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In their paper, Nicolae, Meng, and Kong (henceforth NMK) propose several very interesting

methods for quantifying the fraction of missing information in a sample, and focus their atten-

tion on genetic studies. Survival analysis is another area in Statistics where missing information

plays an important role. Here, censoring complicates study design, for example when we want

to determine how big a clinical trial should be in order to have a good chance of detecting a

treatment effect in a Cox model. Most current methods for dealing with this difficult problem

involve two stages, where in the first stage we make a projection of what the variance of the

coefficient of the treatment effect would be if there was no censoring, and in the second stage

we make a correction to adjust for the censoring. Often this is done under restrictive parametric

(e.g. exponential) assumptions for the underlying distributions. It would be desirable to use the

methods proposed by NMK in the survival analysis setting. I tried to carry over their methods

to the Cox model, and encountered some problems. The difficulties I discovered led me to con-

sider modifications of their proposals, which I believe work well. Below I discuss the setup I

consider, my experiences, the issues, and some approaches I think are promising.
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1 Survival Studies for Assessing the Efficacy of a New Treat-

ment

A typical clinical trial with a survival outcome involves a fixed time frame, say five years. Pa-

tients enter the trial continuously during the first four years, are randomly assigned to treatment

or control, and the last year is a followup year, during which no patients enter the study. Some

patients die during the study, in which case their survival time is observed. But some patients

die from other causes or are lost to followup, and some are still alive at the time the trial is

ended; so in these cases the survival time is censored: for each individual in this group, there is

a time t and we know only that the individual’s survival is greater than t.

Clearly the censoring reduces information regarding the efficacy of the new treatment.

When designing a subsequent study in the hope of getting stronger evidence against the null

hypothesis of no treatment effect, we now have two choices: increase the number of patients in

the study, which can be expensive, or try to reduce the censoring. We can reduce the censoring

either by putting more resources into followup, or by extending the length of the period of time

after the end of the accrual period. These result in costs which are financial and also ethical

because increasing the length of the final followup period postpones publication of results that

are of potential benefit to other patients. The decision of whether to increase the number of

patients or to reduce the censoring depends crucially on the amount of information loss due to

censoring, so being able to measure this is extremely important in the design of future studies.

This situation is very similar to the one discussed by NMK.

By far the most commonly used model for regression with censored survival data is the Cox

proportional hazards model. Suppose that individual i has covariate vector Zi = (Zi1, . . . , Zip),

where Zi1 is the indicator that the individual receives the treatment. Let Xi be the death time of

individual i if there was no censoring, and let Yi be the censoring time. For each individual, we

observe the minimum Ti = min(Xi, Yi) and also the indicator δi that Xi was not censored, i.e.

δi = I(Xi ≤ Yi). So the data for individual i is the triple (Ti, δi, Zi).
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The proportional hazards model stipulates that the hazard rate for an individual with covari-

ate vector Z is given by

λ(t |Z) = λ0(t) exp(β′Z), (1)

where β is a p-dimensional vector of coefficients, and λ0 is the hazard function for an individual

with covariate vector 0. For our purposes (as will be clear later), it is preferable to define the

model in terms of cumulative hazard functions, and so by integrating (1), the model is stated

by specifying that Λ(t |Z), the cumulative hazard function for an individual with covariate Z is

related to Λ0(t), the cumulative hazard function for an individual with covariate 0 via

Λ(t |Z) = Λ0(t) exp(β′Z). (2)

The model is parameterized by θ = (Λ0, β), in which Λ0 is considered a nuisance parameter.

The likelihood function is very complex, and involves both Λ0 and β. Cox’s partial likelihood

(Cox 1972, 1975)—literally just a part of the full likelihood, see Efron (1977)—involves only

β.

2 Measuring the Relative Information in the Data

There is a large literature that shows that Cox’s partial likelihood has the main features of an or-

dinary likelihood: the maximum partial likelihood estimator β̂ is consistent and asymptotically

normal (Andersen and Gill 1982), and there are several papers (Efron 1977, Oakes 1977) that

show that inference based on this partial likelihood is essentially as good as inference based on

the full likelihood. Standard software gives the partial likelihood function. For example in R,

if we fit a Cox model to a data set and call the result fitcox, then fitcox$loglik gives

the log of the partial likelihood, evaluated at any desired value of β, and also at the maximum

partial likelihood estimate of β.

