PhD Qualifying Examination<br>Department of Statistics, University of Florida<br>January 24, 2003, 8:00 am - 12:00 noon

## Instructions:

1. You have exactly four hours to answer questions in this examination.
2. There are 8 problems of which you must answer 6 .
3. Only your first 6 problems will be graded.
4. Write only on one side of the paper, and start each question on a new page.
5. Write your number on every page.
6. Do not write your name anywhere on your exam.
7. You must show your work to receive credit.
8. While the eight questions are equally weighted, within a given question, the parts may have different weights.

The following abbreviations are used throughout:

- $\mathrm{GLM}=$ generalized linear model
- $\mathrm{mgf}=$ moment generating function
- UMP = uniformly most powerful

1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables and let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geq 1$. Prove that if $\sum_{n=1}^{\infty} \mathrm{E}\left|X_{n}\right|<\infty$, then there exists a random variable $S$ with $S_{n} \rightarrow S$ almost certainly and $S_{n} \xrightarrow{\mathcal{L}_{1}} S$.
2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent and identically distributed random variables with $\mathrm{E}\left|X_{1}\right|^{q}<$ $\infty$ for some $q \in(0, \infty)$. Prove that for all $p \in(1, \infty)$,

$$
\frac{\sum_{j=1}^{n}\left|X_{j}\right|^{p q}}{n^{p}} \rightarrow 0 \quad \text { almost certainly }
$$

3. (a) Suppose that $L \sim \operatorname{Poisson}(\phi)$ and that $Y \mid L \sim \chi_{q+2 L}^{2}$; that is, conditional on $L, Y$ has a $\chi^{2}$ distribution with $q+2 L$ degrees of freedom. Write down the marginal density function of $Y$. You should recognize this as the non-central $\chi^{2}$ distribution with $q$ degrees of freedom and non-centrality parameter $\phi$.
(b) Find the mean of $Y$.
(c) Let $X_{1}, \ldots, X_{p}$ be independent random variables such that $X_{i} \sim \mathrm{~N}\left(\theta_{i}, 1\right)$ for $i=1, \ldots, p$. Assume that $p>2$. Put $X=\left(X_{1}, \ldots, X_{p}\right)^{T}, \theta=\left(\theta_{1}, \ldots, \theta_{p}\right)^{T}$ and $\lambda=\|\theta\|^{2} / 2$. Show that

$$
\begin{equation*}
\mathrm{E}\left(\frac{1}{\|X\|^{2}}\right)=\mathrm{E}[g(K)] \tag{1}
\end{equation*}
$$

where $K \sim \operatorname{Poisson}(\lambda)$. In other words, identify the function $g$. (In order to answer this question, you need to know the distribution of $\|X\|^{2}$. However, you are not required to derive this distribution.)
(d) The equation (1) can clearly be rewritten as

$$
\int_{\mathbb{R}^{p}} \frac{1}{\|x\|^{2}(2 \pi)^{p / 2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right\} d x=\sum_{k=0}^{\infty} g(k) \frac{\exp \{-\lambda\} \lambda^{k}}{k!}
$$

Assuming that $\frac{\partial}{\partial \theta_{j}}$ can be passed through the integral and through the sum, differentiate both sides to show that

$$
\mathrm{E}\left(\frac{X_{j}}{\|X\|^{2}}\right)=\frac{\theta_{j}}{\lambda} \mathrm{E}\left(\frac{K}{p-2+2 K}\right)
$$

(e) Consider the James-Stein estimator of $\theta$ given by

$$
\delta(X)=\left(1-\frac{p-2}{\|X\|^{2}}\right) X
$$

Use the above results to show that the mean squared error of $\delta$ can be written as

$$
\mathrm{E}\|\delta(X)-\theta\|^{2}=p-(p-2)^{2} \mathrm{E}\left(\frac{1}{p-2+2 K}\right)
$$

