Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write your chosen identifying number on every page.
- 5. Do not write your name anywhere on your exam.
- 6. Write only on one side each page of paper, and start each question on a new page.
- 7. Clearly label each part of each question with the question number and the part, e.g., 1(a).
- 8. You must show your work to receive credit.
- 9. While the eight questions are equally weighted, within a given question, the parts may have different weights.
- 10. Do not write too near the upper left corner of the page where the pages will be stapled together.

- 1. Suppose $\mathbf{X}|\boldsymbol{\theta} \sim N(\boldsymbol{\theta}, \mathbf{I}_p)$, and $\boldsymbol{\theta}$ has the $N(\mathbf{0}, \tau^2 \mathbf{I}_p)$ prior. Note that the posterior distribution of $\boldsymbol{\theta}$ given $\mathbf{X} = \mathbf{x}$ is $N((1-B)\mathbf{x}, (1-B)\mathbf{I}_p)$, where $B = (1+\tau^2)^{-1}$.
 - (a) Show that the Bayes estimator of $\boldsymbol{\theta}$ under the squared error loss $L(\boldsymbol{\theta}, \mathbf{a}) = (\boldsymbol{\theta} \mathbf{a})^T (\boldsymbol{\theta} \mathbf{a})$ is given by $\hat{\boldsymbol{\theta}}_B(\mathbf{X}) = (1 B)\mathbf{X}$.
 - (b) A general empirical Bayes estimator of $\boldsymbol{\theta}$ is given by $\hat{\boldsymbol{\theta}}_{EB}(\mathbf{X}) = (1 \hat{B}(S))\mathbf{X}$, where $S = \sum_{i=1}^{p} X_i^2$, and $\hat{B}(S)$ (purported to estimate B) depends on \mathbf{X} only through S. For any general estimator \mathbf{e} of $\boldsymbol{\theta}$, let $r(\mathbf{e})$ denote its Bayes risk under the given likelihood, the prior and the given loss. Show that $r(\hat{\boldsymbol{\theta}}_{EB}) = r(\hat{\boldsymbol{\theta}}_B) + E[(\hat{B}(S) B)^2 S]$.
 - (c) The relative savings loss (RSL) of $\hat{\theta}_{EB}$ with respect to **X** is defined by

$$RSL(\boldsymbol{\theta}_{EB}, \mathbf{X}) = [r(\boldsymbol{\theta}_{EB}) - r(\boldsymbol{\theta}_{B})] / [r(\mathbf{X}) - r(\boldsymbol{\theta}_{B})].$$

Show that $\operatorname{RSL}(\hat{\boldsymbol{\theta}}_{EB}, \mathbf{X}) = (pB)^{-1}E[(\hat{B}(S) - B)^2 S].$

- (d) The James-Stein empirical Bayes estimator of $\boldsymbol{\theta}$ has $\hat{B}(S) = (p-2)/S$, $(p \ge 3)$. Show that for this particular empirical Bayes estimator, the RSL expression given in (c) simplifies to 2/p.
- **2.** Let X_1, \ldots, X_n be iid Bin $(1, \theta)$. Then the MLE of $\theta(1 \theta)$ is given by (you need not derive) $T_n = \bar{X}_n(1 \bar{X}_n)$, where $\bar{X}_n = \sum_{i=1}^n X_i/n$.
 - (a) Show that for $\theta \neq \frac{1}{2}$, $n^{1/2}[T_n \theta(1-\theta)] \xrightarrow{d} N(0, h(\theta))$, where $h(\theta) = (1-2\theta)^2 \theta(1-\theta)$.
 - (b) Show that when $\theta = \frac{1}{2}$, $n(T_n \frac{1}{4}) \xrightarrow{d} -\frac{1}{4}\chi_1^2$.
 - (c) For $n \ge 2$, the UMVUE of $\theta(1-\theta)$ is given by (you need not derive) $S_n = \frac{n}{n-1}T_n$. Show that $n^{1/2}(S_n T_n) \to 0$ in probability as $n \to \infty$.
- 3. Consider the random one-way model,

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, 2, \dots, k; \ j = 1, 2, \dots, n,$$

where $\alpha_i \sim N(0, \sigma_{\alpha}^2)$, $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$, and the α_i 's and the ϵ_{ij} 's are mutually independent.

