Instructions:

1. You have exactly four hours to answer questions in this examination.
2. There are 8 problems of which you must answer 6 .
3. Only your first 6 problems will be graded.
4. Write only on one side of the paper, and start each question on a new page.
5. Clearly label each part of each question with the question number and the part, e.g., $\mathbf{1}(\mathbf{a})$.
6. Write your number on every page.
7. Do not write your name anywhere on your exam.
8. You must show your work to receive credit.
9. While the eight questions are equally weighted, within a given question, the parts may have different weights.
10. Let X_{1}, \cdots, X_{p} be $p(\geq 3)$ independent $\mathrm{N}\left(\theta_{i}, \sigma^{2}\right)$ random variables, where both $\boldsymbol{\theta}=\left(\theta_{1}, \cdots, \theta_{p}\right)^{T} \in$ R^{p}, and $\sigma^{2}(>0)$ are unknown. We write $\boldsymbol{X}=\left(X_{1}, \cdots, X_{p}\right)^{T}$, and $\boldsymbol{x}=\left(x_{1}, \cdots, x_{p}\right)^{T}$. Let $h(\cdot)$ be a real-valued function satisfying $E_{\boldsymbol{\theta}, \sigma^{2}}\left|\partial^{2} \log h(\boldsymbol{X}) / \partial X_{i}^{2}\right|<\infty$ and $E_{\boldsymbol{\theta}, \sigma^{2}}\left[\partial \log h(\boldsymbol{X}) / \partial X_{i}\right]^{2}<\infty$ for all $i=1, \cdots, p$. For estimating $\boldsymbol{\theta}$ by \boldsymbol{a}, suppose that the loss incurred in is given by $L_{\sigma^{2}}(\boldsymbol{\theta}, \boldsymbol{a})=$ $\|\boldsymbol{\theta}-\boldsymbol{a}\|^{2} / \sigma^{2}$. Also, let U be a random variable distributed independently of the X_{i} 's such that $U \sim \sigma^{2} \chi_{m}^{2} /(m+2)$.
(a) Show that $\boldsymbol{T}=\left(X_{1}+U\left(\partial \log h(\boldsymbol{X}) / \partial X_{1}\right), \cdots, X_{p}+U\left(\partial \log h(\boldsymbol{X}) / \partial X_{p}\right)\right)^{T}$ improves on \boldsymbol{X} for estimating $\boldsymbol{\theta}$ if

$$
2 \sum_{i=1}^{p} \frac{\partial^{2} \log h(\boldsymbol{x})}{\partial x_{i}^{2}}+\sum_{i=1}^{p}\left(\frac{\partial \log h(\boldsymbol{x})}{\partial x_{i}}\right)^{2}<0
$$

for almost all $\boldsymbol{x} \in R^{p}$.
(b) Take $h(\boldsymbol{x})=\|\boldsymbol{x}\|^{-(p-2)}$. Show that with this choice of h, the estimator \boldsymbol{T} given in (a) improves on \boldsymbol{X} for estimating $\boldsymbol{\theta}$.
(c) Find an unbiased estimator of the risk improvement given in (b).
2. Let X_{1}, \cdots, X_{n} denote a random sample from an unknown (not necessarily normal) distribution with finite fourth moment. Let μ and σ^{2} denote the mean and variance of this distribution. Also, let $\sqrt{\beta_{1}}=\mu_{3} / \sigma^{3}$ and $\beta_{2}=\mu_{4} / \sigma^{4}$, where μ_{3} and μ_{4} denote the third and fourth central moments of this distribution. Suppose that one mistakenly assumes that the random sample is generated from a $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. In the following, one assumes the normal likelihood, but expectation is taken with respect to the true distribution which is not necessarily normal.
(a) Show that

$$
\left[\begin{array}{lc}
E\left(\frac{\partial \log L}{\partial \mu}\right)^{2} & E\left(\frac{\partial \log L}{\partial \mu}\right)\left(\frac{\partial \log L}{\partial \sigma^{2}}\right) \\
E\left(\frac{\partial \log L}{\partial \mu}\right)\left(\frac{\partial \log L}{\partial \sigma^{2}}\right) & E\left(\frac{\partial \log L}{\partial \sigma^{2}}\right)^{2}
\end{array}\right]=n\left[\begin{array}{cc}
\frac{1}{\sigma^{2}} & \frac{\sqrt{\beta_{1}}}{2 \sigma^{3}} \\
\frac{\sqrt{\beta_{1}}}{2 \sigma^{3}} & \frac{\beta_{2}-1}{4 \sigma^{4}}
\end{array}\right] .
$$

