Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write your chosen identifying number on every page.
- 5. Do not write your name anywhere on your exam.
- 6. Write only on one side each page of paper, and start each question on a new page.
- 7. Clearly label each part of each question with the question number and the part, e.g., 1(a).
- 8. You must show your work to receive credit.
- 9. While the eight questions are equally weighted, within a given question, the parts may have different weights.
- 10. Do not write too near the upper left corner of the page where the pages will be stapled together.

- **1.** (a) Let X_1, \dots, X_n be iid Bin $(1, \theta)$, where $\theta \in [0, 1]$, and let $\overline{X} = n^{-1} \sum_{i=1}^n X_i$. Assume squared error loss. Show that $\delta(X_1, \dots, X_n) = \frac{n\overline{X}+\alpha}{n+\alpha+\beta}$ is the Bayes estimator of θ under the Beta (α, β) prior.
 - (b) Show that the Bayes estimator of θ found in (a) is an admissible estimator under squared error loss.
 - (c) Let X_1, \dots, X_p be independently distributed with pdf's $f_{\theta_i}(x_i)$. Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^T$. Writing $\mathbf{a} = (a_1, \dots, a_p)^T$, suppose the loss in estimating $\boldsymbol{\theta}$ by \mathbf{a} is $L(\boldsymbol{\theta}, \mathbf{a}) = \sum_{i=1}^p L(\theta_i, a_i)$. Consider the prior $\pi(\boldsymbol{\theta}) = \prod_{i=1}^p \pi_i(\theta_i)$ for $\boldsymbol{\theta}$, where the π_i are themselves pdf's. Show that the Bayes estimator of $\boldsymbol{\theta}$ is given by $\boldsymbol{\delta}^{\pi}(X) = (\delta_1^{\pi}(X_1), \dots, \delta_p^{\pi}(X_p))^T$, where $\delta_i^{\pi}(X_i)$ is the Bayes estimator of θ_i under the prior π_i .
 - (d) Let X_1, \dots, X_p be independently distributed Binomial $(n_i, \theta_i), i = 1, \dots, p$ random variables. Assume the loss $L(\boldsymbol{\theta}, \mathbf{a}) = \sum_{i=1}^{p} (\theta_i - a_i)^2$. Find the prior under which the estimator $((X_1 + \alpha_1)/(n_1 + 2\alpha_1), \dots, (X_p + \alpha_p)/(n_p + 2\alpha_p))^T$ is the Bayes estimator of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^T$.
- 2. (a) Let X_1, \dots, X_n be iid with common pdf $f_{\theta}(x) = (2x/\theta^3)I_{[0 \le x \le \theta]}$, where $\theta(>0)$ is unknown, and I is the usual indicator function. Find the generalized likelihood ratio test of $H_0: \theta = \theta_0$ against the alternatives $H_0: \theta \neq \theta_0$. Show also that the critical region of this test can be determined exactly using percentiles of a chisquare distribution.
 - (b) If gene frequencies are in equilibrium, the genotypes AA, Aa and aa occur in a population with relative frequencies $(1 \theta)^2$, $2\theta(1 \theta)$ and θ^2 , where $0 \le \theta \le 1$. Let X_1 , X_2 and X_3 denote the corresponding observed counts in a random sample of size n. Find the MLE of θ , and find also its asymptotic distribution.
- **3.** Suppose that $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
 - (a) Show that the quadratic form $\mathbf{y}'\mathbf{A}\mathbf{y}$ can be represented as

$$\mathbf{y}'\mathbf{A}\mathbf{y} = \sum_{i=1}^k \lambda_i W_i,$$

where the W_i 's are independently distributed as noncentral chi-squared variates with m_i degrees of freedom and noncentrality parameter θ_i , that is, $W_i \sim \chi_{m_i}^{'2}(\theta_i)$, i = 1, 2, ..., k. Indicate what λ_i , m_i , θ_i are equal to.

- (b) Use part (a) to derive the moment generating function of $\mathbf{y}' \mathbf{A} \mathbf{y}$.
- (c) Let $\phi(t)$ denote the moment generating function of $\mathbf{y}' \mathbf{A} \mathbf{y}$ found in part (b). Show that $\phi(t)$ exists in a small neighborhood of t = 0, that is, for $|t| \leq t_0$ for some positive constant t_0 .
- (d) Use part (a) to show that if $A\Sigma$ is idempotent, then $\mathbf{y}'A\mathbf{y}$ has the noncentral chi-squared distribution. Determine its degrees of freedom and noncentrality parameter.
- (e) Show that if $tr[(\mathbf{A}\Sigma)^2] = tr(\mathbf{A}\Sigma) = r$, where r is the rank of **A**, then $\mathbf{y}'\mathbf{A}\mathbf{y}$ has the chi-squared distribution.

- 4. Consider the quadratic forms, $Q_1 = \mathbf{y}' \mathbf{A} \mathbf{y}$, $Q_2 = \mathbf{y}' \mathbf{B} \mathbf{y}$, where $\mathbf{y} \sim N(\mathbf{0}, \mathbf{\Sigma})$ and \mathbf{A} and \mathbf{B} are nonnegative definite matrices of order $n \times n$.
 - (a) Find the covariance of $\mathbf{y}'\mathbf{A}\mathbf{y}$ and $\mathbf{y}'\mathbf{B}\mathbf{y}$.
 - (b) Show that if Q_1 and Q_2 are uncorrelated, then they are also independent.
 - (c) Show that $E(\mathbf{y}'\mathbf{A}\mathbf{y}) \leq \lambda_{\max} \sum_{i=1}^{n} \sigma_{ii}$, where λ_{\max} is the largest eigenvalue of \mathbf{A} and σ_{ii} is the i^{th} diagonal element of $\mathbf{\Sigma}$.
 - (d) If Σ is known, can you compute the exact probability $P(\mathbf{y}'\mathbf{A}\mathbf{y} > \mathbf{y}'\mathbf{B}\mathbf{y})$? Please explain.
- **5.** Consider $Y_i \sim \text{Ber}(\pi_i)$ (indep), $i = 1, \ldots, n$, where

logit
$$\pi_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2}$$

where X_{i1} and X_{i2} are binary covariates.

