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Abstract

In Latent Dirichlet Allocation, the number of topics, T , is a hyperparameter of the model that

must be specified before one can fit the model. The need to specify T in advance is restrictive. One

way of dealing with this problem is to put a prior on T , but unfortunately the distribution on the

latent variables of the model is then a mixture of distributions on spaces of different dimensions, and

estimating this mixture distribution by Markov chain Monte Carlo is very difficult. We present a

variant of the Metropolis-Hastings algorithm that can be used to estimate this mixture distribution,

and in particular the posterior distribution of the number of topics. We evaluate our methodology

on synthetic data, and compare it with procedures that are currently used in the machine learning

literature. We also give an illustration on two collections of articles from Wikipedia. Supplemental

materials for the paper are available online.
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1 Introduction

Latent Dirichlet Allocation (LDA, Blei et al. 2003) is a heavily used model that is used to describe

high-dimensional sparse count data represented by feature counts. Although the model can be

applied to many different kinds of data, for example collections of annotated images and social

networks, for the sake of concreteness, here we focus on data consisting of a collection of docu-

ments. Suppose we have a corpus of documents, and these span several different topics, such as

sports, medicine, politics, etc. We imagine that for each word in each document, there is a latent

(i.e. unobserved) variable indicating a topic from which that word is drawn. There are several

goals, but two principal ones are to recover an interpretable set of topics for the corpus, and to

infer the “topic proportions” for each document.

To describe the LDA model, we first set up some terminology and notation. There is a vocabu-

lary V of V words; typically, this is taken to be the union of all the words in all the documents of the

corpus, after removing stop (i.e. uninformative) words. There are D documents in the corpus, and

for d = 1, . . . , D, document d has nd words, wd1, . . . , wdnd
. In total, the corpus has N =

∑D
d=1 nd

words. The order of the words is considered uninformative, and so is neglected. Each word is

represented as an index 1×V vector with a 1 at the vth element, where v denotes the term selected

from the vocabulary. Thus, document d is represented by the vectorwd = (wd1, . . . , wdnd
) and the

corpus is represented by the vector w = (w1, . . . ,wD). A topic is, by definition, a distribution

over V , i.e. a point in SV−1, the (V − 1)-dimensional simplex. The number of topics, T , is finite

and known. For d = 1, . . . , D, for each word wdi, zdi is an index 1 × T vector which represents

the latent variable that denotes the topic from which wdi is drawn. The distribution of zd1, . . . , zdnd

will depend on a document-specific variable θd which indicates a distribution on the topics for

document d.

We will let DirL(a1, . . . , aL) denote the finite-dimensional Dirichlet distribution on the simplex

SL−1. Also, we will use MultL(b1, . . . , bL) to denote the multinomial distribution with number of

trials equal to 1 and probability vector (b1, . . . , bL). Given T , we will form a T × V matrix β,

whose tth row is the tth topic (how β is formed will be described shortly). Thus, β will consist of

vectors β1, . . . , βT , all lying in SV−1. Formally, the LDA model indexed by T is described by the

following hierarchical model, in which η ∈ (0,∞) and α ∈ (0,∞) are hyperparameters:

1. βt
iid∼ DirV (η, . . . , η), t = 1, . . . , T .

2. θd
iid∼ DirT (α, . . . , α), d = 1, . . . , D, and the θd’s are independent of the βt’s.
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3. Given β and the θd’s, zdi
iid∼ MultT (θd), i = 1, . . . , nd, d = 1, . . . , D, and the D vectors

(z11, . . . , z1n1), . . . , (zD1, . . . , zDnD
) are independent.

4. Given β and the zdi’s, wdi are independently drawn from the row of β indicated by zdi, i =

1, . . . , nd, d = 1, . . . , D.

From the description of the model, we see that there is a latent topic variable for each word in

the document. Thus it is possible that a document has several topics. However, because there is a

single θd for document d, the model encourages different words in document d to have the same

topic. Also note that the hierarchical nature of the model encourages different documents to share

the same topics. This is because β is chosen once, at the top of the hierarchy, and is shared among

the D documents.

For d = 1, . . . , D, let θ = (θ1, . . . , θD), and zd = (zd1, . . . , zdnd
). Let z = (z1, . . . ,zD);

this is a vector of length N determining the latent topic variables for all the words in the corpus.

Lines 1–3 induce a prior distribution on the parameter vector ψ := (β,θ, z). We will denote this

prior by ν(T )
ψ . Line 4 gives the likelihood of ψ, which we will denote by `(T )

w (ψ). The wordsw are

observed, and we are interested in the posterior distribution of the parameters β, θ, and z givenw.

A serious limitation of the model is that one has to specify the number of topics, T , in advance,

and there is no simple way of doing so (Blei, 2012). It is now well recognized that selecting the

number of topics is one of the most problematic choices in topic modelling. If T is taken to be

smaller than the true number of topics, then the posterior distribution of the parameters will be

inconsistent, i.e. it will not converge to a point mass at the true value of the parameters, even with

an infinite amount of data. On the other hand, specifying T to be too large results in a deterioration

of the rate at which the posterior distribution contracts around the true value (and also results in

increased computational costs when fitting the model). See Tang et al. (2014) and Nguyen (2015)

for precise statements of the last two facts regarding asymptotics. Generally speaking, robustness

of the LDA model to the choice of T is not well understood (Wallach et al., 2009a).

There are two natural approaches for dealing with the uncertainty in T . One is frequen-

tist and is described as follows. Let mw(T ) be the marginal likelihood of T , i.e. mw(T ) =∫
`
(T )
w (ψ)ν

(T )
ψ (ψ) dψ. (Since ψ has continuous as well as discrete components, if f is a function

ofψ, the notation
∫
f(ψ) dψ should be taken to mean a combination of integration and summation

in the obvious way.) The marginal likelihood mw(T ) is the normalizing constant in the statement

“the posterior is proportional to the likelihood times the prior.” The parameter T may be estimated
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by T̂ = arg maxT mw(T ) and, in fact, using the LDA model indexed by T̂ amounts to empirical

Bayes inference. Unfortunately, mw(T ) is a very high dimensional integral of very large sums,

and cannot be calculated except in trivial cases.

Newton and Raftery (1994) presented the harmonic mean estimator (HME) of the marginal

likelihood which, in the present context, is described as follows. Let ν(T )
ψ |w denote the posterior

distribution of ψ given w. Suppose that ψ1,ψ2, . . . is an ergodic Markov chain with invariant

distribution ν(T )
ψ |w. The HME of mw(T ) is m̂w(T ) =

[
(1/n)

∑n
i=1(1/`

(T )
w (ψi))

]−1. It is very easy

to show that the HME is consistent: we have

1

n

n∑
i=1

1

`
(T )
w (ψi)

a.s.−→
∫

1

`
(T )
w (ψ)

ν
(T )
ψ |w(ψ) dψ =

∫
1

`
(T )
w (ψ)

`
(T )
w (ψ)ν

(T )
ψ (ψ)

mw(T )
dψ =

1

mw(T )
,

and therefore m̂w(T )
a.s.−→ mw(T ). To estimate T we proceed as follows. For each T in a finite

range, we run a Markov chain to form the HME of mw(T ), and then take T̂ = arg maxT mw(T ).

This method has two significant defects. First, convergence of HME’s is extremely slow; in fact,

the rate is typically much slower than n1/2 (Wolpert and Schmidler, 2012). Second, one has to run

a separate Markov chain for each value of T . These problems are well known, at least in some

circles, but nevertheless the method is often used (see, e.g., Griffiths and Steyvers (2004), among

many others). Chib (1995) provided a general-purpose method for estimating marginal likelihoods.

While this method is often used in topic modelling, to the best of our knowledge it has been neither

used nor investigated for the purpose of selecting T in the LDA model. In Section 5 we show that

the method does not perform well in our problem, and explain why this is to be expected in view

of the high dimension of the model.

The other natural approach is Bayesian: we change the four-level hierarchy that defines the

model to a five-level hierarchy, in which the first level stipulates that T is drawn from some prior

distribution νT . A major problem with this approach is that the parameter is now ϑ := (T,β,θ, z),

in which the dimensions of β, θ, and z all depend on T . Estimating the posterior distribution of

ϑ by Markov chain Monte Carlo in this kind of situation is notoriously difficult, and involves so-

called transdimensional chains, of which reversible jump Markov chain Monte Carlo (RJMCMC)

(Green, 1995) gives the main class of algorithms in current use. There are several problems with

RJMCMC: (i) RJMCMC is not an automatic algorithm. There are many parameters to tune and

these have a major effect on the efficiency of the algorithm. Unfortunately, tuning these parameters

is typically very difficult and can be done only by trial and error. (ii) RJMCMC involves an accept-

reject step since it is an implementation of the Metropolis-Hastings algorithm, and often even after
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extensive tuning, the acceptance rate is very low. Acceptance rates are low particularly when the

dimension is high, and can be unacceptably low even when the dimension is much smaller than the

dimension of the LDA model. (iii) Theoretical results on rates of convergence for RJMCMC are

very hard to come by.

In this paper we use the Bayesian approach described above, in which we put a prior distri-

bution νT on T , and we do this in the first step of the hierarchy. The unknown parameter is then

ϑ = (T,ψ), but instead of using RJMCMC to estimate the posterior distribution of ϑ, we focus

entirely on the marginal posterior distribution of T , thus avoiding RJMCMC.

Before proceeding, we remark on our conventions regarding notation for distributions. If ϕ is

a subcomponent of ϑ, νϕ and νϕ |w will denote the marginal prior and posterior distributions on ϕ,

respectively, induced by the five-level hierarchy. For example, νT and νT |w denote the marginal

prior and posterior distributions of T ; also νz and νz |w denote the marginal prior and posterior

distributions of z. For the LDA model in which T is fixed, we will use the superscript “(T )”;

thus, ν(T )
z and ν(T )

z |w denote the prior and posterior distributions of z, respectively, stipulated in the

original 4-line model.

Let T be the support of νT , and suppose that qT (·, ·) is a Markov transition function on T .

In principle, to generate a Markov chain with invariant distribution νT |w, a Metropolis-Hastings

algorithm based on qT (·, ·) would be as follows.

1. Let T be the current state. Generate a proposal T ′ ∼ qT (T, ·).

2. Compute the acceptance ratio

r(T, T ′) =
νT |w(T ′)qT (T ′, T )

νT |w(T )qT (T, T ′)
. (1.1)

3. Accept T ′ with probability min{r(T, T ′), 1}; otherwise stay at T .

Unfortunately, Step 2 is infeasible because νT |w(T ) is analytically intractable: it is obtained

by integrating/summing out ψ from νϑ |w, which is not possible because of the high dimensions

involved in the LDA model. To deal with this problem, we proceed as follows. First, we note

that for every fixed T ∈ T , there exists a Markov transition function gT (·, ·) on z for generating a

Markov chain with invariant distribution ν(T )
z |w (we are referring to the “collapsed Gibbs sampler”

(CGS) of Griffiths and Steyvers (2004), which we discuss in Section 2). Let z0, z1, . . . ,zm be a
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chain generated according to gT (·, ·), and for any t ∈ T , define ν̃(m)
T |w(t) by

ν̃
(m)
T |w(t) =

1

m

m∑
l=1

νT,z |w(t, zl)

gT (zl−1, zl)
.

Now in the model in which T is fixed, the posterior distribution of z is known up to a nor-

malizing constant—this fact is the basis for the CGS of Griffiths and Steyvers (2004)—and as a

consequence, in our model νT,z |w(t, zl) is known up to a normalizing constant c which does not

depend on t or zl. We can show that as m → ∞, ν̃(m)
T |w(t)

a.s.−→ νT |w(t). It is tempting to do

the following: within each iteration, we calculate ν̃(m)
T |w(T ′) and ν̃(m)

T |w(T ), and use them instead of

νT |w(T ′) and νT |w(T ), respectively, in Step 2 of the infeasible algorithm described above. (The

fact that the constant c is unknown does not cause a problem, since the constant cancels in (1.1).)

