PhD Qualifying Examination
Department of Statistics, University of Florida
August 23, 2002, 8:00 am - 12:00 noon

Instructions:

1. You have exactly four hours to answer questions in this examination.
2. There are 8 problems of which you must answer 6 .
3. Only your first 6 problems will be graded.
4. Write only on one side of the paper, and start each question on a new page.
5. Write your number on every page.
6. Do not write your name anywhere on your exam.
7. You must show your work to receive credit.
8. While the eight questions are equally weighted, within a given question, the parts may have different weights.

The following abbreviations are used throughout:

- ANOVA = analysis of variance
- GLM = generalized linear model
- iid = independent and identically distributed
- ML = maximum likelihood
- UMP = uniformly most powerful

1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables such that for some $\beta \in(0, \infty)$,

$$
\sup _{n \geq 1} E\left|X_{n}\right|^{\beta}<\infty
$$

(a) Prove that for all $\alpha \in(0, \beta)$ the sequence of random variables $\left\{\left|X_{n}\right|^{\alpha}, n \geq 1\right\}$ is uniformly integrable.
(b) Demonstrate by example that the sequence of random variables $\left\{\left|X_{n}\right|^{\beta}, n \geq 1\right\}$ is not necessarily uniformly integrable.
2. Let $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$ where $\left\{X_{n}, n \geq 1\right\}$ is a sequence of independent random variables and let $\left\{b_{n}, n \geq 1\right\}$ be a sequence of positive constants with $b_{n} \uparrow \infty$.
(a) Prove that if

$$
\frac{S_{n}}{b_{n}} \rightarrow 0 \text { almost certainly, }
$$

then

$$
\frac{\max _{1 \leq j \leq n}\left|S_{j}\right|}{b_{n}} \rightarrow 0 \quad \text { almost certainly. }
$$

(b) Prove that if

$$
\frac{S_{n}}{b_{n}} \xrightarrow{P} 0,
$$

then

$$
\frac{\max _{1 \leq j \leq n}\left|S_{j}\right|}{b_{n}} \xrightarrow{P} 0
$$

3. Consider the linear model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where \mathbf{X} is $n \times p$ of rank $p(p<n), \boldsymbol{\beta}$ is a fixed unknown parameter vector, and $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. Let $S S_{E}$ be the residual sum of squares.
(a) Find the maximum likelihood estimate of $\boldsymbol{\beta}$ given that $\mathbf{A} \boldsymbol{\beta}=\mathbf{m}$, where \mathbf{A} is a known matrix of order $s \times p$ and rank $s(s \leq p)$, and \mathbf{m} is a known vector.
(b) Find $S S_{E}^{c}$, the residual sum of squares under the condition $\mathbf{A} \boldsymbol{\beta}=\mathbf{m}$.
(c) Find the probability that $S S_{E}^{c} \geq S S_{E}+5$, given that $\sigma^{2}=1$ and $\mathbf{A} \boldsymbol{\beta}=\mathbf{m}$.
(d) What distribution does $\left(S S_{E}^{c}-S S_{E}\right) / S S_{E}$ have given that $\mathbf{A} \boldsymbol{\beta}=\mathbf{m}$?
(e) Are $\left(S S_{E}^{c}-S S_{E}\right)$ and $S S_{E}$ distributed independently? Why or why not?
4. Consider the balanced, two-fold nested model

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{i j}+\epsilon_{i j k}
$$

where $i=1,2, \ldots, a, j=1,2, \ldots, b, k=1,2, \ldots, n$, the α_{i} are fixed, and $\beta_{i j}$ and $\epsilon_{i j k}$ are distributed independently as $N\left(0, \sigma_{\beta}^{2}\right)$ and $N\left(0, \sigma_{\epsilon}^{2}\right)$, respectively.
(a) Show that $\phi=\sum_{i=1}^{a} \lambda_{i} \alpha_{i}$ is estimable if and only if ϕ is a contrast; that is, $\sum_{i=1}^{a} \lambda_{i}=0$.
(b) Find $100(1-\alpha) \%$ simultaneous confidence intervals for all $\phi=\sum_{i=1}^{a} \lambda_{i} \alpha_{i}$ such that ϕ is a contrast.
(c) Develop an exact test statistic for testing the hypothesis $H_{0}: \sigma_{\beta}^{2}=2 \sigma_{\epsilon}^{2}$ versus $H_{a}: \sigma_{\beta}^{2} \neq 2 \sigma_{\epsilon}^{2}$. Also, draw the corresponding rejection region for an α-level of significance.
(d) Let h^{2} be defined as

$$
h^{2}=\frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{\epsilon}^{2}}
$$

