Instructions:

1. You have exactly four hours to answer questions in this examination.
2. There are 8 problems of which you must answer 6.
3. Only your first 6 problems will be graded.
4. Write only on one side of the paper, and start each question on a new page.
5. Write your number on every page.
6. Do not write your name anywhere on your exam.
7. You must show your work to receive credit.
8. While the eight questions are equally weighted, within a given question, the parts may have different weights.
1. Suppose that X has a binomial distribution with m trials and probability μ.

 (a) Express the binomial mass function in exponential form in terms of the canonical parameter $\theta = \text{logit}(\mu)$.

 (b) Derive the deviance measure of fit $D(y, \mu)$ for the binomial model, where $Y = X/m$.

 (c) Show that the deviance can be approximated by the Pearson chisquared statistic, χ^2, if m is large, where

 $$\chi^2 = \frac{m(Y - \mu)^2}{\mu(1 - \mu)}.$$

 (d) Suppose that $X_i \sim B(m_i, \mu_i), i = 1, \ldots, n$, independently, and that the success probabilities satisfy a linear logistic model. Let $H_0 \subset H_1$ be nested hypotheses. Show that the corresponding model deviances satisfy the Pythagorean relationship

 $$D(y, \hat{\mu}_0) = D(y, \hat{\mu}_1) + D(\hat{\mu}_1, \hat{\mu}_0),$$

 where $y = (y_1, \ldots, y_n)$ is the vector of observed proportions, and $\hat{\mu}_0$ and $\hat{\mu}_1$ are the vectors of fitted proportions under H_0 and H_1 respectively.

2. Suppose that $X \sim B(m, \mu)$ where $\mu = e^\theta/(1 + e^\theta)$, and let Z be defined by the equation $X = m\mu + \sqrt{m\mu(1 - \mu)}Z$.

 (a) Show that for $c > 0$

 $$E\left\{\log \frac{X + c}{m\mu}\right\} = \frac{c}{m\mu} - \frac{1 - \mu}{2m\mu} + O(m^{-3/2}).$$

 (b) Find the corresponding expansion for

 $$E\left\{\log \frac{m - X + c}{m(1 - \mu)}\right\}.$$

 (c) Consider the estimate

 $$\hat{\theta} = \log \frac{X + c}{m - X + c}.$$

 Show that

 $$E(\hat{\theta}) = \theta + \frac{(1 - 2\mu)(c - \frac{1}{2})}{m\mu(1 - \mu)} + O(m^{-3/2}).$$

 (d) Show that the expected value of the corresponding ML estimate, $\hat{\theta}$, does not converge to θ as m increases.
3. Consider the unbalanced random one-way model

\[y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \]

where \(\alpha_i \) and \(\epsilon_{ij} \) are independently distributed such that \(\alpha_i \sim N(0, \sigma^2_\alpha) \) and \(\epsilon_{ij} \sim N(0, \sigma^2_\epsilon) \), \(i = 1, 2, \cdots, a; j = 1, 2, \cdots, n_i \). Let \(\text{SS}_\alpha \) be the sum of squares,

\[\text{SS}_\alpha = \sum_{i=1}^a \frac{y_i^2}{n_i} - \frac{y^2}{n}, \]

where \(n = \sum_{i=1}^a n_i \).

(a) Write \(\text{SS}_\alpha \) as \(y'yA y \), indicating what the matrix \(A \) is, where \(y \) is the vector of all observations.

(b) Make use of part (a) to show that \(E(\text{SS}_\alpha) = (n - 1) \sum_{i=1}^a n_i^2 \sigma^2_\alpha + (a - 1) \sigma^2_\epsilon \)

(c) What distribution does \(\text{SS}_\alpha \) have if

(i) \(\sigma^2_\alpha = 0 \)

(ii) \(\sigma^2_\alpha \neq 0 \)

(d) Show that \(\text{SS}_\alpha \) and \(\text{SS}_E \), the residual sum of squares, are independent.

(e) Show how to obtain the expected value of \(\frac{\text{SS}_\alpha}{\text{SS}_E} \).

4. Consider the balanced mixed model

\[y_{ijk} = \mu + \alpha(i) + \beta(j) + \gamma(i)(k) + (\alpha\beta)(ij) + \epsilon(ijk), \]

\(i = 1, 2, \cdots, a; j = 1, 2, \cdots, b; k = 1, 2, \cdots, c \), where \(\alpha(i) \) and \(\beta(j) \) are fixed unknown parameters representing the \(i \)th level of factors A and B, respectively, and \(\gamma(i)(k) \) and \(\epsilon(ijk) \) are distributed independently as \(N(0, \sigma^2_{\gamma(i)}) \) and \(N(0, \sigma^2_\epsilon) \), respectively.

