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Abstract

We consider families of semiparametric Bayesian models based on Dirichlet process mix-

tures, indexed by a multidimensional hyperparameter that includes the precision parameter. We

wish to select the hyperparameter by considering Bayes factors. Our approach involves distin-

guishing some arbitrary value of the hyperparameter, and estimating the Bayes factor for the

model indexed by the hyperparameter vs. the model indexed by the distinguished point, as the

hyperparameter varies. The approach requires us to select a finite number of hyperparameter

values, and for each get Markov chain Monte Carlo samples from the posterior distribution

corresponding to the model indexed by that hyperparameter value. Implementation of the ap-

proach relies on a likelihood ratio formula for Dirichlet process models. Because we may view

parametric models as limiting cases where the precision hyperparameter is infinity, the method

also enables us to decide whether or not to use a semiparametric or an entirely parametric

model. We illustrate the methodology through two detailed examples involving meta-analysis.

Key words and phrases: Bayes factors; Dirichlet processes; Likelihood ratio formula; Markov

chain Monte Carlo; Model selection.



1 Introduction

Bayesian hierarchical models have proven very useful in analyzing random effects models, of

which the following is a simple case. Suppose we have m different “centers” and at each one

we gather data Yj from the distribution Pj(ψj). This distribution depends on ψj and also on

other quantities, for example the sample size as well as nuisance parameters specific to the j th

center. In a typical example arising in biostatistics, we have the same experiment being carried

out at m different centers, ψj represents a treatment effect for the experiment at center j (e.g.

ψj might be a regression coefficient for an indicator of treatment vs. placebo in a Cox model,

or simply an odds ratio) and Yj is the estimate of this parameter. Because each center has its

own characteristics, the ψj’s are not assumed to be the same, but are assumed to come from

some distribution.

When dealing with this kind of data it is very common to use a hierarchical model of the

following sort:

conditional on ψj, Yj
indep∼ N (ψj, σ

2
j ), j = 1, . . . ,m, (1.1a)

conditional on µ, τ, ψj
iid∼ N (µ, τ 2), j = 1, . . . ,m, (1.1b)

(µ, τ) ∼ λc. (1.1c)

In (1.1a), the σj’s are the standard errors that usually accompany the point estimates Yj’s.

In (1.1c), λc is the normal/inverse gamma prior, indexed by the vector c = (c1, c2, c3, c4), i.e.

1/τ 2 ∼ gamma(c1, c2), and given τ , µ ∼ N (c3, τc4); this prior is often used because it is

conjugate to the family N (µ, τ 2). Typically one uses c3 = 0, c4 some large value, and c1 and

c2 relatively small, giving a fairly diffuse prior.

The approximation of Pj(ψj) by a normal distribution in (1.1a) is typically supported by

some theoretical result, for example the asymptotic normality of maximum likelihood esti-

mates. By contrast, the normality statement in (1.1b) regarding the distribution of the random

effects is a modelling assumption, which generally is made for the sake of convenience and

does not have any theoretical justification. While t distributions may be used in place of the

normal distribution in line (1.1b) to better accommodate outliers, the distribution of the random

effects may deviate from normality in ways that do not involve heaviness of tails.

It is therefore desirable to relax this assumption and consider models that allow for de-

partures from normality. A commonly used choice is a model based on mixtures of Dirichlet

processes (Antoniak 1974), and before proceeding, we give a brief review of this class of pri-

ors. Let Gϑ, ϑ ∈ Ω ⊂ Rp be a parametric family of distributions on the real line, and let λ be a

distribution on Ω. SupposeM > 0, and define αϑ = MGϑ. If ϑ is chosen from λ, and then F is
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chosen from Dαϑ , the Dirichlet process with parameter measure αϑ (Ferguson 1973, 1974), we

say that the prior on F is a mixture of Dirichlet processes. The parameter M can be interpreted

as a precision parameter that indicates the degree of concentration of the prior on F around the

parametric family {Gϑ, ϑ ∈ Ω}. In a somewhat oversimplified but nevertheless useful view of

this class of priors, we think of the family {Gϑ, ϑ ∈ Ω} as a “line” (of dimension p) in the

infinite-dimensional space of cdf’s, and we imagine “tubes” around this line. For large values

of M , the mixture of Dirichlet processes puts most of its mass in narrow tubes, while for small

values of M the prior is more diffuse. Formally, the prior on F is the integral
∫
DMGϑ λ(dϑ)

and is parameterized by the triple h = ({Gϑ}ϑ∈Ω,M, λ).

Beginning with the work of Escobar (1988, 1994), Escobar and West (1995), and West et al.

