Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write only on one side of the paper, and start each question on a new page.
- 5. Clearly label each part of each question with the question number and the part, e.g., **1(a)**.
- 6. Write your **number** on every page.
- 7. Do not write your name anywhere on your exam.
- 8. You must show your work to receive credit.
- 9. While the eight questions are equally weighted, within a given question, the parts may have different weights.

- **1.** Let X_1, \dots, X_n be iid with common pdf (or pf) $f_{\theta}(x) = \exp[\theta x \psi(\theta)]h(x)$, where $\theta \in \Theta$, some open interval in the real line.
 - (a) Find the MLE $\hat{\theta}_n$ of θ .
 - (b) Find $E_{\theta}(X_1)$ and $V_{\theta}(X_1)$.
 - (c) Find the asymptotic distribution of some suitably normalized \bar{X}_n , where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.
 - (d) Using the delta method, find the asymptotic distribution of some suitably normalized $\hat{\theta}_n$.
 - (e) Find the UMP test for $H_0: \theta \leq \theta_0$ against the alternatives $H_1: \theta > \theta_0$.
- **2.** (a) Suppose $X \sim Bin(1, p)$, where $p \in [0, 1]$. Assume squared error loss.
 - (i) Show that $\frac{1}{2}X + \frac{1}{4}$ is a Bayes estimator of p with constant risk $\frac{1}{16}$.
 - (ii) Show that $\frac{1}{2}X + \frac{1}{4}$ is an admissible estimator of p.
 - (b) Let X_{11} , X_{12} , X_{21} , X_{22} have a joint multinomial $(1; \theta/3, (1-\theta)/3, (1-\theta)/3, (1+\theta)/3)$ distribution, where $\theta \in [0, 1]$. Note that exactly one of the X_{ij} is 1, and the rest are zeroes. Assume squared error loss.
 - (i) Show that conditional on $X_{11} + X_{21} = 1$, $\frac{3}{4}X_{11} + \frac{1}{4}X_{21}$ is an admissible estimator of θ .
 - (ii) Show that conditional on $X_{12} + X_{22} = 1$, $\frac{1}{2}(X_{22} X_{12})$ is an admissible estimator of θ .
 - (iii) Show that $T = \frac{3}{4}X_{11} + \frac{1}{4}X_{21} + \frac{1}{2}(X_{22} X_{12})$ is an admissible estimator of θ conditional on either $X_{11} + X_{21} = 1$ or $X_{12} + X_{22} = 1$.
 - (iv) Show that T has constant risk 3/16.
 - (v) Show that the estimator $S = \frac{3}{4}X_{11} \frac{1}{8}(X_{12} + X_{21}) + \frac{1}{2}X_{22}$ of θ has risk $\frac{3}{32}(1 + \theta)$, and hence, dominates T as an estimator of θ .
- **3.** Let $\{Y_n, n \ge 1\}$ be a sequence of independent, nonnegative random variables and suppose that $\sum_{n=1}^{\infty} Y_n$ converges almost certainly. Let $\{X_n, n \ge 1\}$ be a sequence of random variables with X_n and Y_n having the same distribution for each $n \ge 1$.
 - (a) Prove that $\sum_{n=1}^{\infty} X_n$ converges almost certainly irrespective of the joint distributions of the $\{X_n, n \ge 1\}$.
 - (b) Demonstrate, by providing an example of sequences of random variables $\{Y_n, n \ge 1\}$ and $\{X_n, n \ge 1\}$, that part (a) can fail if the assumption that the $\{Y_n, n \ge 1\}$ are nonnegative is dispensed with.
- **4.** Let $\{X_n, n \ge 1\}$ be a sequence of independent, mean 0, \mathcal{L}_2 random variables and let $S_n = \sum_{j=1}^n X_j$ and $s_n^2 = \sum_{j=1}^n EX_j^2$, $n \ge 1$. Prove that if $s_n^2 \to \infty$, $EX_n^2 = o(s_n^2)$, and $\frac{S_n}{s_n} \xrightarrow{d} N(0, 1)$, then

$$\frac{\max_{1\leq j\leq n}|X_j|}{s_n}\xrightarrow{P}0.$$

- **5.** Suppose that $\boldsymbol{u} \sim N(\boldsymbol{\mu}, \boldsymbol{I}_k)$ with $\boldsymbol{\mu} \neq \boldsymbol{0}$. Let $W = \boldsymbol{u}'\boldsymbol{u}$. It is known that W is distributed as $\chi'_k{}^2(\lambda)$, where $\lambda = \frac{1}{2}\boldsymbol{\mu}'\boldsymbol{\mu}$, and $\chi'_k{}^2(\lambda)$ denotes the noncentral chi-squared distribution with k degrees of freedom and a noncentrality parameter λ .
 - (a) Show that W can be written as

$$W = W_1 + W_2$$

where W_1 and W_2 are independently distributed such that $W_1 \sim {\chi'_1}^2(\lambda)$, $W_2 \sim \chi^2_{k-1}$.

