PhD Qualifying Examination Department of Statistics, University of Florida August 23, 2002, 8:00 am - 12:00 noon

Instructions:

- 1. You have exactly four hours to answer questions in this examination.
- 2. There are 8 problems of which you must answer 6.
- 3. Only your first 6 problems will be graded.
- 4. Write only on one side of the paper, and start each question on a new page.
- 5. Write your **number** on every page.
- 6. Do not write your name anywhere on your exam.
- 7. You must show your work to receive credit.
- 8. While the eight questions are equally weighted, within a given question, the parts may have different weights.

The following abbreviations are used throughout:

- ANOVA = analysis of variance
- GLM = generalized linear model
- iid = independent and identically distributed
- ML = maximum likelihood
- UMP = uniformly most powerful

1. Let $\{X_n, n \ge 1\}$ be a sequence of random variables such that for some $\beta \in (0, \infty)$,

$$\sup_{n\geq 1} E|X_n|^\beta < \infty \; .$$

- (a) Prove that for all $\alpha \in (0, \beta)$ the sequence of random variables $\{|X_n|^{\alpha}, n \ge 1\}$ is uniformly integrable.
- (b) Demonstrate by example that the sequence of random variables $\{|X_n|^{\beta}, n \ge 1\}$ is not necessarily uniformly integrable.
- **2.** Let $S_n = \sum_{i=1}^n X_i$, $n \ge 1$ where $\{X_n, n \ge 1\}$ is a sequence of independent random variables and let $\{b_n, n \ge 1\}$ be a sequence of positive constants with $b_n \uparrow \infty$.
 - (a) Prove that if

$$\frac{S_n}{b_n} \to 0 \quad \text{almost certainly},$$

then

$$\frac{\max_{1 \le j \le n} |S_j|}{b_n} \to 0 \quad \text{almost certainly}.$$

(b) Prove that if

$$\frac{S_n}{b_n} \xrightarrow{P} 0$$

then

$$\frac{\max_{1 \le j \le n} |S_j|}{b_n} \xrightarrow{P} 0.$$

3. Consider the linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{\epsilon}_{\mathrm{g}}$$

where **X** is $n \times p$ of rank p (p < n), β is a fixed unknown parameter vector, and $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. Let SS_E be the residual sum of squares.

- (a) Find the maximum likelihood estimate of β given that $A\beta = m$, where A is a known matrix of order $s \times p$ and rank $s \ (s \le p)$, and m is a known vector.
- (b) Find SS_E^c , the residual sum of squares under the condition $A\beta = m$.
- (c) Find the probability that $SS_E^c \ge SS_E + 5$, given that $\sigma^2 = 1$ and $\mathbf{A}\boldsymbol{\beta} = \mathbf{m}$.
- (d) What distribution does $(SS_E^c SS_E)/SS_E$ have given that $\mathbf{A}\boldsymbol{\beta} = \mathbf{m}$?
- (e) Are $(SS_E^c SS_E)$ and SS_E distributed independently? Why or why not?

4. Consider the balanced, two-fold nested model

$$y_{ijk} = \mu + \alpha_i + \beta_{ij} + \epsilon_{ijk}$$

where i = 1, 2, ..., a, j = 1, 2, ..., b, k = 1, 2, ..., n, the α_i are fixed, and β_{ij} and ϵ_{ijk} are distributed independently as $N(0, \sigma_{\beta}^2)$ and $N(0, \sigma_{\epsilon}^2)$, respectively.

- (a) Show that $\phi = \sum_{i=1}^{a} \lambda_i \alpha_i$ is estimable if and only if ϕ is a contrast; that is, $\sum_{i=1}^{a} \lambda_i = 0$.
- (b) Find $100(1-\alpha)$ % simultaneous confidence intervals for all $\phi = \sum_{i=1}^{a} \lambda_i \alpha_i$ such that ϕ is a contrast.
- (c) Develop an exact test statistic for testing the hypothesis $H_0: \sigma_\beta^2 = 2 \sigma_\epsilon^2$ versus $H_a: \sigma_\beta^2 \neq 2 \sigma_\epsilon^2$. Also, draw the corresponding rejection region for an α -level of significance.
- (d) Let h^2 be defined as

$$h^2 = \frac{\sigma_\beta^2}{\sigma_\beta^2 + \sigma_\epsilon^2}$$

Let \hat{h}^2 be its ANOVA estimator. Show how to obtain the expected value of \hat{h}^2 given that $\sigma_{\beta}^2 = 5 \sigma_{\epsilon}^2$.