- (a) Obtain a (1α) 100% confidence interval on $n \sigma_{\alpha}^2 + \sigma_{\epsilon}^2$.
- (b) Obtain a (1α) 100% confidence interval on the ratio $\sigma_{\alpha}^2 / \sigma_{\epsilon}^2$.
- (c) Use parts (a) and (b) to obtain an exact confidence region on $(\sigma_{\epsilon}^2, \sigma_{\alpha}^2)$ with a confidence coefficient $\geq 1 2\alpha$.
- (d) Use the result in (c) to obtain exact simultaneous confidence intervals on σ_{α}^2 and σ_{ϵ}^2 with a joint confidence coefficient $\geq 1 2\alpha$.
- (e) Assume now that the above model is unbalanced, that is, $j = 1, 2, ..., n_i$, i = 1, 2, ..., k. All the assumptions made earlier regarding the random effects remain valid here. Let SS_A be the sum of squares associated with α_i in the model. What distribution does SS_A have? Please be specific giving all the necessary details.

4. Consider the general balanced model,

$$\mathbf{y} = \mathbf{Xg} + \mathbf{Zh},$$

where $\mathbf{Xg} = \sum_{i=0}^{\nu-p} \mathbf{H}_i \boldsymbol{\beta}_i$ is fixed and $\mathbf{Zh} = \sum_{i=\nu-p+1}^{\nu+1} \mathbf{H}_i \boldsymbol{\beta}_i$ is random, $0 \leq p \leq \nu$; the $\boldsymbol{\beta}_i$'s are mutually independent such that $\boldsymbol{\beta}_i \sim N(\mathbf{0}, \sigma_i^2 \mathbf{I}_{c_i}), i = \nu - p + 1, \nu - p + 2, \dots, \nu + 1$. Let \mathbf{P}_i be the matrix corresponding to the i^{th} sum of squares in the model whose rank in m_i , $(i = 0, 1, \dots, \nu + 1)$.

- (a) Suppose that $\lambda' \mathbf{g}$ is an estimable linear function of \mathbf{g} . What is its B.L.U.E? (just give the expression). Can you compute this B.L.U.E without knowing the model's variance components?
- (b) Show that $[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}' \sum_{i=0}^{\nu-p} \mathbf{P}_i]\mathbf{X} = \mathbf{0}.$
- (c) Show that $m_i = \operatorname{rank}(\mathbf{P}_i \mathbf{X})$ for $i = 0, 1, \dots, \nu p$.
- (d) Show that $\operatorname{rank}(\sum_{i=0}^{\nu-p} \mathbf{P}_i) = \sum_{i=0}^{\nu-p} m_i$.
- (e) Show that rank(\mathbf{X}) = $\sum_{i=0}^{\nu-p} m_i$.
- 5. Let $\{X_n, n \ge 1\}$ be a sequence of independent nonnegative random variables and let $\{Y_n, n \ge 1\}$ be a sequence of random variables such that Y_n and X_n are identically distributed for each $n \ge 1$. Prove that if

$$\sum_{n=1}^{\infty} X_n < \infty \quad \text{a.c.},$$

then

$$\sum_{n=1}^{\infty} Y_n < \infty \quad \text{a.c.}$$

6. Let $\{X_n, n \ge 1\}$ be a sequence of independent \mathcal{L}_2 random variables with $EX_n = 0, n \ge 1$. Set $s_n^2 = \sum_{j=1}^n EX_j^2, n \ge 1$, and suppose that $s_n^2 \to \infty$. Prove that if

$$\lim_{n \to \infty} \frac{X_n}{s_n} = 0 \quad \text{a.c.} \tag{6.1}$$

and

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{j=1}^n E(X_j^2 I_{[|X_j| > \varepsilon_0 s_j]}) = 0 \quad \text{for some } \varepsilon_0 \in (0, \infty), \tag{6.2}$$

then

$$\frac{\sum_{j=1}^{n} X_j}{s_n} \xrightarrow{d} N(0,1) \tag{6.3}$$

and

$$\frac{\max_{1 \le j \le n} |X_j|}{s_n} \to 0 \quad \text{a.c.} \tag{6.4}$$

7. Suppose that Y_1, \ldots, Y_n are independent, and satisfy $E\psi(Y_i; \beta, x_i) = 0$, $i = 1, \ldots, n$, for some known function ψ and "true" but unknown value of β . An M-estimator $\hat{\beta}$ of β is a solution of the system of equations

$$\sum_{i=1}^{n} \psi(y_i; oldsymbol{eta}, oldsymbol{x}_i) = oldsymbol{0}$$

Under appropriate regularity conditions, $\hat{\boldsymbol{\beta}}$ is approximately normally distributed with mean $\boldsymbol{\beta}$ and covariance matrix $n^{-1}V_n$, where V_n is the so-called "sandwich matrix" $V_n = A_n^{-1}B_nA_n^{-T}$, with