- (b) Let $Y_1 = e^{W_1}$. Give an approximate expression for the variance of Y_1 using the *Delta Method*.
- 6. Consider the one-way model,

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij},$$

 $i = 1, 2, ..., k; j = 1, 2, ..., n_i$, where α_i is fixed and the ϵ_{ij} are independently distributed as normal variates with zero means and variances σ_i^2 (i = 1, 2, ..., k).

It is assumed that the σ_i^2 are known, but are not equal. Let $\mu_i = \mu + \alpha_i$ be the mean of the *i*th treatment, and let $\psi_c = \sum_{i=1}^k c_i \mu_i$ be a linear function of the μ_i , where c_1, c_2, \ldots, c_k are constants.

(a) Show that the simultaneous $(1 - \alpha)100\%$ confidence intervals on all linear functions of the μ_i of the form ψ_c are given by

$$\hat{\psi}_{c} \pm \left[\chi_{\alpha,k}^{2} \sum_{i=1}^{k} \frac{c_{i}^{2} \sigma_{i}^{2}}{n_{i}}\right]^{1/2}$$

where $\hat{\psi}_c = \sum_{i=1}^k c_i \bar{y}_i$, and \bar{y}_i is the sample mean of treatment i (i = 1, 2, ..., k), and $\chi^2_{\alpha, k}$ is the upper α -quantile of the chi-squared distribution with k degrees of freedom.

- (b) Suppose now that the σ_i^2 are unknown. Show how you can obtain an exact $(1 \alpha)100\%$ confidence region on the vector $(\sigma_1^2, \sigma_2^2, \dots, \sigma_k^2)$.
- 7. Recall that distributions in an exponential dispersion family have densities of the form

$$f(y;\theta,\phi) = \exp\left\{\frac{1}{\phi} \left[\theta y - b(\theta)\right] + c(y;\phi)\right\},\tag{*}$$

for $\theta \in \Theta \subset \mathbb{R}$ and $1/\phi \in \Lambda \subset \mathbb{R}$. In a generalized linear model (GLM), we assume that Y_1, \ldots, Y_n are independent and that Y_i has density $f(y; \theta_i, \phi/w_i)$, where f has the form (*) and w_1, \ldots, w_n are known weights. This defines the random, or stochastic part of the GLM.

- (a) Describe the systematic part of the GLM relating the mean $\mu_i = E(Y_i)$ to the vector \mathbf{x}_i of predictor values for the *i*th observation.
- (b) Derive the maximum likelihood estimating equations (score equations) for the vector of regression coefficients $\boldsymbol{\beta}$.
- (c) Derive the form of the elements of the "observed" and "expected" Fisher information matrices for $\boldsymbol{\beta}$. Express the expected Fisher information matrix in matrix form.
- (d) What is the canonical link function for the density given in (*)? Show that if ϕ is known and the canonical link is used, then there is a simple sufficient statistic for the vector of regression parameters, β , and give its form. Show also that the score equations and the observed Fisher information for β can be simplified when the canonical link is used and give the simplified forms.

- 8. The standard Cauchy (or Cauchy(0, 1)) distribution has density $f(u) = \frac{1}{\pi} \frac{1}{1+u^2}$, $-\infty < u < \infty$, cumulative distribution function $F(u) = \frac{1}{2} + \frac{1}{\pi} \arctan(u)$, and characteristic function $\varphi(t) = e^{-|t|}$. If U has a standard Cauchy distribution, then the distribution of $\sigma U + \mu$, where $-\infty < \mu < \infty$, and $\sigma > 0$, is known as a Cauchy distribution with location parameter (median) μ and scale parameter σ . We will denote this distribution by the notation Cauchy(μ, σ).
 - (a) If U_1 and U_2 are independent random variables, $U_i \sim \text{Cauchy}(\mu_i, \sigma_i)$, i = 1, 2, and a_1 and a_2 are real numbers, what is the distribution of $a_1U_1 + a_2U_2$? Justify (prove) your answer.
 - (b) Suppose that Y is a binary response following a generalized linear mixed model (GLMM) for E(Y|U), with link function g = F⁻¹ (where F is the cdf of the Cauchy(0, 1) distribution as given above) and linear predictor η = x^Tβ + z^TU, where x ∈ ℝ^p and z ∈ ℝ^q are known covariates, β ∈ ℝ^p is a vector of regression parameters, and U = (U₁, ..., U_q) is a vector of independent random variables with U_i ~ Cauchy(0, σ_i), i = 1, ..., q. Show that the marginal model for Y is a GLM, identify its link function, and express its coefficient vector in terms of the elements of the GLMM. In this context, what general statement can you make about the effect of a change in x_i on the marginal mean E(Y) versus its effect on the conditional mean E(Y|U)?