
Department of Statistics
Ph.D. Qualifying Examination

August 19, 2005

Instructions:

1. You have exactly four hours to answer questions in this examination.
2. There are 8 problems of which you must answer 6.
3. Only the first 6 problems will be graded.
4. Write only on one side of the paper, and start each question on a new page.
5. Clearly label each part of each question with the question number and the part, e.g., 1(a).
6. Write your number on each page.
7. Do not write your name anywhere on your exam.
8. You must show your work to receive credit.
9. While the eight questions are equally weighted, within a given question, the parts may have
different weights.
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1. Assume z ∼ N(0, σ2In). Provide complete theoretical development for the following
problems:

a. Let A be a matrix of full row rank. Derive the distribution of x = Az + b, where b is
a vector of constants.

b. Derive the mgf of y = xT Bx, where B is a given symmetric matrix.

c. Derive E(y).

2. Assume yijk = µ + αi + cij + βj + eijk, i = 1, 2, 3, 4, 5, j = 1, 2, 3, and k = 1, 2, where µ,
αi and βj are constants, cij ∼ NID(0, σ2

c ) and eijk ∼ NID(0, σ2
e). Denote

yT = (y111, y112, y121, y122, y131, y132, · · · , y511, y512, y521, y522, y531, y532).

a. Write an expression for E(y).

b. Write an expression for Σ = V(y).

c. Write an ANOVA table, including Source of variation, df, SS, MS, and EMS.

d. Set up a test statistic for testing H0 : α1 = α2 = α3 = α4 = α5.

e. Justify the motivation for the test statistic in (d), giving complete theoretical details.

3. Suppose that Y1, Y2, ..., YN are independent observations from the exponential dispersion
family,

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)}.

a. Let `i = logf(yi; θi, φ). Show that µi = E(Yi) = b′(θi).

b. Using −E
(

∂2`
∂θ2

)

= E
(

∂`
∂θ

)2
, show that Var(Yi) = b′′(θi)a(φ).

c. Using all N observations, find an expression for the log likelihood function.

d. Now suppose you specify a generalized linear model ηi = g(µi) =
∑

j xijβj , and you
use the canonical link function. Subsitute the model into the log likelihood function and
identify the sufficient statistics for estimating the model parameters.

e. The likelihood equations for a generalized linear model are

N
∑

i=1

(yi − µi)xij

Var(Yi)

dµi

dηi
= 0, j = 1, · · · , p.

Explain how the choice of link function for the GLM affects the likelihood equations and
the asymptotic variance of the parameter estimates.

4. a. Explain what is meant by quasi-likelihood methods. For a univariate response, how is
quasi-likelihood inference different from maximum likelihood inference? When are they
equivalent?

b. Give an example of a situation with count data in which quasi-likelihood methods
might be useful. Define the model, explain how the analysis would differ from maximum
likelihood with a standard Poisson regression model, and explain how to implement the
quasi-likelihood method.
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c. Refer to the previous part. Specify an alternative parametric model that, like quasi
likelihood, allows a departure from a standard Poisson model for count data.

d. Now suppose the response is multivariate, as in a longitudinal study. Explain the sense
in which generalized estimating equations (GEE) methodology is a multivariate version
of quasi likelihood. Summarize the basic elements of that approach.

5. Let X1, · · · , Xn be iid uniform(0, θ], where θ(> 0) is unknown.
a. Find the maximum likelihood estimator of θ.
b. Find the generalized likelihood ratio test (GLRT) for testing H0 : θ = θ0 against the
alternatives H : θ 6= θ0.
c. Show that −2logeλ has an exact chi-squared distribution under H0, where λ denotes
the GLRT criterion.
d. Find the power function of the GLRT.

6. Let X and Z be two p(≥ 3)-component vectors such that conditionally on θ, X and Z are
iid N(θ, Ip). Here θ ∈ Rp (the p-dimensional Euclidean space). The objective is to predict
Z on the basis of X. Throughout we assume squared error loss, i.e. L(Z, a) = ||Z−a||2.
a. Consider the sequence {πm, m ≥ 1} of priors for θ, where πm is N(0, mIp). Show that
the predictive distribution of Z given X (i.e. the conditional distribution of Z given X)
under the prior πm is N((1 − Bm)X, (2 − Bm)Ip), where Bm = (1 + m)−1.
b. Show that (1 − Bm)X is the Bayes predictor of Z under the prior πm.
c. Show that X is a minimax predictor of Z.
d. Show that the frequentist risk (i.e. conditional on θ) of the Stein predictor (1− p−2

||X ||2
)X

of Z is smaller than that of X. [NOTE: You need not explicitly calculate the risk of this
predictor.]

7. Let Sn =
∑n

i=1
Xi, n ≥ 1 where {Xn, n ≥ 1} is a sequence of independent mean 0 random

variables and let {λn, n ≥ 1} be a bounded sequence of positive constants. Suppose that
Xi ∈ L2+λn

, 1 ≤ i ≤ n, n ≥ 1. Prove that if

n
∑

i=1

E|Xi|
2+λn = o(s2+λn

n ),

where s2
n =

∑n
i=1

EX2
i , n ≥ 1, then

Sn

sn

d
→ N(0, 1).

Be sure to point out where and how you use the boundedness assumption regarding
{λn, n ≥ 1}.

8. Let Sn =
∑n

i=1
Xi, n ≥ 1 where {Xn, n ≥ 1} is a sequence of independent random

variables and let {bn, n ≥ 1} be a sequence of positive constants with bn ↑ ∞.

a. Prove that if Sn

bn
→ 0 almost certainly, then

max1≤j≤n |Sj |
bn

→ 0 almost certainly.

b. Prove that if Sn

bn

P
→ 0, then

max1≤j≤n|Sj |
bn

P
→ 0.
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