Unfortunately, this algorithm has no theoretical validity, and the chain it simulates may not even

have an invariant distribution. We discuss this in more detail in Remark 1 in Section 4. Instead,

we proceed differently, as follows. Within each iteration, we calculate only ν̃
(m)
T |w(T ′) and use it

instead of νT |w(T ′), while recycling ν̃(m)
T |w(T ) from the previous iteration and using it instead of

νT |w(T ). We show that the resulting algorithm is theoretically valid. Specifically, let µm,nT denote

the distribution of T after n cycles of this algorithm with T0 being the initial sample (note that µm,nT

depends on T0 but we suppress this dependence here). It turns out that for any fixed m, as n→∞,

µm,nT does not converge to νT |w. But we show that for any starting point T0, as m,n → ∞, µm,nT

converges to νT |w, and thus the algorithm described above provides a viable way to estimate the

posterior distribution νT |w.

The idea above is a variation of the idea behind the so-called pseudo-marginal Metropolis-

Hastings algorithm (PMMH), originally proposed by Beaumont (2003) and developed theoretically

by Andrieu and Roberts (2009). In Section 4 we discuss the connection between our approach and

the previous proposals and also the differences in the theoretical developments. The fact that the

asymptotic regime requires both m and n to go to infinity imposes a computational burden that is

greater than that for standard MCMC algorithms. However, this drawback has to be considered in

the context of two facts. First, there does not seem to be a usable alternative: the dimension of the

problem appears to preclude a workable RJMCMC algorithm. Second, the Markov chain in the

“inner loop,” i.e. the chain on z, is a collapsed Gibbs sampler which executes very fast and has very

good mixing properties, as we establish theoretically in Section 2. We note that Beaumont (2003)

developed his PMMH algorithm in order to deal with a class of genetics problems for which there

are no practical MCMC algorithms—this is the same situation we face.
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The paper is organized as follows. In Section 2 we give a brief review of Bayesian inference for

the standard LDA model and an existing Gibbs sampler which is used to estimate posterior distri-

butions in the model. We also investigate the uniform ergodicity of this Gibbs sampler. In Section 3

we extend the standard LDA model to the case where the number of topics T is a parameter of the

model under the Bayesian framework. In Section 4 we design a variant of the Metropolis-Hastings

algorithm for specifying T in the LDA model. We also provide theoretical justification of our

algorithm by showing that it can be used to consistently estimate the true posterior distribution of

T given the words and, more generally, the posterior distribution of all the latent variables in the

model. In Section 5 we evaluate the performance of our methodology by considering a synthetic

data set generated according to an LDA model, and also two real data sets consisting of two collec-

tions of articles from Wikipedia. We show that our algorithm has excellent performance on those

data sets. In Section 6 we point out that there exist models that are alternatives to LDA, in which

the number of topics is possibly unbounded and is to be inferred from the data, and we discuss our

work in the context of these models. With the exception of Theorem 2 and Corollary 1, the proofs

of the theoretical results are in the Appendix.

2 The Collapsed Gibbs Sampler for the LDA Model: Descrip-

tion and Uniform Ergodicity

In this section we review the CGS of Griffiths and Steyvers (2004) and state a theorem that asserts

that this Markov chain is uniformly ergodic. We begin by obtaining an expression for the marginal

posterior distribution of z given w. We need this development for two purposes: (i) to establish

uniform ergodicity, and (ii) to obtain the joint marginal posterior distribution of (T,z) given w,

which we need in order to construct the Markov chain on T , in Section 4. This section deals only

with the LDA model in which T is fixed; therefore, throughout the entire section we will not use

the superscript “(T )” for distributions, as it is unnecessary and cumbersome.

We first express the posterior distributions of ψ and z in convenient forms. The posterior

distribution νψ |w of ψ satisfies

νψ |w(ψ) ∝ `w(ψ)νψ(ψ). (2.1)

From the hierarchical nature of the LDA model we have

νψ(ψ) = νψ(β,θ, z) = νz |θ,β(z |θ,β) νθ(θ) νβ(β)
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in self-explanatory notation, where νz |θ,β(z |θ,β), νθ(θ), and νβ(β) are given by Lines 3, 2,

and 1, respectively, of the LDA model.

Before proceeding, we set up some notation that we will need. Recall that nd is the number of

words in document d, wdi represents word i in document d, and zdi is the latent topic variable for

word i in document d. Also, zdit is component t of the vector zdi, wdiv is component v of the vector

wdi, and βtv is component v of βt. Additionally, we define the following:

ndt =
∑nd

i=1 zdit is the number of words in document d assigned to topic t;

mdtv =
∑nd

i=1 zditwdiv is the number of words in document d for which the latent topic is t and

the index of the word in the vocabulary is v;

m·tv =
∑D

d=1mdtv is the number of words in the corpus for which the latent topic is t and the

index of the word in the vocabulary is v;

m·t· =
∑V

v=1m·tv is the number of words in the corpus for which the latent topic is t.

With this notation, using the Dirichlet and multinomial distributions specified in Lines 1–3 of

the model, we have

νψ(ψ) =

[
D∏
d=1

T∏
t=1

θndt
dt

][
D∏
d=1

(
Γ(Tα)

Γ(α)T

T∏
t=1

θα−1
dt

)][ T∏
t=1

(
Γ(V η)

Γ(η)V

V∏
v=1

βη−1
tv

)]

=

[
D∏
d=1

(
Γ(Tα)

Γ(α)T

T∏
t=1

θndt+α−1
dt

)][ T∏
t=1

(
Γ(V η)

Γ(η)V

V∏
v=1

βη−1
tv

)]
.

(2.2)

From Line 4 of the LDA model statement we have

`w(ψ) =
D∏
d=1

T∏
t=1

V∏
v=1

β
Pnd

i=1 zditwdiv

tv =
D∏
d=1

T∏
t=1

V∏
v=1

βmdtv
tv =

T∏
t=1

V∏
v=1

D∏
d=1

βmdtv
tv

=
T∏
t=1

V∏
v=1

β
PD

d=1mdtv

tv =
T∏
t=1

V∏
v=1

βm·tvtv .

(2.3)

Plugging the likelihood (2.3) and the prior (2.2) into (2.1) and combining terms, we get

νψ |w(ψ) ∝

[
D∏
d=1

(
Γ(Tα)

Γ(α)T

T∏
t=1

θndt+α−1
dt

)][ T∏
t=1

(
Γ(V η)

Γ(η)V

V∏
v=1

βm·tv+η−1
tv

)]
. (2.4)

By inspection of the expression for νψ |w(ψ) above, it can be seen that given z (and w),

θ1, . . . , θD and β1, . . . , βT are all independent, with

θd ∼ DirT (nd1 + α, . . . , ndT + α), for d = 1, . . . , D,

βt ∼ DirV (m·t1 + η, . . . ,m·tV + η), for t = 1, . . . , T.

(2.5)
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George and Doss (2018) show that from (2.4) the conditional νz |β,θ,w(z) may be obtained by

inspection. Let pdit =
∏V

v=1

(
βtvθdt

)wdiv . They show that given β and θ (and w),

z11, . . . , z1n1 , z21, . . . , z2n2 , . . . , zD1, . . . , zDnD
are all independent, with

zdi ∼ MultT (pdi1, . . . , pdiT ).
(2.6)

The two conditionals (2.5) and (2.6) enable the construction of a two-cycle Gibbs sampler that

runs on the pair (z, (β,θ)). Although it is not the Markov chain we use in this paper, this Gibbs

sampler has very interesting properties, which we discuss in Section 5.4. Integrating out θ1, . . . , θD

and β1, . . . , βT in (2.4), we obtain the marginal posterior distribution νz |w of z up to a normalizing

constant:

νz |w(z) ∝

[
D∏
d=1

(
Γ(Tα)

Γ(α)T

∏T
t=1 Γ(ndt + α)

Γ(nd + Tα)

)][ T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)]
. (2.7)

This formula was previously obtained by Griffiths and Steyvers (2004). To summarize: (2.4)

and (2.7) give the posterior distributions (up to normalizing constants) of ψ and z, respectively, in

the LDA model indexed by T .

The Gibbs sampler developed in Griffiths and Steyvers (2004) runs over the N -dimensional

vector (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
), updating one variable at a time, with β and θ integrated

out. To describe the needed conditionals, we first set up some notation. For d = 1, . . . , D and

i = 1, . . . , nd, we use w(−di) to denote the collection of all words except for wdi and we use z(−di)

to denote the collection of latent topic variables forw(−di). The counts nd, ndt, mdtv, m·tv, and m·t·

were defined just above display (2.2). For any d, d′ ∈ {1, . . . , D}, the counts nd′(−di), nd′t(−di),

md′tv(−di), m·tv(−di), and m·t·(−di) are defined in the same way, except that they are based onw(−di)

and z(−di); so they are based on the corpus in which we have removed a single word, namely word

i in document d. It is clear that for each t, ndt(−di) = ndt − zdit, nd(−di) =
∑T

t=1 ndt(−di) = nd − 1,

and that for d′ 6= d, nd′t(−di) = nd′t and nd′(−di) =
∑T

t=1 nd′t(−di) = nd′ . Let pψ |w denote the joint

distribution ofψ andw under the LDA model. If ϕ is a subcomponent ofψ, then pϕ |ψ−ϕ,w denotes

the conditional distribution of ϕ given all the other components ofψ, andw. This notation follows

our conventions; however, we will simply write p in order to avoid cumbersome expressions,

whenever the meaning is clear from context.

As mentioned earlier, in order to proceed with our development, we need the conditional dis-

tribution of zdi given z(−di) and w, i.e. obtain p(zdit = 1 | z(−di),w) for every t. In Chen and Doss
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(2018) we obtain the formula

p(zdit = 1 | z(−di),w) ∝
(
m·tv(−di) + η

m·t·(−di) + V η

)(
ndt(−di) + α

nd − 1 + Tα

)
for t = 1, . . . , T, (2.8)

where v denotes the term which wdi is observed to take, i.e. v is such that wdiv = 1. It is natural to

ask why we derive this expression, in view of the fact that the expression is given in Griffiths and

Steyvers (2004). The reason we do this is that Griffiths and Steyvers (2004) do not provide any

derivation or justification for the expression at all, and as one can see in Chen and Doss (2018), the

needed calculation is far from trivial.

Let gT denote the Markov transition function for the CGS, i.e. gT (z0, ·) is the distribution of

z1 given z0, and let gmT (z0, ·) denote the m-step Markov transition function. Also, let ZT denote

the set of all possible values of z. Theorem 1 establishes uniform ergodicity, which is the very

strong condition that there exist constants M > 0 and c > 0 such that ‖gmT (z0, ·)− νz |w(·)‖TV ≤
M(1− c)m for all initial z0 ∈ ZT , where the total variation distance ‖ · ‖TV denotes the supremum

over all subsets of ZT (the geometric rate of convergence does not depend on the initial starting

point z0). Uniform ergodicity is equivalent to the so-called Doeblin condition, which is that there

exist a probability measure ρ on ZT , an integer k, and a constant c > 0 such that gkT (z, z′) ≥
cρ(z′) for all z, z′ ∈ ZT . See Theorem 3 of Athreya et al. (1996).

Theorem 1 For each T , gT (z, z′) satisfies the Doeblin condition with k = 1:

gT (z, z′) ≥ cTυ(z′) for any z, z′ ∈ ZT ,

where υ is the uniform distribution on ZT ,

cT =

(
η

N − 1 + V η

)N[ D∏
d=1

( √
Tα

nd − 1 + Tα

)nd

]
, (2.9)

and recall that N =
∑D

d=1 nd denotes the total number of words in the corpus. The CGS is

uniformly ergodic, with ‖gmT (z0, ·)− νz |w(·)‖TV ≤ (1− cT )m.

The value of cT given by (2.9) is astronomically small for any reasonable values of the doc-

ument sizes n1, . . . , nD, and the resulting bound on the total variation distance is useless from a

practical point of view. Undoubtedly better constants can be found, as in our relatively short proof

we have not tried to obtain the sharpest possible bound. Thus, in its present form Theorem 1 is pri-

marily of theoretical interest. Empirical studies strongly suggest that the actual rate of convergence

is very fast—for example, the popular MALLET package (McCallum, 2002) uses a default value

of m = 40 for situations in which the CGS is used within a loop, with apparently good results.
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3 A Bayesian Approach for Specifying the Number of Topics

In a Bayesian approach to making inference about T , we put a prior distribution on T at the top

of the four-line hierarchy that defines the original LDA model. The possible values for T will be

the positive integers, and we will put a proper prior on this set. Specification of a prior for T at

the top of the hierarchy induces a prior distribution, νϑ, on the augmented parameter ϑ = (T,ψ):

we have νϑ(ϑ) = νϑ(T,ψ) = νψ |T (ψ |T ) νT (T ) = ν
(T )
ψ (ψ)νT (T ) for all T ∈ T . We let `w(ϑ)

denote the likelihood function of ϑ = (T,ψ). Clearly `w(ϑ) = `
(T )
w (ψ) where, recall that `(T )

w (ψ)

is the likelihood function (2.3) under the LDA model indexed by T . The posterior distribution

ϑ = (T,β,θ, z) given w is νϑ |w(ϑ) ∝ νϑ(ϑ)`w(ϑ) ∝ ν
(T )
ψ (ψ)νT (T )`

(T )
w (ψ); more specifically,

νϑ |w(ϑ) ∝

[
D∏
d=1

(
Γ
(
Tα
)

Γ(α)T

T∏
t=1

θndt+α−1
dt

)][ T∏
t=1

(
Γ(V η)

Γ(η)V

V∏
v=1

βm·tv+η−1
tv

)]
νT (T ).