Let \hat{h}^{2} be its ANOVA estimator. Show how to obtain the expected value of \hat{h}^{2} given that $\sigma_{\beta}^{2}=5 \sigma_{\epsilon}^{2}$.
5. (a) Write down a complete definition of a GLM for a set of responses, Y_{1}, \ldots, Y_{n}. Define all the components of the model, such as link function, linear predictor, variance function, dispersion parameter, etc.
(b) Derive the maximum likelihood estimating equations for the regression parameters of a GLM.
(c) Show that the Fisher scoring algorithm for finding the ML estimates of the regression parameters is equivalent to iteratively reweighted least squares (IRLS).
(d) Explain how you would calculate a GLM version of Cook's D based on the final iteration of IRLS.
6. Consider the gamma density

$$
f(y ; \lambda, \beta)= \begin{cases}\frac{\beta^{\lambda}}{\Gamma(\lambda)} y^{\lambda-1} e^{-\beta y} & y>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\lambda>0$ and $\beta>0$.
(a) Show that this density can be written in exponential dispersion form.
(b) Identify the dispersion and canonical parameters, ϕ and θ respectively, in terms of λ and β.
(c) Identify the cumulant function, $b(\theta)$, and hence derive the canonical link and variance functions for a gamma GLM.
(d) Derive the deviance function for a gamma GLM.
7. (a) State the Neyman-Pearson Lemma. (Hint: Recall that there are three parts - existence, sufficiency, and necessity.)
(b) Let X_{1}, \ldots, X_{n} be iid $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Suppose that $\mu=\mu_{0}$ is known. Using only the Neyman-Pearson Lemma, show that there exists a UMP test for testing $H: \sigma \leq \sigma_{0}$ against $K: \sigma>\sigma_{0}$, which rejects when $\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}$ is too large.
8. Let X be a discrete random variable with support \mathcal{X} and mass function $P_{\theta}(X=x)$ which depends on the unknown parameter $\theta \in \Theta$. Consider using the observed value of X to estimate θ under the loss function $L(\cdot, \cdot)$. As usual, let the risk function of an estimator $\delta: \mathcal{X} \mapsto \Theta$ be the expected loss; that is,

$$
R(\theta, \delta)=\sum_{x \in \mathcal{X}} L(\theta, \delta(x)) P_{\theta}(X=x)
$$

(a) Give the definition of minimax estimator.
(b) Let $\pi(\theta)$ be a proper prior density for θ. The Bayes risk of the estimator δ with respect to π is defined as $r(\pi, \delta)=\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta$. Let δ_{π} denote the Bayes estimator with respect to π. How is δ_{π} defined?
(c) Give the definition of least favorable prior.
(d) Suppose that, for a particular prior π^{*},

$$
r\left(\pi^{*}, \delta_{\pi^{*}}\right)=\sup _{\theta \in \Theta} R\left(\theta, \delta_{\pi^{*}}\right) .
$$

Show that

1. The estimator $\delta_{\pi^{*}}$ is minimax.
2. If $\delta_{\pi^{*}}$ is the unique Bayes estimator with respect to π^{*}, then $\delta_{\pi^{*}}$ is the unique minimax estimator.
3. The prior π^{*} is least favorable.
(e) Suppose $X \sim \operatorname{Geometric}(\theta)$; that is,

$$
P_{\theta}(X=x)=\theta(1-\theta)^{x}
$$

for $x \in\{0,1,2, \ldots\}$ and $\theta \in(0,1)$. Note that $\mathrm{E}(X \mid \theta)=\frac{1}{\theta}-1$ and $\operatorname{Var}(X \mid \theta)=\frac{1-\theta}{\theta^{2}}$. Consider a prior for θ that puts positive probability on only two values of θ. Specifically, consider the prior given by $P(\theta=1 / 4)=2 / 3$ and $P(\theta=1)=1 / 3$. Show that the Bayes estimator of θ with respect to this prior under squared error loss is minimax.