These considerations suggest that we use the partial likelihood function as a likelihood in

the measureRI1 that NMK propose. For a data setD, let `D(β) denote the log partial likelihood

function based on D. Let Dob denote the observed data, and Dco denote the full data, had we
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been able to see it. Suppose we wish to test the null hypothesis that β = β0. If we use the partial

likelihood, the numerator ofRI1 is simply `Dob(β̂)− `Dob(β0), and the denominator is

Eθ̂
{
`Dco(β̂) |Dob

}
− Eθ̂

{
`Dco(β0) |Dob

}
. (3)

In (3), Dco is random and has the conditional distribution of the complete data given the ob-

served data, and the subscript θ̂ indicates that this conditional distribution is computed under

the assumption that θ̂ is the true value of θ. Here, the maximum likelihood estimator of θ is

θ̂ = (Λ̂0, β̂), where Λ̂0 is the Nelson-Aalen estimator of Λ0. This expectation is hopelessly

difficult to compute. However, it is possible to estimate it via Monte Carlo, and the last section

of this article details how to do this.

To assess the performance of this measure I considered the “acute myelogenous leukemia

data” and some perturbations of it. This data set is given in Miller (1981, p. 49), and is available

in the survival package in R. There are 11 individuals receiving the new treatment (Z = 0),

of whom four have censored survival times, and 12 individuals receiving the standard treatment

(Z = 1), of whom one has a censored survival time. We are interested in testing the null

hypothesis that β = 0, indicating no treatment effect.

Table 1 below gives three versions of this data set, of which the first is the original data set.

Dataset aml-1 is a perturbed version in which (i) all the status indicators δi that were 0 were

changed to 1 and (ii) 11 observations, all censored at time 0, were added to the new treatment

group, and 12 observations, all censored at time 0, were added to the standard treatment group.

The inclusion of these 23 new observations all censored at time 0 doubles the size of the data

set but adds no information whatsoever, and any reasonable method for estimating the relative

information in the data should give .5. This is the censored data analogue of the example of

unobserved Bernoullis in Section 1.3 of NMK. Dataset aml-2 a is perturbed version of the

original data set in which 11 observations, all censored at time 0, are added to the new treatment

group, and 12 observations, all censored at time 0, are added to the standard treatment group;

but the original part of the data set was not altered.

The results are given in line 1 of Table 2 below. They are surprising. The value of RI1
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T 9 13 13 18 23 28 31 34 45 48 161 5 5 8 8 12 16 23 27 30 33 43 45

aml-orig δ 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1

Z 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

T 0 11. . . 0 9 13 13 18 23 28 31 34 45 48 161 0 12. . . 0 5 5 8 8 12 16 23 27 30 33 43 45

aml-1 δ 0 11. . . 0 1 1 1 1 1 1 1 1 1 1 1 0 12. . . 0 1 1 1 1 1 1 1 1 1 1 1 1

Z 0 11. . . 0 0 0 0 0 0 0 0 0 0 0 0 1 12. . . 1 1 1 1 1 1 1 1 1 1 1 1 1

T 0 11. . . 0 9 13 13 18 23 28 31 34 45 48 161 0 12. . . 0 5 5 8 8 12 16 23 27 30 33 43 45

aml-2 δ 0 11. . . 0 1 1 0 1 1 0 1 1 0 1 0 0 12. . . 0 1 1 1 1 1 0 1 1 1 1 1 1

Z 0 11. . . 0 0 0 0 0 0 0 0 0 0 0 0 1 12. . . 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: Three versions of the leukemia data. Notation of the sort 0 11. . . 0 indicates a string of

11 0’s.

for the original data set is .987, suggesting that there is essentially no missing information,

even though 5 of the 23 observations are censored; and for aml-1, the value is .552 whereas

it should be .5, or at least very close to .5; and what is more worrisome is that for aml-2 it is

bigger than for aml-1, even though aml-2 has more missing data. In fact, it is not even true that

RI1 is always less than 1 (a particular instance of this phenomenon arises when dealing with

the dataset veteran, available in the survival package in R, when testing whether the treatment

effect is 0, and ignoring all other predictors).