(f) In the context of estimating $\theta$ under squared error loss, what have we shown?
4. (a) Suppose $Z \mid \theta \sim \operatorname{Geometric}(\theta)$; that is,

$$
P(Z=z \mid \theta)=\theta(1-\theta)^{z}
$$

for $z \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$ and $\theta \in(0,1)$. Note that $\mathrm{E}(Z \mid \theta)=\frac{1-\theta}{\theta}$ and $\operatorname{Var}(Z \mid \theta)=\frac{1-\theta}{\theta^{2}}$. Find the marginal mass function of $Z$ assuming that $\theta \sim \operatorname{Beta}(\alpha, \beta)$.
(b) The function $\psi(x)=\frac{d}{d x} \log \Gamma(x)$ (defined for positive $x$ ) is called the digamma function. The digamma function has the following integral representation

$$
\psi(x)=-\gamma+\int_{0}^{1} \frac{1-t^{x-1}}{1-t} d t
$$

where $\gamma$ is Euler's constant. Use this representation to show that $\psi(x)$ is an increasing function. (Hint: You don't need any derivatives.)
(c) Now use the fact that $\psi$ is increasing to show that for fixed $0<a<b$, the function

$$
g(t)=\frac{\Gamma(t+a)}{\Gamma(t+b)}
$$

is decreasing in $t$. (Hint: Use a $\log$ and a derivative.)
(d) Suppose we have a single observation from the mass function

$$
P_{\alpha}(Z=z)=\frac{\alpha^{2} \Gamma(\alpha) z!}{\Gamma(z+\alpha+2)}
$$

for $z \in \mathbb{Z}_{+}$. Construct a UMP size 0.10 test of $H_{0}: \alpha \leq 3$ versus $H_{A}: \alpha>3$. (Hint: You are not being forced to use the Neyman-Pearson Lemma here.)
5. Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{k}\right)$ be a multinomial vector of counts based on $m$ trials and probability vector $\boldsymbol{\pi}=$ $\left(\pi_{1}, \ldots, \pi_{k}\right)$.
(a) Show that the joint mgf of $\boldsymbol{Y}$ is

$$
M_{\boldsymbol{Y}}(\boldsymbol{t})=\left(\sum_{j=1}^{k} \pi_{j} e^{t_{j}}\right)^{m}
$$

HINT: Use the identity,

$$
\left(\sum_{j=1}^{k} \alpha_{j}\right)^{m}=\sum_{\boldsymbol{y} \in S} \frac{m!}{\prod_{j} y_{j}!} \prod_{j} \alpha_{j}^{y_{j}},
$$

where $S=\left\{\boldsymbol{y}=\left(y_{1}, \ldots, y_{k}\right) \mid y_{j} \geq 0, \sum y_{j}=m\right\}$.
(b) Derive the mean vector and covariance matrix of $\boldsymbol{Y}$.
(c) Let $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n}$ be independent multinomial vectors each with $k$ categories. Suppose that $\boldsymbol{Y}_{i}$ is based on $m_{i}$ trials and probability vector $\boldsymbol{\pi}_{i}=\left(\pi_{i 1}, \ldots, \pi_{i k}\right), i=1, \ldots, n$. Suppose further that the $\pi_{i j}$ 's satisfy the model,

$$
\pi_{i j}=\frac{\exp \left(\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}\right)}{\sum_{r=1}^{k} \exp \left(\boldsymbol{x}_{i r}^{\prime} \boldsymbol{\beta}\right)},
$$

where $\boldsymbol{x}_{i j}$ is a vector of known covariates associated with the $(i, j)$ th count. Write down the loglikelihood function for the parameter $\boldsymbol{\beta}$. Show that there exists a Poisson loglinear GLM for which likelihood inference concerning $\boldsymbol{\beta}$ is identical to that based on this multinomial model.
6. Suppose that $Y$ has a binomial distribution with $m$ trials and probability $\pi$.
(a) Express the binomial likelihood function in exponential form in terms of the canonical parameter $\theta=\operatorname{logit}(\pi)$.
(b) Derive the deviance measure of fit $D(y, \mu)$ for the binomial model, where $\mu=m \pi$.
(c) Show that the deviance can be approximated by the Pearson $\chi^{2}$ statistic, $X^{2}$, if $m$ is large, where

$$
X^{2}=\frac{m(p-\pi)^{2}}{\pi(1-\pi)}
$$

and $p=Y / m$.
(d) Argue that, for $c>0$

$$
\mathrm{E}\{\log (Y+c)\}=\log (m \pi)+\frac{c}{m \pi}-\frac{1-\pi}{2 m \pi}+O\left(m^{-3 / 2}\right) .
$$

Hence show that

$$
\mathrm{E}\left\{\log \left(\frac{Y+c}{m-Y+c}\right)\right\}=\theta+\frac{(1-2 \pi)\left(c-\frac{1}{2}\right)}{m \pi(1-\pi)}+O\left(m^{-3 / 2}\right) .
$$