(b) Show that

$$
\left[\begin{array}{ll}
E\left(-\frac{\partial^{2} \log L}{\partial \mu^{2}}\right) & E\left(-\frac{\partial^{2} \log L}{\partial \mu \partial \sigma^{2}}\right) \\
E\left(-\frac{\partial^{2} \log L}{\partial \mu \partial \sigma^{2}}\right) & E\left(-\frac{\partial^{2} \log L}{\partial \sigma^{4}}\right)
\end{array}\right]=n \operatorname{Diag}\left(\frac{1}{\sigma^{2}}, \frac{1}{2 \sigma^{4}}\right) .
$$

(c) Find the asymptotic distribution of the MLE of $\left(\mu, \sigma^{2}\right)$ under the true distribution.
(d) Comment on the results obtained.
3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent mean 0 square integrable random variables. Set $S_{n}=\sum_{j=1}^{n} X_{j}$ and $s_{n}^{2}=\sum_{j=1}^{n} E X_{j}^{2}, n \geq 1$.
Prove that if
(1) $0<s_{n}^{2} \rightarrow \infty$,
(2) $\frac{X_{n}}{s_{n}} \rightarrow 0$ a.c., and
(3) $\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2}} \sum_{j=1}^{n} \int_{\left[\left|X_{j}\right|>\varepsilon s_{j}\right]} X_{j}^{2} d P=0$ for some $\varepsilon>0$,
then $\frac{S_{n}}{s_{n}} \rightarrow N(0,1)$.
4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent and identically distributed random variables and set $S_{n}=\sum_{j=1}^{n} X_{j}, n \geq 1$.
(a) Suppose that $E X_{1}$ exists. Prove that if $\frac{S_{n}}{n} \xrightarrow{P} c$ for some constant c in $(-\infty, \infty)$, then $\frac{S_{n}}{n} \rightarrow c$ a.c. and $c=E X_{1}$.

Warning. You cannot assume that X_{1} is integrable; this is in effect part of the conclusion.
(b) Suppose that $E X_{1}$ does not exist. Identify the almost certain value of

$$
\varlimsup_{n \rightarrow \infty} \frac{\left|S_{n}\right|}{n}
$$

Prove your answer.
(c) Demonstrate by an example that if $E X_{1}$ does not exist, then $\frac{S_{n}}{n} \xrightarrow{P} c$ for some constant c in $(-\infty, \infty)$ can hold. Justify your example.
5. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\prime}$ be a random vector with two elements. Its density function is of the form

$$
f\left(x_{1}, x_{2}\right)=\omega_{1} f_{1}\left(x_{1}, x_{2}\right)+\omega_{2} f_{2}\left(x_{1}, x_{2}\right)
$$

where $\omega_{1}+\omega_{2}=1, \omega_{i} \geq 0, i=1,2$, and f_{i} is the density function for the bivariate normal $N\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)$, where

$$
\boldsymbol{\Sigma}_{i}=\left(\begin{array}{cc}
1 & \rho_{i} \\
\rho_{i} & 1
\end{array}\right), i=1,2
$$

(a) Find the moment generating function of \boldsymbol{X}.
(b) Find the moment generating functions for the marginal distributions of X_{1} and X_{2} using part (a). Deduce that X_{1} and X_{2} are each normally distributed as $N(0,1)$.
(c) Show that \boldsymbol{X} itself is not normally distributed if $\rho_{1} \neq \rho_{2}$.
(d) What can you conclude from parts (b) and (c)?
(e) Show that the covariance of X_{1} and X_{2} can be zero if $\rho_{1} \neq \rho_{2}$, but X_{1} and X_{2} are not independent.
6. Consider the two-way model,

$$
y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j},
$$

where $i=1,2, \cdots, 6 ; j=1,2, \cdots, 8, \alpha_{i}, \beta_{j}$, and $\epsilon_{i j}$ are independently distributed as normal variates with zero means and variances $\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}$, and σ_{ϵ}^{2}, respectively. Let $\gamma_{1}=\frac{\sigma_{\alpha}^{2}}{\sigma_{\epsilon}^{2}}, \gamma_{2}=\frac{\sigma_{\beta}^{2}}{\sigma_{\epsilon}^{2}}$.
(a) Show how to obtain an exact confidence interval on $2 \sigma_{\alpha}^{2}+3 \sigma_{\beta}^{2}+\sigma_{\epsilon}^{2}$ with a confidence coefficient of at least $1-\alpha$.
(b) Find the uniformly minimum variance unbiased estimator of