Integrating β and θ out from the equation above, as we did to obtain (2.7), we get a closed-form

expression for νT,z |w up to a normalizing constant; that is for each T ∈ T ,

νT,z |w(T,z) ∝

[
D∏
d=1

(
Γ(Tα)

Γ(α)T

∏T
t=1 Γ(ndt + α)

Γ
(
nd + Tα

) )][ T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)]
νT (T ).

(3.1)

Unfortunately, even if the normalizing constant in (3.1) was available, we would not be able to

obtain a closed-form expression for νT |w(T ), because summing out the latent variables

z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
is computationally infeasible. Our objective is to design an ef-

fective PMMH algorithm for estimating the posterior distribution of the number of topics, T , in

the LDA model, and to analyze its ergodicity properties.

4 A Pseudo-Marginal Metropolis-Hastings Algorithm for Esti-

mating the Number of Topics

This section consists of three parts. In Section 4.1 we describe, in general terms, the PMMH algo-

rithm. In Section 4.2 we design a variant of the algorithm particular to the problem of estimating

the marginal posterior distribution of the number of topics in the LDA model. In Section 4.3 we

show theoretically that the samples produced by our algorithm have a distribution that is close to

the target distribution νT |w.
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4.1 Pseudo-Marginal Metropolis-Hastings Algorithms

Let X be a random variable defined on a (fixed-dimensional) measurable space (X ,BX ), let ΠX

denote the distribution of X , and let πX be the density of ΠX with respect to a σ-finite measure

µX . We are interested in simulating from ΠX . In the ideal situation in which πX is known except

for a normalizing constant, the Metropolis-Hastings algorithm can be used to simulate samples

whose distribution is approximately ΠX . Let QX(·, ·) be a Markov transition function defined on

(X ,BX ), and suppose that the distributions QX(x, ·) have densities qX(x, ·) with respect to µX .

The Metropolis-Hastings algorithm is described as follows.

1. Let x be the current state. Generate a proposal x′ ∼ QX(x, ·).

2. Compute the acceptance ratio

r(x, x′) =
πX(x′)qX(x′, x)

πX(x)qX(x, x′)
. (4.1)

3. Accept x′ with probability α(x, x′) = min{r(x, x′), 1}; otherwise stay at x.

Unfortunately, when πX is analytically intractable we cannot evaluate the acceptance ratio (4.1),

which makes Step 2 in the algorithm above infeasible. So we call this algorithm the ideal Metropolis-

Hastings algorithm, and we use PMH to denote its one-step Markov transition function.

We can deal with this problem using an idea related to Data Augmentation. Assume that there

exists a measurable space (Z,BZ), and a distribution ΠX,Z on X ×Z which has density πX,Z with

respect to the product measure µX × µZ , where µZ is a σ-finite measure on (Z,BZ). Assume

further that (i) the X-marginal of πX,Z is πX , i.e.∫
Z
πX,Z(x, z) dµZ(z) = πX(x), (4.2)

and (ii) it is feasible to simulate from the conditional densities πZ |X=x, x ∈ X . If (X,Z) ∼ ΠX,Z ,

then the random variable Z is called an auxiliary variable. The development of a PMMH algo-

rithm is based on such a variable, and a rough and brief preliminary description of the method is

as follows. Within each iteration, let x′ be as in Step 2 of the ideal Metropolis-Hastings algorithm,

and let m be some large integer (the choice of m is discussed later). We generate (Z ′1, . . . , Z
′
m)

from some distribution Q(m,x′)
Z on Zm, which depends on m and x′; we let π̃(m)

X (x′) be a certain

linear combination of πX,Z(x′, Z ′1), . . . , πX,Z(x′, Z ′m) with random coefficients (this is similar to

what is done in classical importance sampling); we estimate πX(x′) by π̃(m)
X (x′); and we estimate
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πX(x) by an estimate π̃(m)
X (x), constructed in an analogous manner, and recycled from the previ-

ous iteration—this is a very important point, on which we comment further in Remark 1 below.

The PMMH algorithm is then the same as the infeasible Metropolis-Hastings algorithm described

earlier, except that we replace πX(x′) and πX(x) by π̃(m)
X (x′) and π̃(m)

X (x), respectively, and the

algorithm runs on X × Zm instead of X .

To provide the details and explain why this works, we need to set up some notation. For

any m ∈ N, let {Q(m,x)
Z , x ∈ X} be a family of distributions on Zm which are dominated by

µmZ , the m-fold product of µZ , and let q(m,x)
Z be the density of Q(m,x)

Z with respect to µmZ . If

z = (z1, . . . , zm) ∈ Zm, we let z(−l) = (z0, . . . , zl−1) ∈ Z l for l = 1, . . . ,m. Also, ifZ ∼ Q
(m,x)
Z ,

we denote the conditional distribution of Zl given Z(−l) = (z0, Z1, . . . , Zl−1) by Q(m,x)
Zl |Z(−l)

, and let

q
(m,x)
Zl |Z(−l)

denote its density with respect to µZ .

We will refer to Conditions A1, A2, and A3 below. The first is needed to properly define

π̃
(m)
X (x). The second and third are standard requirements for proving ergodicity of Markov chains,

and we will need them later when we establish the ergodicity properties of the PMMH algorithm.

A1 For all m ∈ N, x ∈ X , l = 1, . . . ,m, the conditional distribution of Z given X = x is

absolutely continuous with respect to the conditional distribution of Zl given Z(−l) = z(−l),

for any z(−l) ∈ Z l, i.e. ΠZ |X(· |x)� Q
(m,x)
Zl |Z(−l)

(
·
∣∣ z(−l)

)
.

A2 The ideal algorithm is ΠX-irreducible; that is, for any x ∈ X and A ∈ BX such that ΠX(A) >

0, there exists an integer n = n(x,A) such that P n
MH(x,A) > 0.

A3 The ideal algorithm is aperiodic; that is, there exists a probability measure ρ on X such that

g.c.d.{n : there is an εn > 0 such that P n
MH(x, ·) ≥ εnρ(·) for each x ∈ X} = 1,

where g.c.d. denotes greatest common divisor.

Under A1, for any m ∈ N, and Z = (Z1, . . . , Zm) ∈ Zm, we can define a “pseudo-marginal

density of X” by

π̃
(m)
X (x) =

1

m

m∑
l=1

πX,Z(x, Zl)

q
(m,x)
Zl |Z(−l)

(
Zl
∣∣Z(−l)

) for all x ∈ X ,

which depends on Z, although this dependence is suppressed in the notation. A key point regard-

ing π̃(m)
X (x) is that if Z ∼ Q

(m,x)
Z , then E

(
π̃

(m)
X (x)

)
= πX(x) for all x ∈ X . To see this, we

imagine that Z is generated component-wise: given an initial point z0, Z1 is generated according
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to Q(m,x)
Z1 |Z(−1)

(
·
∣∣Z(−1)

)
, etc. Then, for l = 1, . . . ,m, we have

E

(
πX,Z(x, Zl)

q
(m,x)
Zl |Z(−l)

(
Zl
∣∣Z(−l)

)) =

∫
πX,Z(x, zl)

q
(m,x)
Zl |Z(−l)

(
zl
∣∣ z(−l)

)q(m,x)
Zl |Z(−l)

(
zl
∣∣ z(−l)

)
dµZ(zl) = πX(x), (4.3)

where the last equality is from (4.2). However, without conditions on Q(m,x)
Z , there is no reason

to expect that π̃(m)
X (x)

a.s.−→ πX(x) as m → ∞. Our development in Sections 4.2 and 4.3, in the

context of the LDA model, shows that for a certain choice of the distributions Q(m,x)
Z , we do have

π̃
(m)
X (x)

a.s.−→ πX(x) as m→∞ for every x ∈ X .

With the notation above, the PMMH algorithm can now be described as follows:

1. Given the current x and Z = (Z1, . . . , Zm) (and hence the current pseudo-marginal density

π̃
(m)
X (x)), generate a proposal x′ ∼ QX(x, ·).

2. Using the proposal x′, generate Z ′ = (Z ′1, . . . , Z
′
m) ∼ Q

(m,x′)
Z .

3. Compute the pseudo-marginal density at x′, which is given by

π̃
(m)
X (x′) =

1

m

m∑
l=1

πX,Z(x′, Z ′l)

q
(m,x′)
Zl |Z(−l)

(
Z ′l
∣∣Z ′(−l)) . (4.4)

4. Compute the acceptance ratio

r̃(m)(x, x′) =
π̃

(m)
X (x′)qX(x′, x)

π̃
(m)
X (x)qX(x, x′)

. (4.5)

5. Accept x′ and Z ′ with probability min{r̃(m)(x, x′), 1}, and with the remaining probability to

stay at x and Z.

Remark 1 The purpose of the PMMH algorithm is to deal with the problem that the quantities

πX(x) and πX(x′), needed in the acceptance ratio of the ideal Metropolis-Hastings algorithm,

are not available analytically; the PMMH algorithm produces estimates of these quantities. The

PMMH algorithm is complicated, and it is perhaps natural to ask why not proceed via what is

called the Monte Carlo within Metropolis-Hastings algorithm (MCWMH), which is very simple

and is described as follows. Having proposed x′ ∼ QX(x, ·) in the ideal Metropolis-Hastings

algorithm, we generate Z ∼ Q
(m,x)
Z and Z ′ ∼ Q

(m,x′)
Z , we form π̃X(x) and π̃X(x′), calculate the

acceptance ratio r̃(m)(x, x′) given by (4.5), and we accept or reject x′ based on r̃(m)(x, x′). We

discard Z and Z ′ and the algorithm runs on X . The reason we do not use the MCWMH algorithm
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is that this algorithm has no theoretical validity. It is not a Metropolis-Hastings algorithm in any

sense (there are no detailed balance conditions that are satisfied—see Section 6 of Andrieu and

Roberts (2009)), and indeed it is not clear that it has an invariant distribution. In contrast, as we

shall see in the next paragraph, the PMMH algorithm always has an invariant distribution, and as

we shall see in Section 4.3, its ergodicity properties can be rigorously established.

In order to further analyze the properties of the PMMH algorithm, we first need to set up some

notation. For each m,n ∈ N, we let Pm,n denote the n-step Markov transition function for the

PMMH algorithm in which the number of inner loops is m. We also define a joint density π̃(m)
X,Z on

X × Zm by

π̃
(m)
X,Z(x, z) = π̃

(m)
X (x)q

(m,x)
Z (z), (4.6)

and a Markov transition function q(m)
X,Z(·; ·) by

q
(m)
X,Z(x, z;x′, z′) = qX(x, x′)q

(m,x′)
Z (z′) for all (x, z), (x′, z′) ∈ X × Zm. (4.7)

Then for the Markov chain generated according to Pm,1: (i) the invariant density is π̃(m)
X,Z and (ii)

the Markov transition function for generating a proposal from X × Zm is q(m)
X,Z . To see points (i)

and (ii), we first recall the following well-known fact regarding the Metropolis-Hastings algorithm.

Suppose that π is a density on some space Y , p(·, ·) is a Markov transition function on Y , and the

function R is defined by

R(y, y′) =
π(y′)p(y′, y)

π(y)p(y, y′)
.

