Department of Statistics University of Florida

Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write only on one side of the paper, and start each question on a new page.
- 5. Write your **number** on every page.
- 6. Do not write your name anywhere on your exam.
- 7. You must show your work to receive credit.
- 8. While the eight questions are equally weighted, within a given question, the parts may have different weights.

- 1. Suppose that X has a binomial distribution with m trials and probability μ .
 - (a) Express the binomial mass function in exponential form in terms of the canonical parameter $\theta = \text{logit}(\mu)$.
 - (b) Derive the deviance measure of fit $D(y, \mu)$ for the binomial model, where Y = X/m.
 - (c) Show that the deviance can be approximated by the Pearson chisquared statistic, χ^2 , if m is large, where

$$\chi^2 = \frac{m(Y-\mu)^2}{\mu(1-\mu)}$$

(d) Suppose that $X_i \sim B(m_i, \mu_i)$, i = 1, ..., n, independently, and that the success probabilities satisfy a linear logistic model. Let $H_0 \subset H_1$ be nested hypotheses. Show that the corresponding model deviances satisfy the Pythagorean relationship

$$D(\mathbf{y}, \hat{oldsymbol{\mu}}_0) = D(\mathbf{y}, \hat{oldsymbol{\mu}}_1) + D(\hat{oldsymbol{\mu}}_1, \hat{oldsymbol{\mu}}_0)$$
 ,

where $\mathbf{y} = (y_1, \ldots, y_n)$ is the vector of observed proportions, and $\hat{\boldsymbol{\mu}}_0$ and $\hat{\boldsymbol{\mu}}_1$ are the vectors of fitted proportions under H_0 and H_1 respectively.

- **2.** Suppose that $X \sim B(m,\mu)$ where $\mu = e^{\theta}/(1+e^{\theta})$, and let Z be defined by the equation $X = m\mu + \sqrt{m\mu(1-\mu)}Z$.
 - (a) Show that for c > 0

$$E\left\{\log\frac{X+c}{m\mu}\right\} = \frac{c}{m\mu} - \frac{1-\mu}{2m\mu} + O(m^{-3/2}).$$

(b) Find the corresponding expansion for

$$E\left\{\log\frac{m-X+c}{m(1-\mu)}\right\}$$

(c) Consider the estimate

$$\tilde{\theta} = \log \frac{X+c}{m-X+c}$$

Show that

$$E(\tilde{\theta}) = \theta + \frac{(1-2\mu)(c-\frac{1}{2})}{m\mu(1-\mu)} + O(m^{-3/2}).$$

(d) Show that the expected value of the corresponding ML estimate, $\hat{\theta}$, does not converge to θ as m increases.

3. Consider the unbalanced random one-way model

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij},$$

where α_i and ϵ_{ij} are independently distributed such that $\alpha_i \sim N(0, \sigma_{\alpha}^2)$, and $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$, $i = 1, 2, \cdots, a; j = 1, 2, \cdots, n_i$. Let SS_{α} be the sum of squares,

$$SS_{\alpha} = \sum_{i=1}^{a} \frac{y_{i.}^2}{n_i} - \frac{y_{..}^2}{n_i}$$

where $n_{\cdot} = \sum_{i=1}^{a} n_i$.

- (a) Write SS_{α} as $\mathbf{y}' \mathbf{A} \mathbf{y}$, indicating what the matrix \mathbf{A} is, where \mathbf{y} is the vector of all observations.
- (b) Make use of part (a) to show that

$$E(SS_{\alpha}) = (n_{\cdot} - \frac{1}{n_{\cdot}} \sum_{i=1}^{a} n_{i}^{2})\sigma_{\alpha}^{2} + (a-1)\sigma_{\epsilon}^{2}$$

- (c) What distribution does SS_{α} have if

 - (i) $\sigma_{\alpha}^2 = 0$ (ii) $\sigma_{\alpha}^2 \neq 0$
- (d) Show that SS_{α} and SS_E , the residual sum of squares, are independent.
- (e) Show how to obtain the expected value of $\frac{SS_{\alpha}}{SS_{F}}$.
- 4. Consider the balanced mixed model

$$y_{ijk} = \mu + \alpha_{(i)} + \beta_{(j)} + \gamma_{i(k)} + (\alpha\beta)_{(ij)} + \epsilon_{i(jk)},$$

 $i = 1, 2, \dots, a; j = 1, 2, \dots, b; k = 1, 2, \dots, c$, where $\alpha_{(i)}$ and $\beta_{(j)}$ are fixed unknown parameters representing the *i*th level and *j*th level of factors A and B, respectively, and $\gamma_{i(k)}$ and $\epsilon_{i(jk)}$ are distributed independently as $N(0, \sigma_{\gamma(\alpha)}^2)$ and $N(0, \sigma_{\epsilon}^2)$, respectively.