- 5. (a) Write down a complete definition of a GLM for a set of responses, Y_1, \ldots, Y_n . Define all the components of the model, such as link function, linear predictor, variance function, dispersion parameter, etc.
 - (b) Derive the maximum likelihood estimating equations for the regression parameters of a GLM.
 - (c) Show that the Fisher scoring algorithm for finding the ML estimates of the regression parameters is equivalent to iteratively reweighted least squares (IRLS).
 - (d) Explain how you would calculate a GLM version of Cook's D based on the final iteration of IRLS.
- 6. Consider the gamma density

$$f(y;\lambda,\beta) = \begin{cases} \frac{\beta^{\lambda}}{\Gamma(\lambda)} y^{\lambda-1} e^{-\beta y} & y > 0\\ 0 & \text{otherwise} \end{cases}$$

where $\lambda > 0$ and $\beta > 0$.

- (a) Show that this density can be written in exponential dispersion form.
- (b) Identify the dispersion and canonical parameters, ϕ and θ respectively, in terms of λ and β .
- (c) Identify the cumulant function, $b(\theta)$, and hence derive the canonical link and variance functions for a gamma GLM.
- (d) Derive the deviance function for a gamma GLM.

- 7. (a) State the Neyman-Pearson Lemma. (Hint: Recall that there are three parts existence, sufficiency, and necessity.)
 - (b) Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$. Suppose that $\mu = \mu_0$ is known. Using **only** the Neyman-Pearson Lemma, show that there exists a UMP test for testing $H : \sigma \leq \sigma_0$ against $K : \sigma > \sigma_0$, which rejects when $\sum_{i=1}^{n} (X_i \mu_0)^2$ is too large.
- 8. Let X be a discrete random variable with support X and mass function P_θ(X = x) which depends on the unknown parameter θ ∈ Θ. Consider using the observed value of X to estimate θ under the loss function L(·, ·). As usual, let the risk function of an estimator δ : X → Θ be the expected loss; that is,

$$R(\theta, \delta) = \sum_{x \in \mathcal{X}} L(\theta, \delta(x)) P_{\theta}(X = x)$$

- (a) Give the definition of *minimax estimator*.
- (b) Let $\pi(\theta)$ be a proper prior density for θ . The *Bayes risk* of the estimator δ with respect to π is defined as $r(\pi, \delta) = \int_{\Theta} R(\theta, \delta) \pi(\theta) d\theta$. Let δ_{π} denote the *Bayes estimator with respect to* π . How is δ_{π} defined?
- (c) Give the definition of *least favorable prior*.
- (d) Suppose that, for a particular prior π^* ,

$$r(\pi^*, \delta_{\pi^*}) = \sup_{\theta \in \Theta} R(\theta, \delta_{\pi^*})$$
.

Show that

- 1. The estimator δ_{π^*} is minimax.
- 2. If δ_{π^*} is the unique Bayes estimator with respect to π^* , then δ_{π^*} is the unique minimax estimator.
- 3. The prior π^* is least favorable.
- (e) Suppose $X \sim \text{Geometric}(\theta)$; that is,

$$P_{\theta}(X=x) = \theta(1-\theta)^x$$

for $x \in \{0, 1, 2, ...\}$ and $\theta \in (0, 1)$. Note that $E(X|\theta) = \frac{1}{\theta} - 1$ and $Var(X|\theta) = \frac{1-\theta}{\theta^2}$. Consider a prior for θ that puts positive probability on only two values of θ . Specifically, consider the prior given by $P(\theta = 1/4) = 2/3$ and $P(\theta = 1) = 1/3$. Show that the Bayes estimator of θ with respect to this prior under squared error loss is minimax.