If p(·, ·) is used to generate proposals from y to y′, and these are accepted with probability

min{R(y, y′), 1}, then the resulting chain has π as invariant density. With this in mind, we rewrite

the acceptance ratio (4.5) in the PMMH algorithm as

r̃(m)(x, x′) =
π̃

(m)
X (x′)qX(x′, x)

π̃
(m)
X (x)qX(x, x′)

=

[
π̃

(m)
X (x′)q

(m,x′)
Z (z′)

][
qX(x′, x)q

(m,x)
Z (z)

][
π̃

(m)
X (x)q

(m,x)
Z (z)

][
qX(x, x′)q

(m,x′)
Z (z′)

]
=
π̃

(m)
X,Z(x′, z′)q

(m)
X,Z(x′, z′;x, z)

π̃
(m)
X,Z(x, z)q

(m)
X,Z(x, z;x′, z′)

,

where the last equality is from (4.6) and (4.7). Points (i) and (ii) now follow.

4.2 A Pseudo-Marginal Metropolis-Hastings Algorithm for Simulating T

Consider now the LDA model. We will first describe an implementation of the PMMH algorithm

particular to the setup of this model, where T plays the role of X , and the vector of latent topic
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indicators z = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
) plays the role of Z. Then we will discuss im-

portant differences between our method and the original method introduced in Beaumont (2003),

and explain why our method is very efficient.

Henceforth, in order to avoid confusion, we will reserve the symbol “T ” for the random variable

denoting the number of topics, and we will use “t” to denote a fixed point in T . Let t ∈ T , and

recall that gt(·, ·) denotes the Markov transition function of the CGS of Griffiths and Steyvers

(2004), which runs over Zt. Let z0 be the starting point. Let ζ = (z1, . . . ,zm) be the initial

segment of the CGS. We will take q(m,t)
ζ to be the distribution of ζ. Thus,

q
(m,t)
ζ (ζ) = gt(z0, z1)× gt(z1, z2)× · · · × gt(zm−1, zm), (4.8)

and for any l > 0 the conditional distribution of zl given ζ(−l) is q(m,t)
zl | ζ(−l)

(
·
∣∣ ζ(−l)

)
= gt(zl−1, ·).

It is obvious that the mechanism above for generating the auxiliary variable ζ guarantees Condi-

tion A1 so, hereafter, we will not mention this condition except when we need to be explicit.

Given t and ζ, we define the pseudo-marginal distribution of T evaluated at t by

ν̃
(m)
T |w(t) =

1

m

m∑
l=1

νT,z |w(t, zl)

gt(zl−1, zl)
. (4.9)

This quantity depends implicitly on the vector of auxiliary variables ζ. The numerator on the right

side of (4.9) is known up to a normalizing constant; see the explicit expression (3.1). It is important

to note that this normalizing constant does not depend on either t or ζ. Having specified a Markov

transition function qT (·, ·) on T , our pseudo-marginal Metropolis-Hastings algorithm proceeds as

follows:

1. Given the current t and ζ = (z1, . . . ,zm) (and hence the current ν̃(m)
T |w(t)), propose t′ ∼ qT (t, ·).

2. Given t′, generate ζ ′ = (z′1, . . . ,z
′
m) according to q(m,t′)

ζ .

3. Compute ν̃(m)
T |w(t′), which is given by

ν̃
(m)
T |w(t′) =

1

m

m∑
l=1

νT,z |w(t′, z′l)

gt′(z′l−1, z
′
l)
.

4. Compute the acceptance ratio

r̃(m)(t, t′) =
ν̃

(m)
T |w(t′)qT (t′, t)

ν̃
(m)
T |w(t)qT (t, t′)

.
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5. Accept t′ and ζ ′ with probability min{r̃(m)(t, t′), 1}, and with the remaining probability stay at

t and ζ.

While Step 3 cannot really be carried out because, as noted earlier, we don’t know the normalizing

constant for νT,z |w, Step 4 is feasible because the constant cancels in the calculation of r̃(m)(t, t′).

We now return to the description of a generic PMMH algorithm given in Section 4.1, and

consider the choice of the function Q(m,x)
Z that is used in the algorithm. Ideally, we would want

Q
(m,x)
Z to be such that q(m,x)

Zl |Z(−l)
is equal to πZ|X(· |x), for then in (4.4), on the right side each

summand would be equal to πX(x). In the LDA model this choice is infeasible, of course, because

πZ|X is then the posterior distribution of z in the model indexed by T , and it is not possible to

simulate from the posterior distribution of z given the words.

Returning to the LDA setup, we note that our algorithm has the following desirable feature.

By Theorem 1, the Markov chain generated by the CGS is uniformly ergodic. Hence as m → ∞,

gmT (z0, ·) converges uniformly to νz |T,w, so ν̃(m)
T |w converges rapidly to νT |w. In sharp contrast, in

the algorithm introduced in Beaumont (2003), the distribution Q(m,x)
Z is taken to be an importance

sampling distribution, for example a product measure on Zm. For the LDA model, in which the

dimension of ZT is very high, the estimate ν̃(m)
T |w resulting from such a choice would have very

high variance, rendering the PMMH algorithm impractical. We return to this point in Section 5.2.

In the Appendix we discuss the differences between our theoretical results and those of Andrieu

and Roberts (2009).

We also note that our algorithm is fairly automatic: the only choices involved are the prior on

T , the Markov transition function qT (·, ·) on T and the choice of the CGS as the Markov chain

on z. In contrast, RJMCMC involves a number of parameters which are difficult to tune properly

when dealing with a problem of the scale of the LDA model.

Our PMMH algorithm can be used not only to estimate νT |w, but also νT,z |w, the joint posterior

distribution of T and z and, in fact, it can be used to estimate the posterior distribution of the entire

set of latent variables in the LDA model. We now explain this, and we begin with νT,z |w. Suppose

that m and n are both large. Let (Tn, ζn) be the output of the nth cycle in the outer loop, where

ζn = (ζn,1, . . . , ζn,m). A consequence of Theorem 3 below is that the distribution of Tn is nearly

equal to νT |w and, because the CGS mixes rapidly, the distribution of (Tn, ζn,m) is nearly equal

to νT,z |w. Suppose now that in addition, (β(n),θ(n)) are generated according to (2.5) (note that

the nds’s and m·sv’s in (2.5) depend on the latent topic indicator variables, although the notation

suppresses this dependence). Then the distribution of (Tn, ζn,m,β
(n),θ(n)) is nearly νT,z,β,θ |w.
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The estimate of the posterior distribution νT |w produced by our PMMH algorithm is subject

to two kinds of error. One is from the inner loop, where the pseudo-marginal distribution ν̃(m)
T |w

replaces νT |w in the calculation of the acceptance ratio, and the other is from the outer loop. The

first error is controlled by the value of m, and we note that this error is small because the CGS

mixes very fast, a fact which can be seen both theoretically (Theorem 1) and empirically. The

second error is pervasive in all Monte Carlo algorithms. In Section 4.3 we show that asm,n→∞,

the estimate of νT |w produced by our algorithm converges to νT |w.

4.3 Ergodicity of Our Pseudo-Marginal Metropolis-Hastings Algorithm

This section deals with the convergence properties of the PMMH algorithm developed in Sec-

tion 4.2. The algorithm proceeds as follows. Having fixed m, we generate T0 from the prior

νT and then generate ζ0 ∼ q
(m,T0)
ζ , to initialize the algorithm. We then generate (T1, ζ1) ∼

Pm,1(T0, ζ0; ·, ·), then (T2, ζ2) ∼ Pm,1(T1, ζ1; ·, ·), and continue in this manner. This produces

a Markov chain {Tn, ζn}∞n=0. Whether or not this chain is useful depends on the answers to the

following two questions:

I Does the pseudo-marginal distribution ν̃(m)
T |w converge to the true marginal distribution νT |w as

m→∞?

II Does the marginal distribution of Tn converge to the marginal posterior distribution νT |w for

all starting values T0? More generally, can we say that for any starting values T0 and ζ0, the

distribution of (Tn, ζn,m) converges to νT,z |w as m,n→∞?

We first consider Question I. Theorem 2 which follows establishes a Strong Law of Large Numbers

(SLLN) for ν̃(m)
T |w(t) for each t ∈ T , and hence provides justification for substituting ν̃(m)

T |w in place

of νT |w in the acceptance ratio (4.1) of the ideal Metropolis-Hastings algorithm.

Theorem 2 Let t ∈ T , and let z1, z2, . . . be a Markov chain generated according to the CGS for

the LDA model indexed by t (see (4.8)). Then

ν̃
(m)
T |w(t) =

1

m

m∑
l=1

νT,z |w(t, zl)

gt(zl−1, zl)

a.s.−→ νT |w(t) as m→∞. (4.10)

Theorem 2 states that ν̃(m)
T |w(t)

a.s.−→ νT |w(t) for each t ∈ T , and it is therefore natural to ask

why then do we need a PMMH algorithm to estimate νT |w. The answer is that the numerator of

each summand in (4.10) is known only up to a multiplicative constant, say cw. This is a problem
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when trying to use ν̃(m)
T |w(t) to estimate νT |w(t), but is not a problem when using ν̃(m)

T |w(t) in the

acceptance ratio (4.5).

A referee pointed out that when T is finite we have

cwν̃
(m)
T |w(t)∑

t′∈T cwν̃
(m)
T |w(t′)

=
ν̃

(m)
T |w(t)∑

t′∈T ν̃
(m)
T |w(t′)

a.s.−→
νT |w(t)∑
t′∈T ν̃T |w(t′)

= νT |w(t), (4.11)

where the left side is computable, and the convergence is by Theorem 2. Therefore the left side

of (4.11) may be used to estimate νT |w, and so bypass the PMMH algorithm entirely. Our em-

pirically experience with this estimator is that it has large variance and does not provide a useful

estimate of νT |w. At the same time, curiously, it is accurate enough to enable a useful PMMH

algorithm.

Proof of Theorem 2 An outline of the proof is as follows. Let z0 ∈ Zt be the initial sample.

The sequence z0, z1, z2, . . . induces the sequence (z0, z1), (z1, z2), (z2, z3), . . ., and it is easy to

see that this is a Markov chain on the state space Zt × Zt. Let h : Zt × Zt → R be defined by

h(x,y) = νT,z |w(t,y)/gt(x,y). Then the average in (4.10) is equal to (1/m)
∑m

l=1 h(ul), where

ul = (zl−1, zl). To prove Theorem 2, we will apply an ergodic theorem for Markov chains, i.e.

apply a result that gives a SLLN for Markov chains. The literature has several that we could use.

We will use Theorem 2 of Athreya et al. (1996) because that theorem is particularly amenable to

our setup. The theorem states the following, with notation adapted to our context. Suppose that

u0,u1,u2, . . . is a Markov chain on Zt × Zt, and let K(u,u′) be the Markov transition function

for the chain. If

π is an invariant distribution for K, (4.12)

and there exist a probability mass function ρ, a constant c > 0, and a positive integer r such that

Kr(u,u′) ≥ cρ(u′) for all u,u′ ∈ Zt ×Zt, (4.13)

then
1

m

m∑
l=1

h(ul)
a.s.−→
∫
h(u) dπ(u) for [π]-almost every starting point u0.

(We have taken the set A in the statement of Theorem 2 of Athreya et al. (1996) to be the entire

state space Zt × Zt.) Our plan is to identify the Markov transition function K and the invariant

distribution π for our chain u0,u1,u2, . . ., and to find a (ρ, c, r) triple that works. It will turn out

that π gives positive mass to each point in the state space, so that the “almost every” proviso does

not impose any restriction. We now proceed with the details.
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Consider now the Markov chain (z0, z1), (z1, z2), (z2, z3), . . ., let K be the Markov transition

function, and let us ask what is the formula for K
(
(x,y), (x′,y′)

)
. Since x′ must equal y, and y′

is generated according to gt(x′, ·), it is clear that

K
(
(x,y), (x′,y′)

)
= δy(x′)gt(x

′,y′) for all (x,y), (x′,y′) ∈ Zt ×Zt. (4.14)

Here, δy is the Dirac delta at y: δy(x′) = 1 if x′ = y and is zero otherwise. Define π : Zt×Zt → R

by

π(x,y) = ν
(t)
z |w(x)gt(x,y) for all (x,y) ∈ Zt ×Zt. (4.15)

It is easy to check that
∑
x∈Zt

∑
y∈Zt

ν
(t)
z |w(x)gt(x,y) = 1, so that π is a valid probability mass

function. We will show that π is the invariant distribution for the Markov transition function K.