- (a) Derive the mle for $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$ in closed form. *Hint: you may need to introduce some additional notation to do this.*
- (b) Interpret the coefficient β_3 .
- (c) Suppose we replace the logit link with a probit link,

$$\Phi^{-1}(\pi_i) = \beta_0^* + \beta_1^* X_{i1} + \beta_2^* X_{i2} + \beta_3^* X_{i1} X_{i2}$$

where Φ^{-1} is the inverse of the cdf of a normal random variable. Derive the mle for β^* in closed form.

- (d) Compare the mle's under the probit and the logit link. Will any relationship you see between the mle's hold in general? Explain.
- (e) Suppose that we replace the scalar random variables Y_i with *T*-dimensional vectors $Y_i^{\star} = (Y_{i1}, \ldots, Y_{iT})^T$ (e.g., repeated measurements on unit *i*). To account for correlation among the components on Y_i , we introduce a random effect into the probit formulation as follows:

$$\Phi^{-1}(\pi_{ij}(b_i)) = \beta_0^* + b_i + \beta_1^* X_{i1} + \beta_2^* X_{i2} + \beta_3^* X_{i1} X_{i2}$$
(1)

$$b_i \sim N(0, \tau^2) \tag{2}$$

where $\pi_{ij}(b_i) = E[Y_{ij} | b_i]$. So, the conditional (on the random effect) mean follows a probit link. Derive the marginal mean, $E[Y_{ij}]$ and identify the link function. Is there a relationship between the β coefficients in (1) and the corresponding coefficients in the model for $E[Y_{ij}]$?

(f) Suppose we want to test for a missing covariate X_{i3} , but we don't want to fit the more complex model involving X_{i3} ,

logit
$$\pi_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \beta_4 X_{i3}.$$
 (3)

Derive a test for $H_0: \beta_4 = 0$ which does not require fitting the full model in (3).

6. Suppose $Y_i | \pi_i \sim \text{Poisson}(e_i \lambda_i)$ and $\lambda_i \sim \text{Gamma}(\alpha, \beta)$ for $i = 1, \ldots, n$, where e_i is a constant. Note: The Gamma density is given by

$$f(\lambda_i) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda_i^{\alpha-1} \exp(-\lambda_i/\beta)$$
(4)

where $E[\lambda_i] = \alpha \beta$ and $\operatorname{Var}[\lambda_i] = \alpha \beta^2$.

- (a) Derive the marginal distribution of Y_i .
- (b) Derive the mean and variance. In particular, show that the mean can be written in the form $E[Y_i] = e_i \lambda$ and that the variance can be written in the following form, $Var(Y_i) = e_i \lambda h(e_i, \alpha, \beta)$. Hint: λ will be a function of the Gamma distribution parameters, α and β .
- (c) Comment on the form of the overdispersion induced by this gamma mixture of Poissons.
- (d) Suppose we now index (α, β) by *i* and re-parameterize them as $\alpha_i = e_i \delta m$ and $\beta_i = \frac{1}{\delta e_i}$. Derive the variance under this parameterization and compare it to the one in (b).
- (e) Given the parameterization in (d), now replace m with m_i and model it as $\log m_i = X_i \gamma$. Suppose we have a function that fits regular Poisson regression models and from it we obtain an estimate of γ , $\hat{\gamma}$. Given that we have an estimate for γ , propose a simple moment based estimator of δ . *Hint: This will be a function of* $\hat{\gamma}$.
- 7. Let X_1, X_2, \ldots be independent random variables with

$$X_n = \begin{cases} \pm n^2, & \text{with probability } \frac{1}{12n^2} \text{ each,} \\ \pm n, & \text{with probability } \frac{1}{12} \text{ each,} \\ 0, & \text{with probability } 1 - \frac{1}{6} - \frac{1}{6n^2}. \end{cases}$$

and let $S_n = \sum_{k=1}^n X_k$. Prove that

$$\frac{S_n}{\sqrt{n^3/18}} \rightsquigarrow N(0,1).$$

where \rightsquigarrow denotes convergence in distribution. *Hint: Consider* $Y_n = X_n I_{\{|X_n| \le n\}}, n \ge 1$. *Recall that* $\sum_{k=1}^n k^2 = n(n+1)(2n+1)/6$.

8. Suppose that $\{X_n, n \ge 1\}$ is a sequence of nonnegative random variables, and let

$$M_n = \max_{1 \le k \le n} X_k.$$

(a) Prove that

$$E(M_n I_{\{M_n > \alpha\}}) \le \sum_{k=1}^n E(X_k I_{\{X_k > \alpha\}}).$$

(b) Prove that if $\{X_n, n \ge 1\}$ is uniformly integrable, then

$$\frac{E(M_n)}{n} \to 0$$

(c) Give an example to show that the result of part (b) may fail without the hypothesis of uniform integrability.