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Abstract

This document consists of three parts. The first derives an expression for the conditional distribu-

tions needed to run the Collapsed Gibbs Sampler of Griffiths and Steyvers (2004). The second part

provides a version of Theorem 3 of “Inference for the Number of Topics in the Latent Dirichlet Allo-

cation Model via Bayesian Mixture Modelling” without the condition that T is finite. The third part

provides additional simulations to compare the PMMH algorithm with other methods for choosing

the number of topics.

Throughout, equations, conditions, etc. refer to the main paper; also, notation is as in the main

paper.

Derivation of the Conditional Distribution of zdi Given z(−di) and w

In order to obtain p(zdit = 1 | z(−di),w), we will obtain, up to a constant of proportionality, an

expression for p
(
zdit = 1,β,θ

∣∣ z(−di),w
)
, from which we will integrate out β and θ. We have

p
(
zdit = 1,β,θ

∣∣ z(−di),w
)

= p
(
zdit = 1,β,θ

∣∣wdi, z(−di),w(−di)

)
∝ p
(
wdi, zdit = 1,β,θ

∣∣ z(−di),w(−di)

)
= p
(
wdi

∣∣ zdit = 1,β,θ, z(−di),w(−di)

)
× p
(
zdit = 1

∣∣β,θ, z(−di),w(−di)

)
p
(
β,θ

∣∣ z(−di),w(−di)

)
.

(1)
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Now we consider the three quantities in the right side of (1), in reverse order. First, using the

results from (2.5) but for the reduced corpus w(−di), we have that given z(−di) and w(−di),

θ1, . . . , θD and β1, . . . , βT are all independent,

θd′
indep∼ DirT

(
nd′1(−di) + α, . . . , nd′T (−di) + α

)
, for d′ = 1, . . . , D,

βt
indep∼ DirV

(
m·t1(−di) + η, . . . ,m·tV (−di) + η

)
, for t = 1, . . . , T .

Hence we can express p
(
β,θ

∣∣ z(−di),w(−di)

)
as

p
(
β,θ

∣∣ z(−di),w(−di)

)
=

(
T∏

t=1

p
(
βt

∣∣ z(−di),w(−di)

))( D∏
d′=1

p
(
θd′
∣∣ z(−di),w(−di)

))
, (2)

in self-explanatory notation, where p
(
βt

∣∣ z(−di),w(−di)

)
and p

(
θd′
∣∣ z(−di),w(−di)

)
denote the den-

sities of DirV

(
m·t1(−di) + η, . . . ,m·tV (−di) + η

)
and DirT

(
nd′1(−di) +α, . . . , nd′T (−di) +α

)
, respec-

tively. Second, from the nature of the LDA model we know that given θd, zdi ∼ MultT (θd), where

d indexes the document which contains wdi. That is, for any t = 1, . . . , T ,

p
(
zdit = 1

∣∣β,θ, z(−di),w(−di)

)
= p
(
zdit = 1

∣∣ θd

)
= θdt. (3)

Lastly, from Line 4 of the LDA model statement, we know that given β and t such that zdit = 1,

wdi ∼ MultV (βt). Hence,

p
(
wdi

∣∣ zdit = 1,β,θ, z(−di),w(−di)

)
= p(wdi

∣∣ zdit = 1,β) =
V∏

v=1

βwdiv
tv . (4)

Plugging (2), (3) and (4) into (1), we get

p
(
zdit =1,β,θ

∣∣ z(−di),w
)

∝

(
V∏

v=1

βwdiv
tv

)
θdt

(
D∏

d′=1

p
(
θd′
∣∣ z(−di),w(−di)

))( T∏
t′=1

p
(
βt′
∣∣ z(−di),w(−di)

))

=

(
V∏

v=1

βwdiv
tv

)
p
(
βt | z(−di),w(−di)

)(∏
t′ 6=t

p
(
βt′
∣∣ z(−di),w(−di)

))

× θdtp
(
θd

∣∣ z(−di),w(−di)

)(∏
d′ 6=d

p
(
θd′
∣∣ z(−di),w(−di)

))
.