To this end, let (x,y) ∈ Zt ×Zt, and consider
∑
u∈Zt

∑
v∈Zt

K
(
(u,v), (x,y)

)
. We have∑

u∈Zt

∑
v∈Zt

K
(
(u,v), (x,y)

)
π(u,v) =

∑
u∈Zt

∑
v∈Zt

δv(x)gt(x,y)ν
(t)
z |w(u)gt(u,v)

=
∑
u∈Zt

gt(x,y)ν
(t)
z |w(u)gt(u,x)

= gt(x,y)
∑
u∈Zt

ν
(t)
z |w(u)gt(u,x)

= gt(x,y)ν
(t)
z |w(x)

= π(x,y),

where the second-to-last equality follows from the fact that ν(t)
z |w is the invariant distribution for

the CGS for the LDA model indexed by t. This shows that equation (4.12) is satisfied, with K and

π defined by (4.14) and (4.15), respectively.

To show (4.13), let ρ(x,y) = t−Ngt(x,y) for all (x,y) ∈ Zt×Zt. It is not difficult to see that∑
x∈Zt

∑
y∈Zt

gt(x,y) = tN , and so ρ is a probability mass function on Zt × Zt. Consider now

the two-step Markov transition function K2. We have

K2
(
(x,y), (x′,y′)

)
= gt(y,x

′)gt(x
′,y′) for all (x,y), (x′,y′) ∈ Zt ×Zt. (4.16)

Informally, this is because two steps of the Markov chain (z0, z1), (z1, z2), (z2, z3), . . . take us

from (z0, z1) to (z2, z3), so we need a CGS-transition from z1 to z2 followed by a CGS-transition

from z2 to z3, and this is given by gt(z1, z2)gt(z2, z3), which is equivalent to (4.16). Alternatively,

we may write

K2
(
(x,y), (x′,y′)

)
=
∑
u∈Zt

∑
v∈Zt

K
(
(u,v), (x′,y′)

)
K
(
(x,y), (u,v)

)
,
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and apply the definition of K (equation (4.14)) to obtain (4.16). By Theorem 1, gt(y,x′) ≥ ctt
−N

with ct given by (2.9); therefore from (4.16) we get

K2
(
(x,y), (x′,y′)

)
≥ ctt

−Ngt(x
′,y′) = ctρ(x′,y′).

Hence (4.13) is satisfied, with r = 2.

We now apply Theorem 2 of Athreya et al. (1996) to conclude that

1

m

m∑
l=1

νT,z |w(t, zl)

gt(zl−1, zl)

a.s.−→
∑
x∈Zt

∑
y∈Zt

νT,z |w(t,y)

gt(x,y)
ν

(t)
z |w(x)gt(x,y)

=
∑
x∈Zt

∑
y∈Zt

νT,z |w(t,y)ν
(t)
z |w(x)

=

(∑
y∈Zt

νT,z |w(t,y)

)(∑
x∈Zt

ν
(t)
z |w(x)

)
= νT |w(t).

Corollary 1 below states that in addition to almost sure convergence of ν̃(m)
T |w(t) to νT |w(t),

we also have convergence in L1. Besides being of interest in its own right, this result is used

in the proof of Theorem 3. Corollary 1 and Lemma 1 are proved under the assumption that T
is finite. These two results are needed in our proof of Theorem 3. Actually, Theorem 3 can

be stated without the finiteness assumption, but the proof is then much more complicated and is

given in the supplementary document Chen and Doss (2018). (The results under the finiteness

assumption are of interest in their own right—when dealing with the number of components in

mixture modelling, the finiteness assumption is sometimes made; see, e.g., Fernández and Green

(2002) and Richardson and Green (1997).)

Corollary 1 Suppose that T is finite. Let t ∈ T , and let z1, z2, . . . be a Markov chain generated

according to the CGS for the LDA model indexed by t. Then∑
ζ∈Zm

t

∣∣ν̃(m)
T |w(t)− νT |w(t)

∣∣q(m,t)
ζ (ζ)→ 0 as m→∞ (4.17)

and ∑
t∈T

∑
ζ∈Zm

t

∣∣ν̃(m)
T |w(t)− νT |w(t)

∣∣q(m,t)
ζ (ζ)→ 0 as m→∞. (4.18)
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Proof We will show that the sequence {ν̃(m)
T |w(t)}∞m=1 is uniformly integrable. Since almost sure

convergence in the presence of uniform integrability implies L1 convergence, the result will follow.

By Theorem 1, gt(z, z′) ≥ ct(1/t)
N ; therefore we have

ν̃
(m)
T |w(t) =

1

m

m∑
l=1

νT,z |w(t, zl)

gt(zl−1, zl)
≤ 1

m

m∑
l=1

νT,z |w(t, zl)

ct/tN
≤ 1

m

m∑
l=1

1

ct/tN
=
tN

ct
<∞.

Since ν̃(m)
T |w(t) is bounded by a constant which does not depend on m, the sequence {ν̃(m)

T |w(t)}∞m=1

is uniformly integrable, so (4.17) follows, and because T is finite, (4.18) follows from (4.17).

Lemma 1 and Theorem 3 deal with Question II. Lemma 1 is a straightforward consequence of

Theorems 1 and 8 in Andrieu and Roberts (2009). The results in Theorem 3 are similar to those in

Theorem 6 and Corollary 7 in Andrieu and Roberts (2009), but with important differences, which

we discuss later. To state our results, we need some additional notation. For each m ∈ N, define

ν̃
(m)
T,ζ |w(t, ζ) = ν̃

(m)
T |w(t)q

(m,t)
ζ (ζ) for all t ∈ T , ζ ∈ Zmt ,

ν
(m)
T,ζ |w(t, ζ) = νT |w(t)q

(m,t)
ζ (ζ) for all t ∈ T , ζ ∈ Zmt .

(4.19)

Note that ν̃(m)
T,ζ |w(t, ζ) was defined earlier in a general setting, and from the discussion just be-

fore (4.3), we know that E(ν̃
(m)
T |w(t)) = νT |w(t), where the expectation is taken with respect to

q
(m,t)
ζ . From the discussion following (4.7), we know that ν̃(m)

T,ζ |w is the invariant distribution of the

PMMH algorithm with m inner loops. Further, define the sub-stochastic kernel KT on T by

KT (t, t′) = min{1, r(t, t′)}qT (t, t′). (4.20)

In brief, Lemma 1 states that the ergodicity properties of the ideal Metropolis-Hastings algorithm

get passed on to the PMMH algorithm (whose invariant distribution is ν̃(m)
T,ζ |w—see the discussion

following (4.7)): (1) if the ideal Metropolis-Hastings algorithm is ergodic, then for each m ∈ N so

is the PMMH algorithm; and (2) if KT given by (4.20) satisfies a Doeblin-like condition, then the

PMMH algorithm is uniformly ergodic. Lemma 1 is a “fixed-m” result. Theorem 3 gives results

for the case where both m,n → ∞. One of these is as follows. Let µm,nT be the distribution of T

after n cycles of the PMMH algorithm with m inner loops. Then, as m,n→∞, µm,nT converges to

νT |w, i.e. the posterior distribution of T , in absolute deviation norm. Thus, the PMMH algorithm

can be used to estimate νT |w. The theorem also states that the PMMH algorithm can be used to

estimate νT,z |w, and even νT,z,β,θ |w.

Lemma 1 Suppose that T is finite. Assume Conditions A2, and A3 in the context of the LDA

model. Then:
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1. The PMMH algorithm is ergodic, i.e.

lim
n→∞

∥∥Pm,n(t, ζ; ·, ·)− ν̃(m)
T,ζ |w(·, ·)

∥∥ = 0 for all t ∈ T , ζ ∈ Zmt . (4.21)

2. Suppose in addition that there exist a probability measure %T on T , a positive integer n0, and a

constant δ > 0 such that

Kn0
T (t, ·) ≥ δ%T (·) for all t ∈ T .

Then the PMMH algorithm is uniformly ergodic: there exists a constant κ ∈ (0, 1) such that∥∥Pm,n(t, ζ; ·, ·)− ν̃(m)
T,ζ |w(·, ·)

∥∥ ≤ (1− κ)[n/n0] for all t ∈ T , ζ ∈ Zmt .

Moreover, the constant κ does not depend on m.

Consider now the PMMH algorithm with m inner loops. Recall that µm,nT denotes the distribu-

tion of Tn. Let µm,nT,z denote the distribution of (Tn, ζn,m). Given (Tn, ζn,m), we generate (β(n),θ(n))

according to (2.5). Let µm,nT,z,β,θ denote the distribution of (Tn, ζn,m,β
(n),θ(n)). These distributions

all depend on the starting point (t0, ζ0) ∈ S, but this dependence is suppressed in the notation.

Theorem 3 Suppose that T is finite. Assume Conditions A2 and A3 in the context of the LDA

model, the conditions of Part 2 of Lemma 1, and that the mechanism for generating ζ is the CGS

(see (4.8)). Then:

1. For any ε > 0 there exist positive integers M(ε) and N(ε) such that for any m ≥M(ε) and any

n ≥ N(ε), for any initial points t0 ∈ T and ζ0 ∈ Zmt we have∥∥Pm,n(t0, ζ0; ·, ·)− ν(m)
T,ζ |w(·, ·)

∥∥ ≤ ε.

2.
∥∥µm,nT (·)− νT |w(·)

∥∥→ 0 as m,n→∞.

3.
∥∥µm,nT,z (·, ·)− νT,z |w(·, ·)

∥∥→ 0 as m,n→∞.

4. For any t ∈ T , z ∈ Zt,∥∥µm,nT,z,β,θ(t, z, ·, ·)− νT,z,β,θ |w(t, z, ·, ·)
∥∥→ 0 as m,n→∞.

As is the case for Theorem 1, we do not provide rates for the convergence.
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5 Performance of the PMMH Algorithm for Selecting the Num-

ber of Topics

This section provides an evaluation of our methodology, and consists of three parts. In Section 5.1

we briefly review existing methods for estimating T . In Section 5.2 we consider a synthetic corpus

generated from the LDA model. The reason for considering synthetic corpora is that for such

corpora the parameters are known, thus enabling an evaluation of performance and comparison

with other methods. In Section 5.3 we consider two real corpora, each consisting of a set of

articles from Wikipedia. For each corpus, the topics spanned by the documents in the corpus are

fairly close to each other. For these corpora, the true number of topics is not known with certainty,

so assessment of any methodology is difficult to perform. To carry out the evaluation, we use a

criterion called “Posterior Predictive Checking” (PPC), which we discuss in Section 5.1.

The following facts are obvious, but it is perhaps worthwhile to state them explicitly. The

PMMH algorithm is not, properly speaking, an estimator of T ; rather, it is a Monte Carlo method

for approximating the posterior distribution of T , and hence the mode (or mean) of that posterior.

Likewise, the harmonic mean estimator and Chib’s method are not estimators of T ; rather, they are

procedures for approximating the intractable likelihoodmw(T ), and hence the standard frequentist

estimator of T , which is arg maxT mw(T ). To express this more forcefully, if we were to compare

the PMMH algorithm to Chib’s method and the HME using extremely large simulation sizes,

ultimately we would be comparing the mode of the posterior and arg maxT mw(T ) as estimators

of T , and our comparison would have nothing to do with the PMMH algorithm, Chib’s method,

and the HME. Therefore, the PMMH algorithm, Chib’s method, and the HME should be judged on

their efficiency (computational and statistical) in carrying out the approximations for which they

were designed. We should also keep in mind the well-known fact that, under a uniform prior, the

mode of the posterior and the maximum likelihood estimate are nearly equal, at least for large data

sets.

In Sections 5.1 and 5.2 we show that the PMMH algorithm performs very well on both synthetic

and real data, and compares very favorably with all the other methods that we review, where

evaluation is in the sense described in the paragraph above. All the data sets we consider are large,

and consequently Bayes and frequentist estimators of T are both nearly perfect, and the issue is

computability of these estimators. Generally speaking, we find that the methods we discuss for

approximating the frequentist estimator do not fare well on the LDA model, because of the high
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dimensions involved.

5.1 Other Methods for Selecting the Number of Topics

Below, we discuss harmonic mean estimators and Chib’s (1995) method. We also discuss PPC,

which is a general-purpose Bayesian method for model evaluation and checking.

