \gamma_{j(k)} + (\alpha\beta)_{(ij)} + (\alpha\gamma) + \epsilon_{ijk(l)},$$

 $i = 1, 2, \dots, a; j = 1, 2, \dots, b; k = 1, 2, \dots, c; l = 1, 2, \dots, n.$

The effect $\alpha_{(i)}$ is fixed, but the remaining effects are independently distributed as normal random variables with zero means and variances given by σ_{β}^2 , $\sigma_{\gamma(\beta)}^2$, $\sigma_{\alpha\beta}^2$, $\sigma_{\alpha\gamma(\beta)}^2$, σ_{ϵ}^2 , respectively.

- (a) Give the corresponding population structure. Then, indicate what the subscripts are for the $(\alpha\gamma)$ effect in the model, and point out its rightmost-bracket subscripts.
- (b) Write down the expected mean squares for all the effects in the corresponding ANOVA table. What distributions do the sums of squares have in this ANOVA table?
- (c) Give an expression for the power function of the *F*-test concerning the hypothesis $H_0: \alpha_{(i)} = 0$ for all i.
- (d) Let $\hat{\sigma}^2_{\gamma(\beta)}$ denote the ANOVA estimator of $\sigma^2_{\gamma(\beta)}$. Give an expression that can be used to compute the probability $P(\hat{\sigma}^2_{\gamma(\beta)} < 0)$. What parameter values must be specified in order to compute this probability?
- (e) Let $\mathbf{g} = (\mu, \alpha_{(1)}, \alpha_{(2)}, \dots, \alpha_{(a)})'$, and let $\lambda' \mathbf{g}$ be an estimable linear function of \mathbf{g} . What is the B.L.U.E. of $\lambda' \mathbf{g}$? Give also an expression for its variance.
- 5. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. mean 0 random variables and set $S_n = \sum_{j=1}^n X_j$, $n \ge 1$. Prove that $E|S_n| = o(n)$.
- **6.** Let $\{X_n, n \ge 1\}$ be a sequence of independent random variables with

$$EX_n = 0, \ 0 < EX_n^2 = \sigma_n^2 < \infty, \ n \ge 1.$$

Set

$$S_n = \sum_{j=1}^n X_j$$
 and $s_n^2 = \sum_{j=1}^n \sigma_j^2, n \ge 1.$

Prove that if

$$s_n^2 \to \infty, \ \sigma_n^2 = o(s_n^2),$$

and

$$\frac{S_n}{s_n} \xrightarrow{d} N(0,1),$$

then

$$\frac{\max_{1 \le j \le n} |X_j|}{s_n} \xrightarrow{P} 0.$$

7. This problem concerns the inverse Gaussian distribution, which has cumulative distribution function (CDF)

$$F(y) = \begin{cases} 0, & y \le 0, \\ \Phi\left(\sqrt{\frac{\lambda}{y}}\left(-1+\frac{y}{\mu}\right)\right) + e^{2\lambda/\mu} \Phi\left(-\sqrt{\frac{\lambda}{y}}\left(1+\frac{y}{\mu}\right)\right), & y > 0, \end{cases}$$

where Φ denotes the standard normal CDF.

(a) Show that F has density f given by

$$f(y) = \begin{cases} 0, & y \le 0, \\ \left(\frac{\lambda}{2\pi y^3}\right)^{1/2} \exp\left\{-\frac{\lambda(y-\mu)^2}{2\mu^2 y}\right\}, & y > 0. \end{cases}$$

- (b) Show that the density f can be written in exponential dispersion form. Identify: the canonical parameter θ and the dispersion parameter ϕ (in terms of λ and μ); the cumulant function, $b(\theta)$; the variance function, $V(\mu)$; and the canonical link for this distribution.
- (c) Find the form of the deviance $D(\mathbf{y}, \hat{\boldsymbol{\mu}})$ for a GLM when the random component (i.e., the distribution of the responses) is inverse Gaussian.
- 8. (a) Suppose that $\mathbf{Y} = (Y_1, \dots, Y_k)^T$ is a multinomial vector of counts based on m trials with probability vector $\boldsymbol{\pi} = (\pi_1, \dots, \pi_k)^T$, i.e., $\mathbf{Y} \sim \mathrm{MN}_k(m, \boldsymbol{\pi})$. Suppose further that $\boldsymbol{\pi}$ depends on some parameter vector $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^T$. Show that the likelihood equations for $\boldsymbol{\theta}$ have the form

$$\sum_{j=1}^{k} \frac{y_j - m\pi_j}{\pi_j} \frac{\partial \pi_j}{\theta_l} = 0, \quad l = 1, \dots, p.$$

(b) Now let $Y_1, \ldots, Y_n \sim \operatorname{indep} MN_k(m_i, \pi_i)$, with

$$\pi_{ij} = \frac{\exp(\boldsymbol{x}_{ij}^T \boldsymbol{\beta})}{\sum_{r=1}^k \exp(\boldsymbol{x}_{ir}^T \boldsymbol{\beta})},$$

where x_{ij} is a vector of known covariates associated with each count. Write down the loglikelihood function for the parameter β . Show that there exists a Poisson loglinear GLM for which (frequentist) likelihood inference concerning β is identical to that based on this multinomial model.