- (a) Derive a test statistic for testing each of the following hypotheses:
 - (i) $H_0: \alpha_{(i)} = 0$ for all *i*.
 - (ii) $H_0: \beta_{(j)} = 0$ for all *j*.

Please specify the distribution and degrees fo freedom of the test statistic under H_0 in each case.

- (b) Show how to obtain an exact confidence interval on $\theta = \sigma_{\gamma(\alpha)}^2 + \sigma_{\epsilon}^2$, with a confidence coefficient greater than or equal to 0.95.
- (c) Suppose that the interaction A*B is significant and therefore it is necessary to test each factor at fixed levels of the other factor.
 - (i) Give a test statistic that can be used to compare the means of two levels of A (say i and i') at the fixed level j of B.
 - (ii) Give a test statistic that can be used to compare the means of two levels of B (say j and j') at the fixed level *i* of A.

In each case, please describe the null distribution of the test statistic

(d) What is the best linear unbiased estimator of the least-squares mean for level i of A?

- 5. Let X_i $(i = 1, \dots, m)$ and Y_j $(j = 1, \dots, n)$ be mutually independent with the X_i iid $N(\theta_1, \sigma_1^2)$, and the Y_j iid $N(\theta_2, \sigma_2^2)$, where $\theta_k \in (-\infty, \infty)$ (k = 1, 2) are unknown. Consider estimation of $\Delta = \theta_2 - \theta_1$ under squared error loss. Define $\bar{X} = m^{-1} \sum_{i=1}^m X_i$ and $\bar{Y} = n^{-1} \sum_{j=1}^n Y_j$.
 - (a) Assume $\sigma_k^2(>0)$ (k = 1, 2) to be known. Consider independent $N(0, \tau_1^2)$ and $N(0, \tau_2^2)$ priors for θ_1 and θ_2 respectively. Show that the Bayes estimator of Δ is given by $(1 B_2)\bar{Y} (1 B_1)\bar{X}$, where $B_1 = \sigma_1^2/(\sigma_1^2 + m\tau_1^2)$ and $B_2 = \sigma_2^2/(\sigma_2^2 + n\tau_2^2)$.
 - (b) If σ_k^2 (k = 1, 2) are known, show that $\overline{Y} \overline{X}$ is a minimax estimator of Δ .
 - (c) Suppose now σ_k^2 (k = 1, 2) are unknown, but $\sigma_k^2 \leq A_k$ (k = 1, 2), where $A_k(>0)$ (k = 1, 2) are known. Show that $\bar{Y} \bar{X}$ continues to be a minimax estimator of Δ .
- 6. (a) Let X_1, \dots, X_n be iid from the distribution with pdf given by $f_{\mu}(x) = (2\pi x^3)^{-1/2} \exp[-(x-\mu)^2/(2\mu^2 x)]$, where x > 0 and $\mu > 0$. Show that the family of pdf's has monotone likelihood ratio in $\sum_{i=1}^n X_i$.
 - (b) Consider a discrete random variable X assuming values 1, 2 and 3 with pf's p_0 and p_1 under H_0 and H_1 given by

\overline{x}	1	2	3
$p_0(x)$.0001	.0500	.9499
$p_1(x)$.0100	.1000	.8900

- (i) Find the MP size .05 test for testing H_0 against H_1 .
- (ii) The three possible nonrandomized tests at level (NOT size) .05 are given by (1) never reject, (2) reject iff x = 1 and (3) reject iff x = 2. Find the optimal among these three tests.
- (iii) Comment on the result found in (ii).
- 7. Suppose that $\{X_n, n \ge 1\}$ is a sequence of identically distributed random variables with finite mean.
 - (a) Prove that

$$\frac{1}{n} \max_{1 \le j \le n} |X_j| \to 0 \text{ a.s.}$$

(b) Prove that

$$\lim_{n \to \infty} E\left[\frac{1}{n} \max_{1 \le j \le n} |X_j|\right] = 0.$$

8. Let $X_n, n \ge 1$, be random variables with respective characteristic functions $\phi_n, n \ge 1$. Suppose that $\sup_{n\ge 1} E[g(X_n)] < \infty$ for some nonnegative function g satisfying $g(x) \to \infty$ as $x \to \infty$ and $g(x) \to \infty$ as $x \to -\infty$. Suppose further that $\phi_n(t) \to h(t)$ for some complex-valued function h. Prove that the sequence of random variables $\{X_n, n \ge 1\}$ converges in distribution.