Harmonic mean estimation was discussed in Section 1, and here we mention that there are

two ways to implement the method. In the first implementation, we let z(1), . . . ,z(n) be generated

according to the CGS indexed by T . The invariant distribution for this chain is ν(T )
z |w. Let L(T )

w (z)

denote the likelihood of z. For this implementation, which we denote by HME-z, we form the

estimator m̂w(T ) =
[
(1/n)

∑n
i=1

(
1/L

(T )
w (z(i))

)]−1. In the second implementation, we consider

the state space of the entire latent variable ψ. We run a Markov chain with invariant distribution

ν
(T )
ψ |w. Let `(T )

w (ψ) denote the likelihood of ψ. This implementation, which we denote by HME-ψ,

is then exactly as originally described in Section 1. Chen (2015) provides details, including explicit

expressions for the two HME’s, and also discusses the Markov chain that is used for HME-ψ.

Chib’s Method This is a generic method for estimating the marginal likelihood from the output

of a Gibbs sampler. Here, we briefly explain the method for the problem of estimating mw(T ).

Suppose that z(1), . . . ,z(n) are generated according to the CGS indexed by T . Note that for any

fixed but arbitrary point (β, z), we have the identity

mw(T ) =
`
(T )
w (β, z) ν

(T )
β,z(β, z)

ν
(T )
β,z |w(β, z)

=
`
(T )
w (β, z) ν

(T )
β,z(β, z)

ν
(T )
z |w(z) ν

(T )
β |z,w(β | z)

. (5.1)

Of the four terms on the right side of (5.1), all are known except for ν(T )
z |w(z), which we estimate

by ν̂
(T )
z |w(z) =

[
(1/n)

∑n
i=1 gT (z(i), z)

]
. Details, including explicit expressions for `(T )

w (β, z),

ν
(T )
β,z(β, z), and ν(T )

β |z,w(β | z), and an explanation of why ν̂(T )
z |w(z)

a.s.−→ ν
(T )
z |w(z) are given in Chen

(2015). For the method to work successfully, Chib (1995) recommended that the distinguished

point (β, z) be taken to be a “high density point” under the posterior distribution, and to fully

specify the method, we need to state how we choose this point. We choose it by running a small

pilot experiment in which we generate a Markov chain (β(1), z(1)), . . . , (β(k), z(k)) with invariant

distribution ν(T )
β,z |w. We take the average of β(1), . . . ,β(k), and use this as the fixed point β. We

specify the fixed point z as follows. For each word wdi, we let t = arg maxs
∑k

j=1 z
(j)
dis, and then

let zdit = 1 and zdit′ = 0 for t′ 6= t. Chib’s method is not automatic: its efficiency depends heavily

on the choice of the distinguished point (β, z). Unfortunately, because of the high dimension of
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the LDA model, there may not exist a point of sufficiently high density, and even if such a point

exists, it may be hard to identify it.

Posterior Predictive Checking PPC is a Bayesian model checking method which, when applied to

the LDA context, is described as follows. For d = 1, . . . , D, letw(−d) denote the corpus consisting

of all the documents except for document d. To evaluate a given model (in our case the LDA model

indexed by a given T ) through posterior predictive checking, in essence we see how well the model

based on w(−d) predicts document d, the held-out document. We do this for d = 1, . . . , D, and

take the geometric mean. We formalize this as follows. For the LDA model indexed by T , the

predictive likelihood of the held-out document is

L(T )(d) =

∫
`(T )
wd

(ψ)νψ |w(−d)
(ψ) dψ. (5.2)

We form the score S(T ) =
[∏D

d=1 L
(T )(d)

]1/D. Two different values of T are compared via

their scores. Unfortunately, calculation of S(T ) is computationally extremely demanding. In

the machine learning literature, L(T )(d) is often estimated by `(T )
wd (ψ̂), where ψ̂ is a single point

estimate that “summarizes the distribution ν(T )
ψ |w(−d)

” in some sense. Approximations of this sort

can be woefully inadequate. Conceptually, it is easy to estimate L(T )(d) by direct Monte Carlo: let

ψ1,ψ2, . . . be an ergodic Markov chain with invariant distribution ν(T )
ψ |w(−d). We then approximate

the integral by (1/n)
∑n

i=1 `
(T )
wd (ψi). Care needs to be exercised, however, because in (5.2), the

variable ψ in the term `
(T )
wd (ψ) has a dimension that is different than that of the variable ψ in the

rest of the integral. Chen (2015) gives a careful description of a Monte Carlo scheme for estimating

the integral in (5.2).

5.2 A Synthetic Data Set

Here we evaluate the performance of our PMMH algorithm on a corpus generated synthetically,

using the following specifications of the LDA model: the number of topics is T = 20, the hyper-

parameter is h = (α, η) = (0.1, 0.5), the vocabulary size is V = 100, the number of documents

is D = 2000, and the document lengths are nd = 300, d = 1, . . . , D. We generated the latent

variables and the documents according to the LDA model with these specifications. For this cor-

pus, we took the prior on T to be the uniform distribution on {tmin, . . . , tmax}, where tmin = 2 and

tmax = 100, and for our PMMH algorithm, we took the Markov transition function qT to be defined

as follows. For t not equal to one of the boundary points tmin or tmax, qT (t, ·) gives mass 1/2 to
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t − 1 and t + 1; and qT (tmin, ·) and qT (tmax, ·) give mass 1 to tmin + 1 and tmax − 1, respectively.

We ran the algorithm with m = 50, 75, and 100, each time for n = 10,000 iterations, and taking

the starting value for the number of topics to be T0 = 30. The reason for considering multiple

values of m is to evaluate the effect of m on the performance of the algorithm, and in particular to

determine whether a value of m as small as 50 gives good results.

The top two panels in Figure 1 give plots of running means for T produced by the PMMH

algorithm using the three values of m. The plots differ only in the scaling of the x-axis. As

mentioned earlier, because of the size of the corpus, we presume that the posterior distribution is

essentially a point mass at the true value of T (which is 20) and also that the marginal likelihood

mw(·) is maximized at the true value. The plots show that even when m = 50, it takes less than

4000 iterations for the mean to reach 20; and once it reaches 20 the mean essentially remains there.

The plots also show that convergence is faster when m is larger, but that the gain in efficiency is

relatively minor, and a value of m as small as 50 produces good results. To investigate the effect

of the vocabulary size, we also produced the plot at the bottom of Figure 1. For this plot, the

corpus has the same configuration as for the top two plots, except that we took V = 3000 (and

we took m = 50). The plot shows that with this new configuration we still have convergence;

although it is a bit slower, it is still well within the acceptable range. In our experiments we used

the true value of h. The reason we use this oracle value is that here our focus is on estimation of

T , and considering various methods for estimating h would obscure our results (in the next section

we discuss the issue of estimating h). In any case, there is no qualitative change in our results

if we use the empirical Bayes estimate of h (discussed in the next subsection). In this example,

where D = 2000, the posterior distribution of T is fairly concentrated. In Chen and Doss (2018)

we investigate the behavior of the algorithm in situations where the posterior is more diffuse. A

brief summary of our findings is as follows. Running means of T produced by our algorithm still

converge, although convergence slows as the posterior becomes more diffuse. Nevertheless, the

algorithm still produces good results.

Here we remark on the choice of using the CGS in the denominator of (4.9). In principle,

any importance sampling distribution can be used in that denominator, but unless the distribution

is chosen carefully, one should not expect good results. Although it is not advisable to do this,

in Bayesian statistics the prior is sometimes used as an importance sampling distribution. When

we used the prior νz in the denominator of (4.9), the performance of the algorithm was abysmal:

starting at T0 = 30, a traceplot of T reached 2 in less than 100 iterations and stayed there.
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Figure 1: Running means for T produced by the PMMH algorithm. The top two plots, which differ

only in the scale of the x-axis, show the running means using m = 50, 75, and 100 for the corpus

described in the first paragraph of this subsection. The bottom plot gives the running mean for the

case where V is increased to 3000.

We now compare the performances of the PMMH algorithm, the two harmonic mean estima-

tors, and the Chib estimator, keeping in mind the caveat stated at the beginning of Section 5. To

this end we calculated the HME-z, HME-ψ, and Chib estimates for T = 3, . . . , 60, using Markov

chains of lengths 3500, 3500, and 1000, respectively. For the Chib method, we used a Markov chain

of length 300 for the pilot study needed to select the high-density point that is used in the main

simulation. With these Markov chain lengths, the running times of all these methods are approxi-

mately equal, and this common time is about five times the running time of the PMMH algorithm

using m = 50. Information on timing for each algorithm, data set, and parameter configuration

used in this paper is given in Section 5.4.

Figure 2 shows the results. The HME-z and HME-ψ estimates of arg maxT mw(T ) are almost

identical, and both increase with T over the entire range {3, . . . , 60}. So the HME method gives

hopelessly bad estimates. The poor performance of the HME has been noted in the literature before

(Wallach et al., 2009b), although not for the problem of choosing T , and we included harmonic
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mean estimation in our study because the method does get used in the machine learning literature

(Griffiths and Steyvers (2004), Griffiths et al. (2004), Wallach (2006), among others). Figure 2(b)

gives a plot of Chib’s estimate of the marginal likelihood on the log scale. The maximum is reached

at T = 18 and the estimate at T = 20 is a local minimum. It should be noted that the ratio of

estimate of the marginal likelihood at 18 to the estimate at 20 is exp(16732) (the ratio is understated

by the appearance of the plot, which is on the log scale); thus, Chib’s method effectively rules out

the true value of T . The poor performance of Chib’s method for topic modelling has been noted in

the literature before (Wallach et al., 2009b) and is not surprising in view of the high dimension of

the LDA model, as was discussed in Section 5.1.

The PPC method is evaluated empirically in the supplementary document Chen and Doss

(2018), where we give an illustration on three synthetic corpora which are similar to the corpus de-

scribed here, except that the number of topics is only 6 instead of 20, and the number of documents

is only 300 instead of 2000. In that illustration all the methods are considered and compared, and

the results are, roughly speaking, as follows. The HME and Chib methods perform very poorly;

however the PPC method gives reasonable results, although the estimates it produces are not as

accurate as those produced by the PMMH algorithm. Unfortunately, the PPC method is computa-

tionally infeasible except on small corpora, and in particular, we were not able to implement it on

the corpus considered in this section.
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Figure 2: HME-ψ, HME-z, and Chib estimates of log(mw(T )) for the models indexed by different

T ’s. The vertical line at 20 in each plot represents the true value of T .

There is one more point that should be mentioned. The HME’s, Chib’s estimator, and the PPC

criterion all have to be computed for a range of values of T ’s, and this range needs to include the
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true value. In our experiments we used the range {3, . . . , 60}, and this decision was informed by

our knowledge that the true value is 20. When dealing with a real data set we will not have an

oracle which presents us with a good range to use, and we may have to use a large range of values

of T , making these methods slow and unwieldy. By contrast, our algorithm does not suffer from

this difficulty. To illustrate this, we pretended that we believed that the true value of T might be

around 200, so we ran the PMMH algorithm using m = 50 with starting value for the number of

topics being T = 200. A traceplot of T reached T = 30 in 470 iterations and from then on looked

very similar to the traceplot of T for which the starting value is T = 30.

5.3 Wikipedia Data Sets

In this section, we illustrate the use of our PMMH algorithm on two collections of real documents

from the English Wikipedia. When a Wikipedia web article is created, it is typically tagged to one

or more categories, one of which is the “primary category.” The two corpora we used were created

by George (2015). (They are included in compact form in our software; the original files, with

descriptions, are available at https://github.com/clintpgeorge/ldamcmc/tree/

master/data-raw.) The first corpus, which we call R-1, is a subset of the articles under the

Wikipedia category Whales. Each of these articles is tagged to one of the following five subcat-

egories: Baleen Whale, Dolphins, Oceanic Dolphins, Whaling, and Whale Products. The other

corpus, which we call R-2, is a subset of the articles under the Wikipedia category Birds of Prey.

Each of these articles is tagged to one of the following seven subcategories: Eagles, Falco (genus),

Falconry, Harriers, Hawks, Kites, and Owls. We will act as if the number of topics is unknown,

and the objective is to infer it. We remark that each of these corpora is hard to analyze because

in each corpus the subcategories are similar to each other—a Baleen Whale article and a Dolphin

article are far more similar than are two New York Times articles, one from Sports and the other

from Politics. We selected these corpora precisely because they are difficult to cluster, and we are

interested in seeing how our methodology works for such corpora.

The following point is obvious, but nevertheless is well worth emphasizing. For these real

corpora, there is no such thing as a “true number of topics”: the variable T is a hyperparameter of

the LDA model, and there is no reason to think that either of the two corpora follows this model.

