
Department of Statistics PhD Qualifying Exam August 2010
University of Florida

Instructions:

1. You have exactly four hours to answer questions in this examination.

2. There are 8 problems of which you must answer 6. You must do at least one problem
from each of the four categories of Linear Models, Generalized Linear Models, Prob-
ability, and Inference. If there is doubt as to what area a particular problem covers,
then ask.

3. Only your first 6 problems will be graded.

4. You will be given an identifying number for the exam. Write your identifying number
on every page in the form SN-x, where x is your number.

5. Do not write your name anywhere on your exam.

6. Write only on one side each sheet of paper. For each problem you do, start the problem
on a new page. At the end of the exam, for each problem, staple together all pages for
that problem in order.

7. Clearly label each part of each question with the question number and the part, if any,
e.g., 1(a).

8. You must show your work to receive credit.

9. While the eight questions are equally weighted, within a given question, the parts may
have different weights.

10. Do not write near the upper left corner of the page where the pages will be stapled
together.
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1. Let β1, β2, β3 be the interior angles of a triangle, so that β1 + β2 + β3 = 180 degrees.
Suppose we have available estimates Y1, Y2, Y3 of β1, β2, β3, respectively. We assume that
Yi ∼ N(βi, σ

2), i = 1, 2, 3 (σ is unknown) and that the Yi’s are independent. What is the
F -test for testing the null hypothesis that the triangle is equilateral?

2. This problem consists of three parts.

(a) Consider the multiple linear regression model

Y = X1β1 +X2β2 + ε,

where Y is n × 1, X1 is n × p1, β1 is p1 × 1, X2 is n × p2, β2 is p2 × 1, and ε is n × 1.
Suppose that in fact β2 = 0, in other words, the model used by the experimenter is an
overfitted model and the true model is

Y = X1β1 + ε.

Let σ̂2
overfit denote the usual estimate of variance based on the overfitted model, i.e.,

σ̂2
overfit = Y ′(I − P )Y/(n − p1 − p2), where P is the projection onto the space spanned

by the columns of X1 and the columns of X2. Show that σ̂2
overfit is an unbiased estimate

of σ2 even if the smaller model is true.

(b) For any standard linear model Y ∼ N(Xβ, σ2I), derive the expression for the usual 95%
confidence interval for σ2.

(c) Let σ̂2
red be the estimate of σ2 based on the reduced (and correct) model

Y = X1β1 + ε.

Show that the expected length of the confidence interval for σ2 based on the reduced
model is smaller than under the overfitted model.
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3. Suppose that Yij , i = 1, . . . ,m, j = 1, . . . , ni, follow a random intercept model of the form

Yij |U1, . . . , Um ∼ independent Poisson(λij)

log λij = xTijβ + Ui

U1, . . . , Um ∼ i.i.d.

Let Zi = eUi and let γ be its coefficient of variation, i.e.,

γ =

√
Var(Zi)

E(Zi)
.

(a) Show that Var(Yij) = µij(1 + γ2µij) and Cov(Yij , Yik) = γ2µijµik for j 6= k, where
µij = E(Yij).

(b) It is common to assume that the Uis are normally distributed (in which case the Zis are
log-normal random variables), but assume instead that Zi ∼ Gamma(α, 1/α), for some
α > 0. What are µij and γ2 in this case? Write down the likelihood for (β, α) and show
that it can be expressed in closed form (i.e., with no unevaluated integrals) using the
gamma function.

Note: in the present notation, Gamma(α, ζ) indicates the distribution with density

f(z;α, ζ) =
1

ζαΓ(α)
zα−1e−z/ζ , z > 0,

for α, ζ > 0, with mean αζ and variance αζ2.

4. Suppose that Y1, . . . , Yn are independent with µi = E(Yi) satisfying

logµi = xiβ (xi univariate)

and with

Var(Yi) = φµi.

(a) Give the quasi-likelihood estimating equation for β and find the asymptotic variance of
β̃, the “maximum quasi-likelihood estimator” (MQLE) of β.

(b) Assuming that Y1, . . . , Yn are normally distributed (with means and variances as given
above), derive the asymptotic variance of β̂, the MLE of β.