An explanation for this is as follows. The partial likelihood uses only the information at

the times of the uncensored deaths (Efron 1977), whereas the full likelihood also includes the

information between successive uncensored deaths. The data used to form the denominator of

RI1 involves some censored observations, whereas the data used to form the numerator does

not. So it appears that the parts missing from the partial likelihood are different in the numerator

and denominator of RI1. This is a very rare instance where using the partial likelihood creates

serious problems. The net effect is that the key inequality (16) in NMK fails: the inequality is

based on using the full likelihood. Consequently the basic inequalityRI1 ≤ 1 need not hold.

5



aml-orig aml-1 aml-2

RI1 0.987 (0.976, 0.999) 0.552 (0.538, 0.567) 0.694 (0.675, 0.714)

RIW 0.847 (0.844, 0.849) 0.490 (0.489, 0.491) 0.387 (0.386, 0.389)

Table 2: Monte Carlo estimates of the RI1 and RIW criteria, together with 99% confidence

intervals, on three versions of the leukemia data. Each case is obtained by a Monte Carlo run of

5,000 simulations, as described in Section 3, and takes about a minute to produce on a 3.8 GHz

dual core P4 running Linux. For RIW , the estimates are very stable: 99% confidence intervals

have width of about .003. ForRI1, the confidence intervals are wider.

The rationale for the criterion RI1 suggests the following alternative way of forming the

ratio of “evidence against the null hypothesis in the present sample” to the “expected value of

the evidence against the null hypothesis if we had the complete data set,” which bypasses the

likelihood function. For a given method of estimating θ and a data set D, let θ̂(D) denote the

estimate based on data D, and V̂ar(θ̂(D)) be an estimate of the covariance matrix of θ̂(D). Also

let Vob = V̂ar(θ̂(Dob)) and Vco be the matrix whose inverse is given by

V −1
co = Eθ̂

{[
V̂ar(θ̂(Dco))

]−1
∣∣∣Dob

}
(4)

where, as before, Dob is the complete data, and Dco is random and has the conditional dis-

tribution of the complete data given the observed data; and the subscript θ̂ indicates that this

conditional distribution is computed under the assumption that θ̂ is the true value of θ. We form

RIW =

(
θ̂(Dob)− θ0

)′
V −1

ob

(
θ̂(Dob)− θ0

)(
θ̂(Dob)− θ0

)′
V −1

co

(
θ̂(Dob)− θ0

) , (5)

which is a ratio of Wald-like quantities. If the dimension of θ is 1, the reciprocal of RIW

simplifies to

(RIW )−1 =
Vob

Vco
= Eθ̂

{
V̂ar(θ̂(Dob))

V̂ar(θ̂(Dco))

∣∣∣∣Dob

}
and has the interpretation of “expected value of the ratio of the variance of the θ̂ we have to the

variance of what θ̂ would be if we had the complete data.” Motivation for (5) in general is given

at the end of this section.
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When we apply this criterion to the example of unobserved Bernoullis in Section 1.3 of

NMK, a short calculation shows that this approach gives what RI1 gives, namely that the frac-

tion of information in the sample is n0/n (to order 1/n).

Line 2 of Table 2 gives the value of RIW for the three versions of the leukemia data, when

we estimate β via the maximum partial likelihood estimator, and the variance estimate is the

negative second derivative of the log partial likelihood function at its maximum. The pattern we

see makes sense. For aml-orig, which includes 5 partially informative censored observations,

RIW gives a number intermediate between 1 and the proportion of uncensored observations

(0.783); it is almost equal to .5 for aml-1, correctly reflecting the fact that the additional 23

points censored at 0 give no information at all; and it is less than .5 for aml-2, which includes

not only 23 completely uninformative points, but also the original censored observations. It

should be noted that the variances used in the calculation of Vob and Vco are estimated variances,

and so the value of RIW depends on the particular estimate that is used. This dependence may

be noticeable in small samples. For instance, this is the reason why RIW gives .490 instead

of .5 for aml-1. Table 2 gives results for a single experiment, but I got very similar results for

many other data sets, including data sets that are bigger, have a bigger percentage of censored

observations, or both.