For example, it may be reasonable to believe, a priori, that two of the 7 subcategories under Birds

of Prey should be lumped together, or that one of the subcategories should be split in two. There
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are actually two distinct goals: (1) estimate the true value of T , and (2) identify the value of T , say

T0, for which the LDA model based on T0 outperforms LDA models based on any other value of

T . The first goal is not meaningful if the LDA model does not hold, while the second is meaningful

even in that case. (This is analogous to a variable selection situation in linear regression. One goal

is to identify those regression coefficients which are exactly zero, and a distinct goal is to select a

set of variables for which the corresponding model has the best predictive ability—the second goal

is meaningful even if the linear regression model does not hold. See Yang (2005) for a discussion

of these points.) Our interest, therefore, is in whether the mode of the posterior distribution of T , as

estimated by the PMMH algorithm, gives a model with good predictive ability. In this regard, we

will consider the PPC score, as this criterion provides a useful method for evaluation of predictive

ability. In essence, we want to determine whether accomplishing the first goal also accomplishes

the second goal.

For each of these corpora, we ran the PMMH algorithm with m = 50 for n = 10,000 itera-

tions, using the same specifications for the prior νT and the Markov transition function qT as in the

experiments done on the synthetic corpus described in Section 5.2. An issue of implementation

is the choice of the hyperparameter h = (α, η). The literature gives several default choices (Grif-

fiths and Steyvers, 2004; Asuncion et al., 2009; Řehůřek and Sojka, 2010); these are all ad-hoc,

i.e. not based on any statistical principle. The gold standard is the empirical Bayes choice: let

m(h) be the marginal likelihood of the data under the model specified by the hyperparameter h

(this is the likelihood with the parameter ψ integrated out). The empirical Bayes choice is by def-

inition arg maxhm(h), but unfortunately, it is analytically intractable. Wallach (2006) proposed a

“Gibbs-EM” algorithm, in which the E-step is approximated by an MCMC estimate, and Blei et al.

(2003) developed a “variational-inference EM” algorithm, in which the E-step is approximated via

variational methods. For neither of these schemes has theoretical validity been established. An

MCMC algorithm for estimating arg maxhm(h) is developed in George and Doss (2018), and this

is the algorithm we use. Table 1 presents some information on these Wikipedia corpora, including

the value of the empirical Bayes choice of h.

Table 2 gives the distributions of the samples of T produced by the algorithm for corpora R-1

and R-2. As can be seen from the table, for R-1 the posterior distribution of T is concentrated at 5,

with 96.35% of its mass at that point; and for R-2, it is concentrated at 7, with 97.2% of its mass at

that point.

Figure 3 gives plots of the running means of T produced by the PMMH algorithm for corpora
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Corpus Wikipedia Category N h = (α, η) Wikipedia Subcategories

R-1 Whales (153) 52,107 (.11, .41) Baleen Whale (40), Dolphins (10),

Oceanic Dolphins (61), Whaling (32),

Whale Products (10)

R-2 Birds of Prey (304) 116,135 (.11, .25) Eagles (62), Falco (genus) (55),

Falconry (52), Harriers (21),

Hawks (16), Kites (22), Owls (76)

Table 1: The two Wikipedia corpora. The numbers shown in parentheses after the category and

subcategory names are the numbers of documents associated with the corresponding categories

and subcategories, and N is the total number of words in the corpus.

Corpus T = 5 T ≥ 6 Corpus T ≤ 6 T = 7 T ≥ 8

R-1 96.35% 3.64% R-2 1.5% 97.22% 1.28%

Table 2: Posterior distributions of T given by the PMMH algorithm with m = 50 for corpora R-1

and R-2.

R-1 and R-2. The left panel shows that for R-1 it takes about 5000 iterations for the mean to reach

the posterior mode of 5, and that once it reaches 5, it essentially stays there. We see the same effect

for R-2 (right panel), except that the number of iterations is 3000.
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Figure 3: Running means for T produced by the PMMH algorithm with m = 50 for the Wikipedia

corpora.

31



Table 2 shows that for each corpus the mode of the posterior distribution of T , as estimated by

the PMMH algorithm, is the number of subcategories; but as noted earlier, one cannot conclude

that the estimate produced by the algorithm is correct, because the true number of topics is not a

well-defined entity. It is therefore of interest to evaluate the estimate produced by the algorithm via

the PPC score. Figure 4 gives a plot of the PPC score S(T ) for T = 2, . . . , 20 on the log scale, for

each corpus. For each T , the score S(T ) was estimated using Markov chains of length 100. (The

reason the chains are this short is that for each T , we need to run a chain for each document in

the corpus, as indicated in Section 5.1.) The plots show that for corpus R-1, according to the PPC

criterion the LDA model with T = 5 fits the data well (and is nearly optimal), and for corpus R-2,

the model with T = 7 gives the best fit. We conclude that our algorithm produces very reasonable

results on these two real corpora.

When looking at Figure 4, one notes that as T moves away from the mode, the drop is sharper

for R-2 than for R-1. Chen (2015) gives an interesting explanation for this. He shows that the L1

distances between the topic vectors are smaller on average for R-1 than they are for R-2. Thus,

estimation of T is harder for R-1, and this explains both the relative flatness of the plot of the PPC

score near its maximizer and the slower convergence of the running mean for R-1.
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Figure 4: PPC score (on the log scale) for T = 2, 3, . . . , 20 for the Wikipedia corpora. The vertical

lines indicate the mode of the posterior distribution of T , as estimated by the PMMH algorithm.
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5.4 Speed of Execution and a Grouped Gibbs Sampler for Distributed Com-

puting

Our empirical studies were conducted through the R programming language (R Core Team, 2017),

using Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuettel and Sanderson,

2014), on a 3.40GHz quad-core Intel i7-3770 CPU running Linux. Table 3 gives the amount of

time, in hours, for each experiment.

Data Set Method Time

Synthetic data PMMH (n = 5000,m = 50) 22.7

PMMH (n = 5000,m = 75) 33.6

PMMH (n = 5000,m = 100) 44.5

Chib estimator 22.7

HME-z 22.7

HME-ψ 22.7

Whales corpus PMMH (n = 10,000,m = 50) 1.1

PPC 3.3

Birds of prey corpus PMMH (n = 10,000,m = 50) 1.2

PPC 10.6

Table 3: Length of time, in hours, it takes to carry out the various methods on the three corpora

studied in Sections 5.2 and 5.3. For the HME, Chib and PPC methods, the parameters used are as

described in those sections.

As is clear from the table, the amount of time it takes to execute the PMMH algorithm is

quite significant, and we now address this problem. The bottleneck is the CGS, which is a Gibbs

sampler that runs on the vector z = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
), updating each variable

sequentially, with β and θ integrated out. So there is a node for each word of each document.

As mentioned in Section 2, George and Doss (2018) considered a Markov chain for estimating

the posterior distribution of ψ = (β,θ, z) that runs on the pair (z, (β,θ)): the chain is a two-

cycle Gibbs sampler based on the conditionals (2.5) and (2.6). This scheme, which we will call

“Grouped Gibbs Sampler” (GGS), has the very attractive feature that it can be parallelized: given

(β,θ) and w, all the components of z are independent, so can be updated simultaneously by

different processors; and given z and w, all the θd’s and βt’s can be updated simultaneously by

33



different processors.

The scheme was mentioned briefly by Newman et al. (2009), who dismissed it on the grounds

that the CGS has superior mixing properties because, according to a theorem in Liu et al. (1994),

collapsing improves the mixing rate. Liu et al. (1994) consider a Gibbs sampling situation involv-

ing three variables X , Y , and Z. They show that a Gibbs sampler on the pair (X, Y ) (with Z

integrated out), which they call a collapsed Gibbs sampler, is superior (in terms of mixing) to a

Gibbs sampler on the triple (X, Y, Z). They also show that a two-cycle Gibbs sampler on the pair

(X, (Y, Z)), which they call a grouped Gibbs sampler, is superior to a Gibbs sampler on the triple

(X, Y, Z). Using the terminology of Liu et al. (1994), if we take our base to be the Gibbs sampler

that runs through (β1, . . . , βT , θ1, . . . , θD, z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
), then the CGS is a col-

lapsed version, while the GGS is a grouped version. The theorem in Liu et al. (1994) says nothing

about a comparison between the CGS and the GGS, because the CGS is not a collapsed version

of the GGS in any sense at all. George (2015) compared the mixing rates for various parameters

empirically, and found that the mixing rate for the CGS is faster, but not much faster.

To conclude, if we have access to distributed computing, the execution time of the PMMH al-

gorithm can be reduced by several orders of magnitude if we use the GGS instead of the CGS. How

much of an improvement we get depends on the extent of distributed computing that is available.

6 Discussion

In order to use LDA, one has to specify the number of topics, and the development of a principled

method for doing so is not easy. Therefore, it is perhaps natural to ask why not abandon LDA

altogether and use a Bayesian model in which the number of topics does not need to be specified.

Indeed, topic models based on hierarchical Dirichlet processes (HDP’s) (Teh et al., 2006) have

precisely this feature.

In the literature, one often sees statements to the effect that HDP’s are a nonparametric exten-

sion of LDA. Actually, HDP-based models are not extensions of LDA models in any sense: for

no hyperparameter setting does an HDP-based model reduce to an LDA model. The models are

simply different, and whether HDP-based models should be preferred is an open question: there

are no formal studies that show that their performance is superior to that of LDA. While HDP-

based models have proven to be quite useful, the various MCMC implementations have all been

computationally very intensive. This problem precludes fitting these models on very large corpora,
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at least by MCMC (however note that in this regard, Stochastic Variational Inference (Hoffman

et al., 2013) gives useful approximations even on massive corpora).

It has sometimes been proposed that HDP’s be used to estimate the number of topics. This

suggestion deals with a subtle point. Generally speaking, for a given corpus the number of topics

is not a well-defined quantity, for the same reason that for a given finite set of points in Euclidean

space, the number of clusters is not well defined. However, for an LDA model in which T is fixed

but unknown, T is a well-defined parameter. On the other hand, HDP-based models inherently

involve infinite mixtures, so using them to estimate a parameter T known to be a fixed finite

number is not sensible in the first place. Thus, these models should not be used to infer the number

of topics for an LDA model, and in fact the literature has results that say that, generally speaking,

Dirichlet process mixture models should not be used to estimate the number of components in a

mixture (Miller and Harrison, 2013, 2014). These results should not be too surprising.

Appendix

Proof of Theorem 1

We first establish the lower bound on gT (z, z′). By the nature of the CGS, gT (z, z′) can be ex-

pressed as

gT (z, z′) = p
(
z′11

∣∣ z1/{z11}, z2, . . . ,zD,w)× p
(
z′12

∣∣ z′11, z1/{z11, z12}, z2, . . . ,zD,w
)
× · · ·

× p
(
z′1n1

∣∣ z′11, z
′
12, . . . , z

′
1,n1−1, z2, . . . ,zD,w

)
×

· · · · · ·

× p
(
z′D1

∣∣ z′1, . . . ,z′D−1, zD/{zD1},w
)

× p
(
z′D2

∣∣ z′1, . . . ,z′D−1, z
′
D1, zD/{zD1, zD2},w

)
× · · ·

× p
(
z′DnD

∣∣ z′1, . . . ,z′D−1, z
′
D1, z

′
D2, . . . , z

′
D,nD−1,w

)
.

From the expressions for the full conditional distributions in Section 2 (see (2.8)), we know that

for each d = 1, . . . , D, i = 1, . . . , nd, and t = 1, . . . , T ,

p
(
zdit = 1

∣∣ z(−di),w
)

=

(
m·tv(−di) + η

m·t·(−di) + V η

)(
ndt(−di) + α

nd − 1 + Tα

)[ T∑
t=1

(
m·tv(−di) + η

m·t·(−di) + V η

)(
ndt(−di) + α

nd − 1 + Tα

)]−1

.
(A.1)
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Applying the Cauchy-Schwartz inequality to the square of the sum term between the brackets

in (A.1), we get[
T∑
t=1

m·tv(−di) + η

m·t·(−di) + V η
·
ndt(−di) + α

nd − 1 + Tα

]2

≤

[
T∑
t=1

(
m·tv(−di) + η

m·t·(−di) + V η

)2
][

T∑
t=1

(
ndt(−di) + α

nd − 1 + Tα

)2
]

≤

[
T∑
t=1

12

][
T∑
t=1

(
ndt(−di) + α

nd − 1 + Tα

)2
]

= T

[∑T
t=1(ndt(−di) + α)2

(nd − 1 + Tα)2

]

≤ T

[(∑T
t=1(ndt(−di) + α)

)2
(nd − 1 + Tα)2

]

= T

[
(nd − 1 + Tα)2

(nd − 1 + Tα)2

]
= T.