(c) The “asymptotic relative efficiency” (ARE) of β̂ with respect to β̃ is the ratio of the
asymptotic variance of β̃ to that of β̂. Use your results to find a formula for the ARE
of the MLE β̂ with respect to the MQLE β̃ assuming that Y1, . . . , Yn are normally
distributed. Is the ARE greater or less than 1? How does it vary with φ?
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5. LetX1, . . . , Xp be p (≥ 3) independentN(θi, σ
2) random variables, where both θ = (θ1, . . . , θp)

T ∈
Rp, and σ2 (> 0) are unknown. We writeX = (X1, . . . , Xp)

T , and x = (x1, . . . , xp)
T . Let h(·)

be a real-valued function satisfying Eθ,σ2 |∂2 log h(X)/∂X2
i | <∞ and Eθ,σ2 [∂ log h(X)/∂Xi]

2 <

∞ for all i = 1, . . . , p. Suppose that the loss incurred in estimating θ by a is Lσ2(θ,a) =
‖θ − a‖2/σ2. Also, let U be a random variable distributed independently of the Xi’s such
that U ∼ σ2χ2

m/(m+ 2).

(a) Show that T = (X1 + U(∂ log h(X)/∂X1), . . . , Xp + U(∂ log h(X)/∂Xp))
T improves on

X for estimating θ if 2
∑p

i=1
∂2 log h(x)

∂x2i
+
∑p

i=1(∂ log h(x)
∂xi

)2 < 0 for almost all x ∈ Rp.

(b) Take h(x) = ‖x‖−(p−2). Show that with this choice of h, the estimator T given in (a)
improves on X for estimating θ.

(c) Find an unbiased estimator of the risk improvement given in (b).

6. Let X1, X2, . . . , Xn be iid N(µ, σ2), where µ (real) and σ2 (> 0) are both unknown.

(a) Find the Fisher information matrix I(µ, σ).

(b) Define X̄n = n−1
∑n

i=1Xi and S2
n = n−1

∑n
i=1(Xi− X̄n)2. Show that n1/2(X̄n−µ, Sn−

σ)T is asymptotically normal with zero means, variances σ2 and σ2/2 and covariance
zero.

(c) Suppose now the normality assumption is dropped, but the Xi’s are assumed to have
a finite fourth moment. Let µ3 = E(X1 − µ)3 and µ4 = E(X1 − µ)4. Show that
n1/2(X̄n − µ, Sn − σ)T is asymptotically normal with zero means, variances σ2 and
(µ4 − σ4)/(4σ2) and covariance µ3.
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7. Let {Xn, n ≥ 1} be a sequence of independent random variables and let {bn, n ≥ 1} be a
sequence of positive constants with limn→∞ bn =∞. Suppose that

lim
n→∞

n∑
j=1

P (|Xj | > bn) = 0,

lim
n→∞

1

bn

n∑
j=1

E(XjI[|Xj |≤bn]) = 0,

and

lim
n→∞

1

b2n

n∑
j=1

Var(XjI[|Xj |≤bn]) = 0.

Set Sn =
∑n

j=1Xj , n ≥ 1.

(a) Prove that

Sn
bn

P→ 0.

(b) Demonstrate by way of a suitable example that the above hypotheses do not necessary
ensure that

Sn
bn
→ 0 a.c.

8. Let {Xn, n ≥ 1} be a sequence of independent random variables with

EXn = 0, 0 < EX2
n = σ2

n <∞, n ≥ 1

and set Sn =
∑n

j=1Xj and s2
n =

∑n
j=1 σ

2
j , n ≥ 1. Define for all n ≥ 1 and all ε ∈ (0,∞),

Γn(ε) =
1

s2
n

n∑
j=1

E(X2
j I[|Xj |>εsn]) +

1

s3
n

∣∣∣∣ n∑
j=1

E(X3
j I[|Xj |≤εsn])

∣∣∣∣ +
1

s4
n

n∑
j=1

E(X4
j I[|Xj |≤εsn]).

(a) Prove that if

s2
n →∞,

σ2
n

s2
n

→ 0, and
Sn
sn

d→ N(0, 1),

then

lim
n→∞

Γn(ε) = 0 for all ε ∈ (0,∞).

(b) Prove that if

lim
n→∞

Γn(ε0) = 0 for some ε0 ∈ (0,∞),

then

s2
n →∞,

σ2
n

s2
n

→ 0, and
Sn
sn

d→ N(0, 1).