$$
\theta=\frac{1+8 \gamma_{1}}{1+6 \gamma_{2}}
$$

(c) Find the expected values of $R(\beta \mid \mu)$ and $R(\beta \mid \mu, \alpha)$.
(d) If α_{i} were fixed and β_{j} random, what would the BLUE of $\operatorname{LSM}\left(\alpha_{i}\right)$, the least-squares mean for α_{i}, be? Please provide justifications for your answer.
7. Let

$$
Y= \begin{cases}1, & \text { if a person has a disease } \\ 0, & \text { otherwise }\end{cases}
$$

and suppose that presence of the disease depends on covariates \boldsymbol{x} and on a separate exposure variable, E, with levels $j=1, \ldots, k$, through the model

$$
\log \frac{P(Y=1 \mid \boldsymbol{x}, E=j)}{P(Y=0 \mid \boldsymbol{x}, E=j)}=a(\boldsymbol{x})+\lambda_{j}, \quad j=1, \ldots, k,
$$

for some function $a(\boldsymbol{x})$ (possibly unknown).
(a) Controlling for \boldsymbol{x}, what is the odds ratio comparing the odds of having the disease in two different exposure categories, j and j^{\prime}.
(b) Suppose that the data on exposure is collected retrospectively; that is, diseased and nondiseased individuals are sampled and their exposure categories are determined. Let

$$
Z= \begin{cases}1, & \text { if a person is sampled } \\ 0, & \text { otherwise }\end{cases}
$$

and suppose that

$$
P(Z=1 \mid Y, \boldsymbol{x}, E)=P(Z=1 \mid Y, \boldsymbol{x}),
$$

i.e., the selection probability for an individual given disease status, Y, and covariates, \boldsymbol{x}, is conditionally independent of exposure, E.
Derive an expression for $P(Y=1 \mid Z=1, \boldsymbol{x}, E=j)$, and show that, controlling for \boldsymbol{x}, the odds-ratio comparing the odds of disease for sampled individuals in two different exposure categories, j and j^{\prime}, is the same as that derived in part (a).
8. The standard Cauchy (or Cauchy $(0,1)$) distribution has density $f(u)=\frac{1}{\pi} \frac{1}{1+u^{2}},-\infty<u<\infty$, cumulative distribution function $F(u)=\frac{1}{2}+\frac{1}{\pi} \arctan (u)$, and characteristic function $\varphi(t)=e^{-|t|}$. If U has a standard Cauchy distribution, then the distribution of $\sigma U+\mu$, where $-\infty<\mu<\infty$, and $\sigma>0$, is known as a Cauchy distribution with location parameter (median) μ and scale parameter σ. Denote this distribution by the notation Cauchy (μ, σ).
(a) If U_{1} and U_{2} are independent random variables, $U_{i} \sim \operatorname{Cauchy}\left(\mu_{i}, \sigma_{i}\right), i=1,2$, and a_{1} and a_{2} are real numbers, what is the distribution of $a_{1} U_{1}+a_{2} U_{2}$? Justify (prove) your answer.
(b) Suppose that Y is a binary response following a generalized linear mixed model (GLMM) for $E(Y \mid \boldsymbol{U})$ (i.e., $g(E(Y \mid \boldsymbol{U}))=\eta$) with link function $g=F^{-1}$ (where F is the cdf of the Cauchy $(0,1)$ distribution as given above) and linear predictor $\eta=\boldsymbol{x}^{T} \boldsymbol{\beta}+\boldsymbol{z}^{T} \boldsymbol{U}$, where $\boldsymbol{x} \in \mathbb{R}^{p}$ and $\boldsymbol{z} \in \mathbb{R}^{q}$ are known covariates, $\boldsymbol{\beta} \in \mathbb{R}^{p}$ is a vector of regression parameters, and $\boldsymbol{U}=$ $\left(U_{1}, \ldots, U_{q}\right)$ is a vector of independent random variables, $U_{i} \sim \operatorname{Cauchy}\left(0, \sigma_{i}\right), i=1, \ldots, q$. Show that the marginal model for Y is a GLM, identify its link function, and express its coefficient vector in terms of the elements of the GLMM.