(e) Comment briefly on the relevance of the result in (d).
7. Let $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$ be a quadratic form in $\boldsymbol{x}$ which is distributed as $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
(a) Give a complete expression for $\phi(t)$, the mgf of $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$.
(b) Show that $\phi(t)$ exists if $|t|<c$ for some constant $c$ (specify what $c$ is).
(c) Make use of (a) to show that if $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent of rank $r$, then $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$ is distributed as $\chi_{r}^{\prime 2}(\lambda)$. Please specify what the non-centrality parameter is.
8. Consider the model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where $\boldsymbol{X}$ is $n \times p$ of rank $r(<p), \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. Let $M$ be an $s$-dimensional subspace of the row space of $\boldsymbol{X}(s \leq r)$ and let $\boldsymbol{C}^{\prime}$ be a matrix of order $s \times p$ and rank $s$ whose rows form a basis for $M$. It is known that Scheffé's simultaneous $(1-\alpha) 100 \%$ confidence intervals on all estimable linear functions of the form $\boldsymbol{a}^{\prime} \boldsymbol{\beta}$, where $\boldsymbol{a}^{\prime} \in M$, are given by

$$
\begin{equation*}
\boldsymbol{a}^{\prime} \hat{\boldsymbol{\beta}} \pm\left\{s\left[\boldsymbol{a}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{a}\right] M S_{E} F_{\alpha, s, n-r}\right\}^{1 / 2} \tag{2}
\end{equation*}
$$

where $M S_{E}$ is the error mean square and $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{\prime} \boldsymbol{y}$. (You do not have to prove (2)).
(a) The $F$-test concerning the hypothesis $H_{0}: \boldsymbol{C}^{\prime} \boldsymbol{\beta}=\mathbf{0}$ is significant at the $\alpha$-level if and only if there exists $\boldsymbol{a}_{0}^{\prime} \in M$ such that

$$
\begin{equation*}
\left|\boldsymbol{a}_{0}^{\prime} \hat{\boldsymbol{\beta}}\right|>\left\{s\left[\boldsymbol{a}_{0}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{a}_{0}\right] M S_{E} F_{\alpha, s, n-r}\right\}^{1 / 2} \tag{3}
\end{equation*}
$$

(b) Write $\boldsymbol{a}_{0}^{\prime}$ in inequality (3) as $\boldsymbol{a}_{0}^{\prime}=\boldsymbol{b}_{0}^{\prime} \boldsymbol{C}^{\prime}$, where $\boldsymbol{b}_{0}$ is some vector in $\mathbb{R}^{s}$, the $s$-dimensional Euclidean space. Show that inequality (3) is equivalent to

$$
\begin{equation*}
\sup _{\boldsymbol{b} \in \mathbb{R}^{s}} \frac{\left|\boldsymbol{b}^{\prime} \boldsymbol{C}^{\prime} \hat{\boldsymbol{\beta}}\right|}{\left|\boldsymbol{b}^{\prime} \boldsymbol{C}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{C} \boldsymbol{b}\right|^{1 / 2}}>\left(s M S_{E} F_{\alpha, s, n-r}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

(c) Show that inequality (4) can be written as

$$
\sup _{\boldsymbol{b} \in \mathbb{R}^{s}} \frac{\boldsymbol{b}^{\prime} \boldsymbol{G}_{1} \boldsymbol{b}}{\boldsymbol{b}^{\prime} \boldsymbol{G}_{2} \boldsymbol{b}}>s M S_{E} F_{\alpha, s, n-r}
$$

where $\boldsymbol{G}_{1}=\boldsymbol{C}^{\prime} \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{C}, \boldsymbol{G}_{2}=\boldsymbol{C}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{C}$.
(d) Show that

$$
\sup _{\boldsymbol{b} \in R^{s}} \frac{\boldsymbol{b}^{\prime} \boldsymbol{G}_{1} \boldsymbol{b}}{\boldsymbol{b}^{\prime} \boldsymbol{G}_{2} \boldsymbol{b}}=e_{\max }\left(\boldsymbol{G}_{2}^{-1} \boldsymbol{G}_{1}\right),
$$

where $e_{\max }\left(\boldsymbol{G}_{2}^{-1} \boldsymbol{G}_{1}\right)$ is the largest eigenvalue of $\boldsymbol{G}_{2}^{-1} \boldsymbol{G}_{1}$.
(e) Show that

$$
\frac{b^{\prime} G_{1} b}{b^{\prime} G_{2} b}
$$

attains its supremum if $\boldsymbol{b}$ is an eigenvector of $\boldsymbol{G}_{2}^{-1} \boldsymbol{G}_{1}$ corresponding to $e_{\max }\left(\boldsymbol{G}_{2}^{-1} \boldsymbol{G}_{1}\right)$.