(5)

Recall that for any integer K ≥ 1, if X = (X1, . . . , XK) ∼ DirK(a1, . . . , aK), then for any

non-negative constants r1, . . . , rK ,

E

(
K∏

k=1

Xrk
k

)
=

Γ
(∑K

k=1 ak

)
Γ
(∑K

k=1 ak +
∑K

k=1 rk

)( K∏
k=1

Γ(ak + rk)

Γ(ak)

)
.
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Integrating β and θ out from (5) using the fact above, we see that for any t = 1, . . . , T , the

conditional posterior probability that zdit = 1 given z(−di) and w satisfies

p(zdit = 1 | z(−di),w) ∝
(

Γ
(
m·t·(−di) + V η

)
Γ
(
m·t·(−di) + V η + 1

))( V∏
v=1

Γ
(
m·tv(−di) + η + wdiv

)
Γ
(
m·tv(−di) + η

) )

×
(

Γ
(
nd − 1 + Tα

)
Γ
(
nd − 1 + Tα + 1

))(Γ
(
ndt(−di) + α + 1

)
Γ
(
ndt(−di) + α

) )

=

(
1

m·t·(−di) + V η

)( V∏
v=1

(m·tv(−di) + η)wdiv

)

×
(

1

nd − 1 + Tα

)
(ndt(−di) + α)

=
V∏

v=1

(
m·tv(−di) + η

m·t·(−di) + V η

)wdiv
(
ndt(−di) + α

nd − 1 + Tα

)

=

(
m·tv(−di) + η

m·t·(−di) + V η

)(
ndt(−di) + α

nd − 1 + Tα

)
,

where v denotes the term which wdi is observed to take, i.e. v is such that wdiv = 1.

Another derivation of (2.8) is given in Carpenter (2010).

Ergodicity of the PMMH Algorithm When T Is Possibly Infinite

We first set up some notation. For any t ∈ T and any ε ∈ (0, 1], let N(ε, t) = inf{n : ‖P n
MH(t, ·)−

νT |w(·)‖ ≤ ε}, where PMH(·, ·) denotes the one-step Markov transition function for the ideal

Metropolis-Hastings algorithm running on T . Also, for any t ∈ T , let ρ(t) denote the probability

of staying at t under the ideal Metropolis-Hastings algorithm, that is,

ρ(t) = 1−
∑
t′∈T

min{r(t, t′), 1}qT (t, t′),

where recall that qT is the Markov transition function running on T .

Theorem 3′ Assume Conditions A2 and A3 in the context of the LDA model, and that the mech-

anism for generating ζ is the CGS (see (4.8)). Then:

1. For any ε, ` > 0 and t0 ∈ T , there exists a positive integer M(ε, `, t0) such that for any m >

M(ε, `, t0) and ζ0 ∈ Zm
t0

such that | log(ν̃
(m)
T |w(t0))− log(νT |w(t0))| < `ε/(24N(ε, t0)), for any
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n > N(ε, t0) we have

∥∥Pm,n(t0, ζ0; ·, ·)− ν(m)
T,ζ |w(·, ·)

∥∥ ≤ (1 + `)ε+ ρn(t0).

2. ∥∥µm,n
T (·)− νT |w(·)

∥∥→ 0 as m,n→∞.

3.
∥∥µm,n

T,z (·, ·)− νT,z |w(·, ·)
∥∥→ 0 as m,n→∞.

4. For any t ∈ T , z ∈ Zt,∥∥µm,n
T,z,β,θ(t, z, ·, ·)− νT,z,β,θ |w(t, z, ·, ·)

∥∥→ 0 as m,n→∞.

Proof To prove Part 1, note that under Conditions A2 and A3, the ideal Metropolis-Hastings

algorithm is ergodic, i.e. limn→0 ‖P n
MH(t0, ·)− νT |w(·)‖ = 0 for each t0 ∈ T . Also, in Theorem 2

of Chen and Doss (2017) we have shown that ν̃(m)
T |w(t)

a.s.−→ νT |w(t) as m → ∞ for each t ∈ T .

Hence, | log(ν̃
(m)
T |w(t))− log(νT |w(t))| converges to zero in probability as m→∞ for each t ∈ T .

Therefore, we can apply Theorem 6 of Andrieu and Roberts (2009) to get the result.

The proofs of Parts 2, 3, 4 are the same as the proofs of Parts 2, 3, 4 of Theorem 3 in Chen and

Doss (2017).

We now remark on the differences between Theorem 3 and Theorem 3′. The proof of Theo-

rem 3′ is deceptively simple. It seems short and trivial, but it is not, because it relies on Theorem 6

of Andrieu and Roberts (2009), the proof of which is extremely complex. In contrast, the proof

of Theorem 3 is developed essentially from first principles, and the external result on which it is

based is only Part 2 of Theorem 8 of Andrieu and Roberts (2009), which is nearly trivial.

Additional Illustrations on Synthetic Data

Here we evaluate the performance of our PMMH algorithm on three corpora generated syntheti-

cally. The analysis here goes beyond that given in Section 5.2 in two directions. First, we study the

effect of “corpus difficulty” on the effectiveness of the algorithm. Intuitively, a corpus is difficult

to analyze—more specifically, the number of topics is difficult to estimate—if the topics are close

to each other. Second, we include the PPC criterion in our empirical evaluation. To be able to do

4



this, we found it necessary to reduce the number of topics and the number of documents, because

calculation of the PPC criterion is very computationally demanding.

