Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write your chosen identifying number on every page.
- 5. Do not write your name anywhere on your exam.
- 6. Write only on one side each sheet of paper. For each problem you do, start the problem on a new page. At the end of the exam, for each problem, staple together all pages for that problem.
- 7. Clearly label each part of each question with the question number and the part, e.g., **1(a)**.
- 8. You must show your work to receive credit.
- 9. While the eight questions are equally weighted, within a given question, the parts may have different weights.
- 10. Do not write near the upper left corner of the page where the pages will be stapled together.

- 1. Let $\beta_1, \beta_2, \beta_3$ be the interior angles of a triangle, so that $\beta_1 + \beta_2 + \beta_3 = 180$ degrees. Suppose we have available estimates Y_1, Y_2, Y_3 of $\beta_1, \beta_2, \beta_3$, respectively. We assume that $Y_i \sim N(\beta_i, \sigma^2), i = 1, 2, 3$ (σ is unknown) and that the Y_i 's are independent.
 - (a) What is the "best" estimate of β_1 ? (Part of the question is to explain what is meant by "best".)
 - (b) Construct a (1α) level confidence interval for β_1 .
- 2. Consider the one-way ANOVA model

$$Y_{ij} = \beta_i + \epsilon_{ij}, \qquad i = 1, \dots, k, \ j = 1, \dots, n_i$$

with $\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Derive the *F*-test for testing

$$H_0: \beta_i = \alpha \times i \text{ for } i = 1, \dots, k \quad \text{vs.} \quad H_1: \text{not } H_0.$$

3. Let P_n and Q_n be probability measures on $(\mathbb{R}, \mathscr{R})$ (\mathscr{R} represents the Borel sets on \mathbb{R}) having densities f_n and g_n , respectively, with respect to Lebesgue measure λ . In view of Scheffé's theorem, one might expect that if $f_n(x) - g_n(x) \to 0$ as $n \to \infty$ for λ -almost all x, then

$$\sup_{A \in \mathscr{R}} |P_n(A) - Q_n(A)| \to 0, \qquad (*)$$

but in fact, as part (c) of this problem shows, (*) can fail even under much stronger conditions.

- (a) Prove that (*) holds if $f_n(x) g_n(x) \to 0$ for λ -almost all x and there exists a Lebesgue-integrable function h such that $|f_n g_n| \le h$ for all $n \ge 1$.
- (b) Prove that (*) holds if the sequences $\{P_n : n \ge 1\}$ and $\{Q_n : n \ge 1\}$ are (uniformly) tight and $f_n g_n \to 0$ uniformly on compact sets, i.e.,

$$\sup_{x \in [-M,M]} |f_n(x) - g_n(x)| \to 0 \quad \text{as } n \to \infty \text{ for all } M \ge 0.$$

- (c) Give an example to show that (*) can fail even when $\sup_{x \in \mathbb{R}} |f_n(x) g_n(x)| \to 0$ as $n \to \infty$.
- 4. Let X_1, X_2, \ldots be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = 1/2$, and let $Y_n = \sum_{k=1}^n k X_k$. Prove that for suitably chosen sequences of constants $\{a_n : n \ge 1\}$ and $\{b_n : n \ge 1\}$,

$$\frac{Y_n - a_n}{b_n} \rightsquigarrow Z$$

where $Z \sim N(0, 1)$ and \rightarrow denotes convergence in distribution.

- 5. Suppose that a population of individuals consists of two sub-populations or groups, G_1 and G_2 , with $100\pi\%$ of the population belonging to G_1 and $100(1-\pi)\%$ belonging to G_2 , where π is known.
 - (a) Assume that measurements \boldsymbol{X} made on individuals have the following distributions in the two groups:

$$G_1: \boldsymbol{X} \sim N_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$$
$$G_2: \boldsymbol{X} \sim N_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}).$$

Let \boldsymbol{x} be an observation made on an individual drawn at random from the combined population and let Y = 1 if the individual is from G_1 and Y = 0 if the individual is from G_2 .

(i) Show that the conditional (or "posterior") odds that the individual belongs to G_1 given \boldsymbol{x} have the form

$$odds(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) = \exp(\alpha + \boldsymbol{\beta}^T \boldsymbol{x}), \quad (*)$$

and express α and β in terms of π , μ_1 , μ_2 , and Σ .

