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Instructions:

1. You have exactly four hours to answer questions in this examination.

2. There are 8 problems of which you must answer 6. You must do at least one problem
from each of the four categories of Linear Models, Generalized Linear Models, Prob-
ability, and Inference. If there is doubt as to what area a particular problem covers,
then ask.

3. Only your first 6 problems will be graded.

4. Write your chosen identifying number on every page.

5. Do not write your name anywhere on your exam.

6. Write only on one side of each sheet of paper. For each problem you do, start the
problem on a new page. At the end of the exam, for each problem, staple together all
pages for that problem.

7. Clearly label each part of each question with the question number and the part.

8. You must show your work to receive credit.

9. While the eight questions are equally weighted, within a given question, the parts
may have different weights.

10. Do not write near the upper left corner of the page where the pages will be stapled
together.



1. Consider the simple linear regression model

Yi = β0 + β1xi + εi, i = 1, . . . , n,

with the εi’s iid with mean 0 and variance σ2, and β0, β1, σ are unknown, and the xi’s are
fixed known constants, to be determined by the experimenter, and n is even. Suppose also
that the xi’s are constrained to lie in the interval [−1, 1].

(A) For what choice of x1, . . . , xn is Var(β̂1) minimized?
(B) For what choice of x1, . . . , xn is Var(β̂0) minimized?
(C) Consider now the model

Yi = β0 + β1xi + β2zi + εi, i = 1, . . . , n

with the same stipulations on the εi’s, except that we now assume additionally that
their common distribution is normal. What is the F -test for testing

H0 : β2 = 0 vs. H1 : β2 6= 0?

2. Consider a standard linear model Y ∼ Nn(µ, σ
2In×n) where µ is known to lie in a subspace

Vf of Rn. Let Vr ⊂ Vf , and consider the F -test for testing

H0 : µ ∈ Vr vs. H1 : µ /∈ Vr.

For µ ∈ Vf , let p(µ) denote the power of the F test when µ is the true value of E(Y ). Let
Pf and Pr be the projections of Y onto the spaces Vf and Vr, respectively, and express µ
uniquely as

µ = µ1 + µ2, where µ1 ∈ Vr, µ2 ∈ Vf ∩ V ⊥r .

Show that p(µ) is an increasing function of ‖µ2‖2 = µ′(Pf − Pr)µ. You may want to use
the fact that for fixed ν, the family of distributions χ2

ν(γ) is stochastically increasing with
γ. In this case, you must prove that fact.

3. Confidence interval on the selected population mean.

Suppose that we observeXi ∼ N(θi, 1), i = 1, 2 with the goal of putting a 1−α confidence
interval on the θi corresponding to the larger of X1 and X2. That is, if X1 > X2 we assert
that θ1 ∈ X1 ± c with probability 1 − α, and if X2 > X1 we assert that θ2 ∈ X2 ± c with
probability 1 − α. Show that if c is the upper α/2 cutoff from the standard normal, this
procedure is, in fact, a 1− α confidence procedure.



4. Stein estimation with unequal shrinkage.

Let Xp×1 be multivariate normal, N(θ, I), and consider estimation of θ under squared error
loss, L(δ, θ) = |δ − θ|2. Consider the Stein estimator given componentwise by

δi(X) =

(
1− ci
|X|2

)
Xi,

where c1, . . . , cp are constants.

(A) Find the unbiased estimate of the risk of δ(X).
(B) How do you know that the unbiased estimate of the risk is unique?
(C) We know that if all of the ci are equal, then δ(X) is minimax as long as c ≤ 2(p− 2).

With unequal ci, under what conditions on c1, . . . , cp will δ(X) remain minimax?
Specifically, how large can max{ci} −min{ci} be? What is the upper bound on ci?

5. Consider the setting of toxicology studies where we want to model the probability of a
response (here, death) to different doses of a toxin. Suppose each subject has a tolerance T
for a dose x. That is, if T ≤ x, then the subject dies. Define Y to be the indicator of death
(Y = 1 corresponds to the subject dying).

Assume the distribution of tolerances in the population follows an extreme value (or Gum-
bel) distribution with cdf F (t) = exp

(
− exp{−(t − a)/b}

)
with mean a + .577b and

standard deviation πb/
√

6.

(A) For a given dose x, derive the probability a randomly selected subject dies, i.e., π(x) =
P (Y = 1|x) as a function of the mean and variance of the tolerance distribution.

(B) Derive the link function g for the regression of the binary response Y on the covariate
dose (x), such that g(π(x)) has the following form: g(π(x)) = α + βx. How do the
parameters α and β relate to a and b?

(C) Does π(x) approach one at the same rate that it approaches zero? Explain.
(D) Derive the LD50 defined as the dose x0 such that π(x0) = .5 as a function of the

regression parameters, (α, β).

For parts (E)–(G) below, assume that we have independent data Yi, i = 1, . . . ,m from
Binomial(ni, π(xi)) distributions with π(xi) defined in part (A).

(E) Construct a large sample 95% confidence interval for the LD50 assuming the mle of
(α, β) is approximately normal. Provide details.

(F) In a large sample size, how might you assess graphically if the extreme value tolerance
distribution is reasonable? Explain.

(G) In a small sample size, would you expect to be able to determine whether the assump-
tion that the distribution of tolerances follows a logistic distribution versus a normal
distribution? Explain.



6. Suppose that Y1 and Y2 are independent Poisson random variables with means µ1 and µ2

and that our only interest is inference on the ratio ψ = µ1/µ2.

(A) Derive the conditional likelihood for conducting inference on ψ. Please justify all your
steps.

(B) Derive the conditional maximum likelihood estimator (i.e., the mle based on the con-
ditional likelihood) ψ̂c in closed form.

(C) Derive the Fisher information based on the conditional likelihood.
(D) Derive ψ̂, the unconditional mle of ψ, and its large sample variance.
(E) Compare the large sample variance of ψ̂ to that of ψ̂c. Comment.
(F) Derive a 100(1 − α)% confidence interval for ψ̂c without resorting to large sample

theory.
(G) What is the typical way to “eliminate” nuisance parameters in the setting of Bayesian

inference? Is there a way to do this in closed form here? Explain and provide details.

7. Let {Xn, n ≥ 1} be a sequence of random variables.

(A) Prove that if

E

( ∞∑
n=1

|Xn|
|Xn|+ 1

)
<∞

then
∞∑
n=1

|Xn| <∞ a.c.

(B) Prove that if {Xn, n ≥ 1} are independent and

∞∑
n=1

|Xn| <∞ a.c.,

then

E

( ∞∑
n=1

|Xn|
|Xn|+ 1

)
<∞.

(C) Prove that if

E

( ∞∑
n=1

|Xn|
|Xn|+ bn

)
<∞

where {bn, n ≥ 1} is a sequence of positive constants with bn ↑ ∞, then

lim
n→∞

∑n
j=1Xj

bn
= 0 a.c.



8. Let Sn =
∑n

j=1Xj, n ≥ 1 where {Xn, n ≥ 1} is a sequence of independent random
variables and let {bn, n ≥ 1} be a nondecreasing sequence of constants in (0,∞) with
limn→∞ bn =∞. Suppose that

Sn
bn

P→ 0.

Can it be concluded that
max1≤k≤n |Sk|

bn

P→ 0?

Give a proof or else present (with verification) a suitable counterexample.