Hence from (A.1) we obtain

p
(
zdit = 1

∣∣ z(−di),w
)
≥
(
m·tv(−di) + η

m·t·(−di) + V η

)(
ndt(−di) + α

nd − 1 + Tα

)
1√
T

≥
(

η

N − 1 + V η

)(
α

nd − 1 + Tα

)
1√
T

=

(
η

N − 1 + V η

)( √
Tα

nd − 1 + Tα

)
1

T
, (A.2)

where (A.2) does not depend on z or z′. Therefore,

gT (z, z′) ≥
D∏
d=1

nd∏
i=1

(
η

N − 1 + V η

)( √
Tα

nd − 1 + Tα

)
1

T

=

(
η

N − 1 + V η

)N[ D∏
d=1

( √
Tα

nd − 1 + Tα

)nd

]( 1

T

)N
= cTυ(z′),

where cT is given by

cT =

(
η

N − 1 + V η

)N[ D∏
d=1

( √
Tα

nd − 1 + Tα

)nd

]
.

The lower bound on gT (z, z′) now gives ‖gmT (z0, ·)− νz |w(·)‖TV ≤ (1− cT )m (see Theorem 3 of

Athreya et al. (1996)).
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Proof of Lemma 1

Proof of Part 1 Under Conditions A2, and A3, all the assumptions of Theorem 1 of Andrieu and

Roberts (2009) are satisfied, and we may apply that theorem to conclude that (4.21) is true.

Proof of Part 2 Define

γ(m)(t, ζ) =
1

m

m∑
l=1

νz |T,w(zl | t)
gt(zl−1, zl)

,

in self-explanatory notation. Using the result in Theorem 1 that gt(zl−1, zl) ≥ ct/t
N , we get

γ(m)(t, ζ) =
1

m

m∑
l=1

νz |T,w(zl | t)
gt(zl−1, zl)

≤ 1

m

m∑
l=1

1

ct/tN
=
tN

ct
≤ max

t∈T

tN

ct
:= γ∗,

where γ∗ on the right side does not involve m and is finite. Define

%
(m)
T,ζ (t, ζ) = %T (t)q

(m,t)
ζ (ζ)γ(m)(t, ζ) for all t ∈ T and ζ ∈ Zmt .

Then, %(m)
T,ζ is a probability measure on S = ∪t∈T

(
{t} × Zmt

)
. This is because∑

t∈T

∑
ζ∈Zm

t

%T (t)q
(m,t)
ζ (ζ)γ(m)(t, ζ) =

∑
t∈T

%T (t)
∑
ζ∈Zm

t

q
(m,t)
ζ (ζ)γ(m)(t, ζ)

=
∑
t∈T

%T (t)

= 1,

(A.3)

where the second equality in (A.3) follows because
∑
ζ∈Zm

t
q
(m,t)
ζ (ζ)γ(m)(t, ζ) = E(γ(m)(t, ζ)),

and E(γ(m)(t, ζ)) = 1, which can be proved in the same way we proved that E
(
π̃

(m)
X (x)

)
=

πX(x)—see (4.3). Let γ(m)
∗ = maxt,ζ γ

(m)(t, ζ). Clearly γ(m)
∗ ≤ γ∗. Applying the inequality at the

end of the proof of Theorem 8 of Andrieu and Roberts (2009) in our LDA context, we see that for

all (t′, ζ ′) and (t, ζ) we have

Pm,n0(t′, ζ ′; t, ζ) ≥ δ
(
γ(m)
∗
)−n0 %T (t) q

(m,t)
ζ (ζ) γ(m)(t, ζ)

≥ δγ−n0
∗ %T (t) q

(m,t)
ζ (ζ) γ(m)(t, ζ)

= κ %
(m)
T,ζ (t, ζ),

(A.4)

where κ := δγ−n0
∗ , and does not depend on m. Details on why the first inequality in (A.4) follows

from the inequality at the end of the proof of Theorem 8 of Andrieu and Roberts (2009) are given

in Chen (2015). From (A.4) we conclude that the PMMH algorithm is uniformly ergodic:∥∥Pm,n(t, ζ; ·, ·)− ν̃(m)
T,ζ |w(·, ·)

∥∥ ≤ (1− κ)[n/n0].
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Proof of Theorem 3

Proof of Part 1 For any integers m,n, and any initial points t0 ∈ T and ζ0 ∈ Zmt , we have∥∥Pm,n(t0, ζ0; ·, ·)−ν(m)
T,ζ |w(·, ·)

∥∥ ≤ ∥∥Pm,n(t0, ζ0; ·, ·)− ν̃(m)
T,ζ |w(·, ·)

∥∥+
∥∥ν̃(m)

T,ζ |w(·, ·)−ν(m)
T,ζ |w(·, ·)

∥∥.
(A.5)

Part 2 of Lemma 1 states that there exists a constant κ ∈ (0, 1), which does not depend on m,

such that
∥∥Pm,n(t0, ζ0; ·, ·) − ν̃(m)

T,ζ |w(·, ·)
∥∥ ≤ (1 − κ)[n/n0] for all m and n. Therefore if N(ε) ≥

n0 log(ε/2)/ log(1− κ), then∥∥Pm,n(t0, ζ0; ·, ·)− ν̃(m)
T,ζ |w(·, ·)

∥∥ ≤ ε/2 for all n ≥ N(ε), all m. (A.6)

From the definitions of ν̃(m)
T,ζ |w and ν(m)

T,ζ |w given in (4.19), we have

∥∥ν̃(m)
T,ζ |w(·, ·)− ν(m)

T,ζ |w(·, ·)
∥∥ = sup

C∈BS

∣∣∣∣∣ ∑
(t,ζ)∈C

(
ν̃

(m)
T |w(t) q
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ζ (ζ)

)∣∣∣∣∣
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C∈BS

∑
(t,ζ)∈C

∣∣ν̃(m)
T |w(t) q

(m,t)
ζ (ζ)− νT |w(t) q

(m,t)
ζ (ζ)
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=
∑
t∈T

∑
ζ∈Zm

t

∣∣ν̃(m)
T |w(t) q

(m,t)
ζ (ζ)− νT |w(t) q

(m,t)
ζ (ζ)
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=
∑
t∈T

∑
ζ∈Zm

t

∣∣ν̃(m)
T |w(t)− νT |w(t)

∣∣ q(m,t)
ζ (ζ)

→ 0 as m→∞,

where the convergence statement follows from (4.18). Hence, there exists an integer M(ε) such

that ∥∥ν̃(m)
T,ζ |w(·, ·)− ν(m)

T,ζ |w(·, ·)
∥∥ < ε/2 for all m > M(ε). (A.7)

Combining (A.5), (A.6), and (A.7), we see that for m ≥M(ε) and n ≥ N(ε),∥∥Pm,n(t0, ζ0; ·, ·)− ν(m)
T,ζ |w(·, ·)

∥∥ ≤ ε/2 + ε/2 = ε.

Proof of Part 2 For any t ∈ T we have∣∣µm,nT (t)− νT |w(t)
∣∣ =

∣∣Pm,n(t0, ζ0; t,Zmt )− ν(m)
T,ζ |w(t,Zmt )

∣∣→ 0 as m,n→∞,

where the convergence statement follows from Part 1 of the theorem. Part 2 of the theorem follows

from the fact that T is finite.
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Proof of Part 3 For any t ∈ T and z ∈ Zt, take B = Zm−1
t × {z}. We then have µm,nT,z (t, z) =

Pm,n(t0, ζ0; t, B), so∣∣µm,nT,z (t, z)−νT,z |w(t, z)
∣∣ =

∣∣Pm,n(t0, ζ0; t, B)− νT,z |w(t, z)
∣∣

≤
∣∣Pm,n(t0, ζ0; t, B)− ν(m)

T,ζ |w(t, B)
∣∣+
∣∣ν(m)
T,ζ |w(t, B)− νT,z |w(t, z)

∣∣. (A.8)

Now∣∣Pm,n(t0, ζ0; t, B)− ν(m)
T,ζ |w(t, B)

∣∣ ≤ ∥∥Pm,n(t0, ζ0; ·, ·)− ν(m)
T,ζ |w(·, ·)

∥∥→ 0 as m,n→∞,

where the convergence statement follows from Part 1 of the theorem, and we are slightly abusing

notation by using ν(m)
T,ζ |w to denote both a probability mass function and a probability measure.

Consider the second term on the right side of (A.8). From the definition (4.19), we have

ν
(m)
T,ζ |w(t, B) = νT |w(t)q

(m,t)
ζ

(
z1 ∈ Zt, . . . ,zm−1 ∈ Zt, zm ∈ {z}

∣∣ z0

)
= νT |w(t)gmt (z0, z).

Therefore, ∣∣ν(m)
T,ζ |w(t, B)− νT,z |w(t, z)

∣∣ =
∣∣νT |w(t)gmt (z0, z)− νT |w(t)νz |T,w(z | t)

∣∣
= νT |w(t)

∣∣gmt (z0, z)− νz |T,w(z | t)
∣∣

≤
∣∣gmt (z0, z)− νz |T,w(z | t)

∣∣
→ 0 as m→∞,

where the convergence statement follows from Theorem 1 and is uniform in z0. Thus, as m,n →
∞, both terms on the right side of (A.8) converge to 0, and this proves Part 3 of the theorem since

S is finite.

Proof of Part 4 LetA ∈ BSt
V−1

andB ∈ BSD
t−1

(here BSt
V−1

is the Borel σ-field on the t-fold product

of the (V − 1)-dimensional simplex SV−1, and BSD
t−1

is defined analogously). We have

∣∣µm,nT,z,β,θ(t, z,A,B)− νT,z,β,θ |w(t, z, A,B)
∣∣

=
∣∣µm,nT,z (t, z) νβ,θ |T,z,w(A,B | t, z)− νT,z |w(t, z) νβ,θ |T,z,w(A,B | t, z)

∣∣
=
∣∣µm,nT,z (t, z)− νT,z |w(t, z)

∣∣ νβ,θ |T,z,w(A,B | t, z)

≤
∣∣µm,nT,z (t, z)− νT,z |w(t, z)

∣∣
→ 0 as m,n→∞,
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where the first equality is from (2.5), and the convergence statement is from Part 3 of the theorem,

and is uniform in A and B. This proves Part 4 of the theorem.

Part 1 of Theorem 3 is similar to Theorem 6 and Corollary 7 of Andrieu and Roberts (2009);

however, there are major differences between our proof and theirs, which we now discuss. First, the

proofs in Andrieu and Roberts (2009) are at a general level, whereas ours is particular to the LDA

model. As a consequence, whereas their proofs are very technical and involved, we are able to take

advantage of certain features of the LDA model which enable a relatively simple proof. A second

difference is as follows. Using our notation, the goal is to bound the error
∥∥Pm,n(t0, ζ0; ·, ·) −

ν
(m)
T,ζ |w(·, ·)

∥∥. For Andrieu and Roberts (2009), the rates at whichm and n go to infinity are related,

whereas in our result, m and n can go to infinity in an arbitrary manner. This is important in our

application, because the convergence rate of the CGS is so high that it is sensible to take m to be

much smaller than n, so we prefer to not have any restrictions on the relationship between m and

n as these go to infinity. Lastly, in Andrieu and Roberts (2009) there are restrictions on the starting

points: t0 may be chosen freely, but the choice of ζ0 depends on several quantities, including t0.

Moreover, the dependence is very complicated, and in high-dimensional situation such as what we

have in the LDA model, it is very difficult to determine what are the acceptable choices of ζ0. In

our theorem, there are no restrictions at all on the starting points t0 and ζ0.

Supplementary Materials

R Code and Data The supplemental files for this article include files containing R code and data

for reproducing all the empirical studies in the paper. The Readme file contained in the zip file

gives a description of all the other files in the archive. (lda-ntopics-code.zip, zip archive)

Appendix The supplemental files include an Appendix which gives the following: (i) a derivation

of an expression for the conditional distributions needed to run the Collapsed Gibbs Sampler

of Griffiths and Steyvers (2004), (ii) a version of Theorem 3 without the condition that T is

finite, and (iii) additional simulations to compare the PMMH algorithm with other methods for

choosing the number of topics. (lda-ntopics-supp.pdf)
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