- (ii) Suppose that we are given training data consisting of measurements of \boldsymbol{X} for n_1 individuals drawn at random from G_1 and n_2 individuals drawn at random from G_2 . Assuming that the model of part (a) holds, express the MLEs of α and β in terms of the MLEs of $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2$, and Σ (you may assume that the latter are known).
- (b) Suppose that instead of the full model described in part (a), we assume only that the conditional odds Y = 1 given $\mathbf{X} = \mathbf{x}$ has the form (*). Note that the sampling probability for an individual depends on Y and \mathbf{X} only through Y.
 - (i) Assuming that the total population size is N, what is the sampling probability for an individual in G_1 (i.e., with Y = 1) and what is it for an individual in G_2 (i.e., with Y = 0)? Let the variable Z take the value 1 for individuals that are included in the sample and 0 otherwise. Show that the odds that Y = 1for a sampled individual with covariate vector \boldsymbol{x} have the form

odds
$$(Y = 1 | Z = 1, \boldsymbol{X} = \boldsymbol{x}) = \exp(\alpha^* + \boldsymbol{\beta}^T \boldsymbol{x}),$$
 (**)

and express α^* in terms of α , π , n_1 , and n_2 .

- (ii) If we run ordinary logistic regression on the combined (y, x) data from the two groups to estimate parameters, how can the "intercept" estimate be adjusted if we wish to estimate the α in (*) rather than the α^* in (**)
- (c) Comment very briefly on the relative advantages and disadvantages of the methods of estimating α and β described in parts (a) and (b).

- 6. Suppose that $X \sim Bin(n, p)$, $0 , and let <math>\theta = \arcsin(\sqrt{p})$ (or $\theta = \sin^{-1}(\sqrt{p})$ if you prefer that notation).
 - (a) Consider the estimator

$$\tilde{\theta} = \arcsin\left(\sqrt{\frac{X+c}{n+2c}}\right)$$

where $c \geq 0$ is a fixed constant not depending on n. Regardless of the value of c, the estimator $\tilde{\theta}$ is variance stabilized in the sense that the variance of its asymptotic distribution does not depend on p. Prove this, i.e., show that the limiting distribution of $\sqrt{n}(\tilde{\theta}-\theta)$ does not depend on p. Hint: First consider $\sqrt{n}(\tilde{p}-p)$, where $\tilde{p} = (X + c)/(n + 2c)$. Also, in case you've forgotten, $\frac{d}{dw} \arcsin(w) = 1/\sqrt{1-w^2}$.

(b) Argue that

$$E(\tilde{\theta}) = \theta + \frac{(4c-1)b_p}{n} + O(n^{-3/2}),$$

where b_p depends on p but not on n, so that the choice c = 1/4 reduces the asymptotic bias of $\tilde{\theta}$ by an order of magnitude. Your proof does not have to be completely rigorous in its handling of the $O(n^{-3/2})$ term.

- 7. Starting with a density f with mean 0 and covariance matrix $\sigma^2 I$, create the location family $\{f(x-\theta): |\theta| < \infty\}$. Let $\mathbf{X}_{p\times 1} \sim f(x-\theta)$ and consider a prior on θ to be $\theta \sim f^{*n}$, the *n*-fold convolution of f with itself. (The convolution of f with itself is $f^{*2}(x) = \int f(x-y)f(y)dy$. The *n*-fold convolution is $f^{*n}(x) = \int f^{*(n-1)}(x-y)f(y)dy$.) An equivalent formulation is to let $U_i \sim f(u)$, $i = 0, \ldots, n$ iid, $\theta = \sum_{i=1}^{n} U_i$, and $\mathbf{X} = U_0 + \theta$.
 - (a) Show that the Bayes rule against squared error loss is $\frac{n}{n+1}X$. Note that n is a prior parameter.
 - (b) Calculate the mean squared error of $\frac{n}{n+1}X$, and compare it to the mean squared error of X. Under what circumstances would you prefer $\frac{n}{n+1}X$?
 - (c) Show that, marginally, $|\mathbf{X}|^2/(p\sigma^2)$ is an unbiased estimator of n+1. Use this fact to construct an empirical Bayes estimator of θ that resembles a Stein estimator.

- 8. Let $X \sim N(\theta, 1)$ and $L(\theta, \delta) = (\theta \delta)^2$.
 - (a) Define generalized Bayes estimator and show that X is a generalized Bayes estimator.
 - (b) Define *limit of Bayes estimators* and show that X is a limit of Bayes estimators. In particular, exhibit a sequence of proper Bayes estimators δ^{π_n} that satisfy (i) $\delta^{\pi_n} \to X$ and (ii) $R(\theta, \delta^{\pi_n}) \to R(\theta, X)$. Hence, X is both generalized Bayes and a limit of Bayes estimators.
 - (c) For the prior measure $\pi(\theta) = e^{a\theta}, a > 0$
 - (i) Show that the generalized Bayes estimator is X + a.
 - (ii) For a > 0, show that there is no sequence of proper priors for which $\delta^{\pi_n} \to X + a$.

(Hint: You might want to use the fact that the Bayes estimators have the form $x + \nabla \log m(x)$, where m is the marginal distribution. If you do use this fact you must first prove it.)