$$A_n = -\frac{1}{n} \sum_{i=1}^n E\left[\boldsymbol{\psi}'(y_i;\boldsymbol{\beta}, \boldsymbol{x}_i)\right] \quad \text{and} \quad B_n = \frac{1}{n} \sum_{i=1}^n E\left[\boldsymbol{\psi}(Y_i;\boldsymbol{\beta}, \boldsymbol{x}_i)\boldsymbol{\psi}(Y_i;\boldsymbol{\beta}, \boldsymbol{x}_i)^T\right],$$

where $\psi'(y; \boldsymbol{\beta}, \boldsymbol{x}) = \partial \psi(y; \boldsymbol{\beta}, \boldsymbol{x}) / \partial \boldsymbol{\beta}^T = (\partial \psi_j(y; \boldsymbol{\beta}, \boldsymbol{x}) / \partial \beta_k)_{1 \leq j,k \leq p}$. (You are free to use these results in the remainder of this problem if you need them.)

Now, suppose in particular that $\hat{\beta}$ is the solution in β to the system of equations

$$\sum_{i=1}^{n} \frac{w_i(y_i - \mu_i)}{V(\mu_i)g'(\mu_i)} \boldsymbol{x}_i = \boldsymbol{0}, \qquad g(\mu_i) = \boldsymbol{x}_i^T \boldsymbol{\beta}, \quad i = 1, \dots, n,$$
(7.1)

where $w_1, \ldots, w_n > 0$ are known weights, $g(\mu)$ is a smooth, strictly monotone link function, and $V(\mu)$ is a smooth, strictly positive "working variance function."

(a) Assuming that $\mu_i = E(Y_i)$ satisfies

$$g(\mu_i) = \boldsymbol{x}_i^T \boldsymbol{\beta},\tag{7.2}$$

for all i = 1, ..., n, show that $\hat{\beta}$ is approximately normally distributed (you are not required to specify any regularity conditions) with mean β and covariance matrix $n^{-1}V_n = n^{-1}A_n^{-1}B_nA_n^{-T}$, and show that the factors of the sandwich matrix V_n have the form $A_n = n^{-1}X^T\Omega X$ and $B_n = n^{-1}X^T\Omega^* X$. Give the form of Ω and Ω^* .

- (b) Assuming that (7.2) holds, suggest a consistent estimator of V_n (in the sense that $\hat{V}_n V_n \xrightarrow{P} 0$). Just give the estimator; you do not have to prove that it is consistent nor specify any regularity conditions.
- (c) In a quasi-likelihood analysis, one assumes in addition to (7.2) that

$$\operatorname{Var}(Y_i) = \frac{\phi}{w_i} V(\mu_i), \quad i = 1, \dots, n.$$
(7.3)

Show that V_n takes a particularly simple form in this case.

(d) Assuming that both (7.2) and (7.3) hold, give a consistent estimator of ϕ . Just give the estimator; you do not have to prove that it is consistent nor specify any regularity conditions.

- 8. The standard Cauchy (or Cauchy(0,1)) distribution has density $f(u) = \frac{1}{\pi} \frac{1}{1+u^2}, -\infty < u < \infty$, cumulative distribution function $F(u) = \frac{1}{2} + \frac{1}{\pi} \arctan(u)$, and characteristic function $\varphi(t) = e^{-|t|}$. If U has a standard Cauchy distribution, then the distribution of $\sigma U + \mu$, where $-\infty < \mu < \infty$, and $\sigma > 0$, is known as a Cauchy distribution with location parameter (median) μ and scale parameter σ . Denote this distribution by the notation Cauchy(μ, σ).
 - (a) If U_1 and U_2 are independent random variables, $U_i \sim \text{Cauchy}(\mu_i, \sigma_i)$, i = 1, 2, and a_1 and a_2 are real numbers, what is the distribution of $a_1U_1 + a_2U_2$? Justify (prove) your answer.
 - (b) Suppose that Y is a binary response following a generalized linear mixed model (GLMM) for E(Y|U) (i.e., $g(E(Y|U)) = \eta$) with link function $g = F^{-1}$ (where F is the cdf of the Cauchy(0,1) distribution as given above) and linear predictor $\eta = x^T \beta + z^T U$, where $x \in \mathbb{R}^p$ and $z \in \mathbb{R}^q$ are known covariates, $\beta \in \mathbb{R}^p$ is a vector of regression parameters, and $U = (U_1, \ldots, U_q)$ is a vector of independent random variables, $U_i \sim \text{Cauchy}(0, \sigma_i)$, $i = 1, \ldots, q$. Show that the marginal model for Y is a GLM, identify its link function, and express its coefficient vector in terms of the elements of the GLMM. (In other words, show that $g^*(E(Y)) = x^T \beta^*$ for some link function g^* and vector of regression coefficients β^* , specifying the function g^* and giving a formula for the elements of β^* in terms of β , z, and $\sigma_1, \ldots, \sigma_q$).