For the first corpus, which we call S-1, we used the following specifications of the LDA model:

the number of topics is T = 6, the hyperparameter is h = (α, η) = (0.1, 0.1), the vocabulary size

is V = 100, the number of documents is D = 300, and the document lengths are nd = 300, d =

1, . . . , D. We generated the latent variables and the documents according to the LDA model with

these specifications. We also generated corpora S-2 and S-3, in the same way, except that changed

η = .1 to η = 1 and η = 5, respectively. The reason for this is that when η is increased, for each

t, the components of βt tend to be closer to their mean, and hence the topic vectors β1, . . . , βT

tend to be closer to each other; hence when η is increased, estimation of T is more difficult. Thus,

estimation of T is easiest for S-1 and hardest for S-3.

For each corpus we took the prior on T to be the uniform distribution on {2, . . . , 100}, as in

Chen and Doss (2017), and for our PMMH algorithm, we took the Markov transition function qT

to be as in Chen and Doss (2017). For each corpus we ran the algorithm with m = 30, 50, and

75, respectively, each time for n = 10,000 iterations, and taking the starting value for the number

of topics to be T0 = 30. The reason for considering multiple values of m is to evaluate the effect

of m on the performance of the algorithm, and in particular to determine whether a value of m as

small as 30 gives good results.

Figure 1 gives plots of running means for T produced by the PMMH algorithm using three

different values of m, for corpora S-1, S-2 and S-3. The two upper panels give running means

for T for S-1, for m = 30, 50, and 75. The figures differ only in the scaling of the x-axis. As

mentioned earlier, because of the size of corpus, we presume that the posterior distribution is

essentially a point mass at the true value of T (which is 6) and also that the marginal likelihood

mw(·) is maximized at the true value. The plots show that even when m = 30, it takes less than

2000 iterations for the mean to reach 6; and once it reaches 6 the mean essentially remains there.

The plots also show that convergence is faster when m is larger, but that the gain in efficiency is

relatively minor, and that a value of m as small as 30 produces good results.

The bottom two panels give running means produced by the PMMH algorithm using m = 30
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for corpora S-1, S-2 and S-3. The two panels differ only in the scaling of the x-axis. The reason

we created these plots is to evaluate the change in the rate of convergence when the topics in the

corpus are harder to distinguish from each other. In this case the posterior is more diffuse, and the

sample mean takes longer to converge to the mean of the posterior. The bottom two panels show

that, indeed, convergence is slower for S-2 and S-3; but this effect is not strong, and we conclude

that the algorithm is successful even for challenging corpora.
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Figure 1: Running means for T produced by the PMMH algorithm on artificially-generated cor-

pora. The upper plots, which differ only in the scale of the x-axis, show the running means using

m = 30, 50, and 75 for corpus S-1. The lower plots compare the running means for corpora S-1,

S-2, and S-3 using m = 30.

We now compare the performances of the PMMH algorithm, the two harmonic mean estima-

tors, and the Chib estimator. To this end for corpus S-1 we calculated the HME-z, HME-ψ, and

Chib estimates for T = 2, 3, . . . , 30, using Markov chains of lengths 10,000, 10,000, and 3,600,
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respectively. For the Chib method, we used a Markov chain of length 1,200 for the pilot study

needed to select the high-density point that is used in the main simulation. We also calculated the

estimate of the PPC score S(T ) for T = 2, 3, . . . , 30 using Markov chains of length 100. With

these Markov chain lengths, the running times of all these methods are approximately equal, and

this common time is about five times the running time of the PMMH algorithm using m = 75.

Figure 2 shows the results. From Figure 2(a) we see that the HME-z and HME-ψ estimates of

arg maxT mw(T ) are 13 and 14, respectively. While the HME-z does better than HME-ψ, both

badly miss the true value of T . Figure 2(b) gives a plot of Chib’s estimate of the marginal likelihood

on the log scale. The maximum is reached at T = 8. While this is not very far off from the true

value of 6, it should be noted that the ratio of estimate of the marginal likelihood at 8 to the estimate

at 6 is exp(30427) (the ratio is understated by the appearance of the plot, which is on the log scale);

thus, Chib’s method effectively rules out the true value of T . Figure 2(c) gives a plot of the estimate

of the PPC score, again on the log scale. If we use the PPC criterion, we would estimate T to be

7, although T = 6 and T = 8 would also be deemed plausible (Ŝ(7) = exp(−963), Ŝ(6) =

exp(−965.1) and Ŝ(8) = exp(−963.5)). So the PPC criterion gives a reasonable performance for

this data set.
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Figure 2: HME-ψ, HME-z, and Chib estimates of log(mw(T )), and estimates of the PPC score

S(T ) (on the log scale) for the models indexed by different T ’s. The vertical line at 6 in each plot

represents the true value of T .
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