(a) Derive a test statistic for testing each of the following hypotheses:

(i) \(H_0: \alpha(i) = 0 \) for all \(i \).

(ii) \(H_0: \beta(j) = 0 \) for all \(j \).

Please specify the distribution and degrees of freedom of the test statistic under \(H_0 \) in each case.

(b) Show how to obtain an exact confidence interval on \(\theta = \sigma^2_{\gamma(i)} + \sigma^2_\epsilon \), with a confidence coefficient greater than or equal to 0.95.

(c) Suppose that the interaction A*B is significant and therefore it is necessary to test each factor at fixed levels of the other factor.

(i) Give a test statistic that can be used to compare the means of two levels of A (say \(i \) and \(i' \)) at the fixed level \(j \) of B.

(ii) Give a test statistic that can be used to compare the means of two levels of B (say \(j \) and \(j' \)) at the fixed level \(i \) of A.

In each case, please describe the null distribution of the test statistic.

(d) What is the best linear unbiased estimator of the least-squares mean for level \(i \) of A?
5. Let $X_i (i = 1, \ldots, m)$ and $Y_j (j = 1, \ldots, n)$ be mutually independent with the X_i iid $N(\theta_1, \sigma_1^2)$, and the Y_j iid $N(\theta_2, \sigma_2^2)$, where $\theta_k \in (-\infty, \infty)$ $(k = 1, 2)$ are unknown. Consider estimation of $\Delta = \theta_2 - \theta_1$ under squared error loss. Define $\bar{X} = m^{-1} \sum_{i=1}^{m} X_i$ and $\bar{Y} = n^{-1} \sum_{j=1}^{n} Y_j$.

(a) Assume $\sigma_k^2 (> 0)$ $(k = 1, 2)$ to be known. Consider independent $N(0, \tau_1^2)$ and $N(0, \tau_2^2)$ priors for θ_1 and θ_2 respectively. Show that the Bayes estimator of Δ is given by $(1 - B_2) \bar{Y} - (1 - B_1) \bar{X}$, where $B_1 = \sigma_1^2 / (\sigma_1^2 + m\tau_1^2)$ and $B_2 = \sigma_2^2 / (\sigma_2^2 + n\tau_2^2)$.

(b) If σ_k^2 $(k = 1, 2)$ are known, show that $\bar{Y} - \bar{X}$ is a minimax estimator of Δ.

(c) Suppose now σ_k^2 $(k = 1, 2)$ are unknown, but $\sigma_k^2 \leq A_k$ $(k = 1, 2)$, where $A_k (> 0)$ $(k = 1, 2)$ are known. Show that $\bar{Y} - \bar{X}$ continues to be a minimax estimator of Δ.

6. (a) Let X_1, \ldots, X_n be iid from the distribution with pdf given by

$$f_{\mu}(x) = \frac{1}{(2\pi x^3)^{1/2}} \exp\left[-\frac{(x - \mu)^2}{2\mu^2 x}\right],$$

where $x > 0$ and $\mu > 0$. Show that the family of pdf’s has monotone likelihood ratio in $\sum_{i=1}^{n} X_i$.

(b) Consider a discrete random variable X assuming values 1, 2 and 3 with pf’s p_0 and p_1 under H_0 and H_1 given by

\[
\begin{array}{ccc}
 x & 1 & 2 & 3 \\
 p_0(x) & .0001 & .0500 & .9499 \\
 p_1(x) & .0100 & .1000 & .8900 \\
\end{array}
\]

(i) Find the MP size .05 test for testing H_0 against H_1.

(ii) The three possible nonrandomized tests at level (NOT size) .05 are given by (1) never reject, (2) reject iff $x = 1$ and (3) reject iff $x = 2$. Find the optimal among these three tests.

(iii) Comment on the result found in (ii).

7. Suppose that $\{X_n, n \geq 1\}$ is a sequence of identically distributed random variables with finite mean.

(a) Prove that

$$\frac{1}{n} \max_{1 \leq j \leq n} |X_j| \rightarrow 0 \text{ a.s.}$$

(b) Prove that

$$\lim_{n \rightarrow \infty} E\left[\frac{1}{n} \max_{1 \leq j \leq n} |X_j|\right] = 0.$$