Criterion (5) has the following advantages.

• It does not require the evaluation of a likelihood at some estimate. In fact, θ̂ need not be

a maximum likelihood estimator, and there need not even be a likelihood function. This

is important for some situations—for example when we have a single randomly censored

sample and we use the Kaplan-Meier estimate—when there is no likelihood at all.

• It handles nuisance parameters without modification. That is, if θ = (θ(1), θ(2)), and the null

hypothesis involves only θ(1), then we simply form (5) with θ(1) and θ(1)
0 replacing θ̂ and θ0,

etc.
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To motivate (5), suppose we are in a parametric framework, and recall thatRI1 is given by

`Dob(θ̂(Dob))− `Dob(θ0)

Eθ̂
{
`Dco(θ̂(Dob))− `Dco(θ0)

∣∣Dob
} , (6)

and let’s compare this to the closely related quantity

RIW -alt =

(
θ̂(Dob)− θ0

)′ [−῭
Dob(θ̂(Dob))

] (
θ̂(Dob)− θ0

)
Eθ̂

{(
θ̂(Dob)− θ0

)′ [−῭
Dco(θ̂(Dco))

] (
θ̂(Dob)− θ0

) ∣∣∣Dob

} , (7)

in which ῭
Dob denotes the second derivative (with respect to θ) of `Dob . Consider the numerator

of (6). Assuming standard regularity conditions, a two-term Taylor expansion of `Dob(θ0) around

θ̂(Dob) gives the numerator of (7) (except for a factor of 2). If we expand `Dco(θ0) around θ̂(Dob)

and approximate ˙̀
Dco(θ̂(Dob)) and ῭

Dco(θ̂(Dob)) by ˙̀
Dco(θ̂(Dco)) and ῭

Dco(θ̂(Dco)), respectively,

the denominator of (6) is the denominator of (7) (except for a factor of 2), and in (7) we may

take
(
θ̂(Dob)− θ0

)′ and
(
θ̂(Dob)− θ0

)
outside the expectation. Expressions (5) and (7) are the

same, except that in (5) we use an estimate of the inverse variance that is not necessarily given

by the negative observed Fisher information.

3 Generating a Complete Data Set

Let S(t |Z) be the survival function for an individual with covariate vector Z. The proportional

hazards model may be reformulated as

S(t |Z) = (S0(t))
exp(β′Z), (8)

where S0 is the survival function for an individual with covariate vector 0. Models (2) and (8) are

equivalent in the continuous case, for which the survival function and corresponding cumulative

hazard function are related via S(t) = exp(−Λ(t)). In general, (2) and (8) are not the same,

and it is important to decide on the specification of the Cox model, and here we take (8) as our

definition. There are reasons why (8) is more sensible; see Kalbfleisch and Prentice (1980, sec.

4.6).
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For an individual with covariate 0, the survival function and the cumulative hazard function

are related via the product integral S0(t) =
∏

s≤t(1 − Λ0(ds)) (Gill and Johansen 1990), so

by (8) the survival function for an individual with covariate Z is given by

S(t |Z) =
{∏

s≤t(1− Λ0(ds))
}exp(β′Z)

. (9)

Suppose that the survival time for individual i is censored, i.e. we observe Ti and Zi and we

know thatXi > Ti. We form Ŝ(t |Zi) by substituting Λ̂0 and β̂ for Λ0 and β in (9), and generate

Xi from this distribution conditional on its being greater than Ti. We do this for all censored

observations, and the expectations in (3) and (4) can be estimated by Monte Carlo. Standard

software gives Λ̂0 and the corresponding Ŝ0, so this scheme is easy to carry out. R functions to

implement this scheme and to calculate the criteria RI1 and RIW are available from me upon

request.
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