(1994), a very large literature has considered Bayesian hierarchical models based on Dirichlet

processes or their mixtures where, for instance, (1.1) is replaced by

conditional on ψj, Yj
indep∼ N (ψj, σ

2
j ), j = 1, . . . ,m, (1.2a)

conditional on F, ψj
iid∼ F, j = 1, . . . ,m, (1.2b)

conditional on (µ, τ) F ∼ DMtv,µ,τ , (1.2c)

(µ, τ) ∼ λc. (1.2d)

Here, ϑ = (µ, τ) and Gϑ = tv,µ,τ is the t distribution with v degrees of freedom, location µ,

and scale τ .

A question that immediately arises whenever one wishes to use a model of this sort is how to

choose the hyperparameters of the model. For instance in model (1.2), choosing the precision

parameter M to be very large will essentially result in a parametric model, and choosing the

degrees of freedom parameter v to be infinity will signify the choice of the normal distribution.

Because the values of both M and v have a significant impact on the resulting inference, the

question of how to choose these parameters is very important.

To explain how we can deal with this question, let us consider the specific case of model

(1.2). Here, lines (1.2d), (1.2c), and (1.2b), in that order, induce a prior on θ = (ϑ, ψ) (where

ψ = (ψ1, . . . , ψm)). This prior depends on the hyperparameter h = (v,M, c), and we shall

denote it by νh. Model (1.2) may then be re-expressed as

conditional on θ, Yj
indep∼ N (ψj, σ

2
j ), j = 1, . . . ,m, (1.3a)

θ ∼ νh. (1.3b)

When looked at in this way, we see that choosing the hyperparameter of the prior νh in-

volves not only choosing the prior on (µ, τ), but also the number of degrees of freedom v

2



and the precision parameter M . For a fixed value of h, the marginal distribution of Y is

given by mh(y) =
∫
`y(θ) dνh(θ), in which `y(θ) is the likelihood given by line (1.3a), i.e.

`y(θ) =
∏m

j=1 φψj ,σj(yj), where φm,s(x) denotes the density of the normal distribution with

mean m and standard deviation s, evaluated at x. Note that mh(y) is the normalizing con-

stant in the statement “the posterior is proportional to the likelihood times the prior,” i.e.

νh,y(dθ) = `y(θ) νh(dθ)/mh(y). The empirical Bayes choice of h is by definition the max-

imizer of mh(y) viewed as a function of h, and to obtain it we need to estimate this function.

Now if h1 is a fixed value of the hyperparameter, the information regarding h given by mh(y)

andmh(y)/mh1(y) is the same, and in particular, the same value of hmaximizes both functions.

From a statistical and computational standpoint however, estimation of ratios of normalizing

constants can be far more stable than estimation of the normalizing constants themselves (this

point is discussed further in Section 4). From now on we write mh instead of mh(y). The

quantity B(h, h1) = mh/mh1 is the Bayes factor of the model with hyperparameter h relative

to the model with hyperparameter h1. If we had a method for estimating the Bayes factor, then

we could fix a particular hyperparameter value h1 and plot B(h, h1) as a function of h, and this

would enable us to make reasonable choices of h. (Of course, the value of h1 is arbitrary: if we

choose a different value h∗, then B(h, h∗) is a constant multiple of B(h, h1).)

Suppose that h1 is fixed. We now explain how we can in principle estimate the entire family

B(h, h1). The posterior distributions for model (1.2) cannot be calculated in closed form, but

must be estimated via a simulation method, such as Markov chain Monte Carlo (MCMC). All

MCMC methods for this kind of model produce, directly or indirectly, estimates of the posterior

distribution of the vector of latent parameters θ = (ϑ, ψ), which we will denote νh,y. [Some

methods marginalize the infinite-dimensional parameter F entirely and work specifically on

νh,y; for example, the original algorithm of Escobar (1994) and numerous later improvements

are of this sort. Others work through a representation of F (Sethuraman 1994) that is explicit

enough to enable the generation of θ from νh,y; the algorithm of Doss (1994b) is of this kind.]

By writing νh,y(dθ) = `y(θ) νh(dθ)/mh, we easily obtain the frequently-used identity∫ [
dνh
dνh1

]
(θ) νh1,y(dθ) =

mh

mh1

, (1.4)

where [dνh/dνh1 ] is the Radon-Nikodym derivative of νh with respect to νh1 . [This identity is

normally written in terms of densities, but the distributions νh and νh1 are not absolutely con-

tinuous with respect to Lebesgue measure on Rm+2, the reason being that when ψ is generated

according to lines (1.2d), (1.2c), and (1.2b), there is positive probability that the ψj’s are not all

distinct. Although νh,y and νh1,y will typically not have densities, they are mutually absolutely
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continuous if νh and νh1 are mutually absolutely continuous (which is the case in model (1.2)),

and this is the reason why we use a Radon-Nikodym derivative instead of a ratio of densities

in (1.4).] Therefore, if θ1, . . . , θn is a sample from νh1,y (iid or ergodic Markov chain output),

the average
1

n

n∑
i=1

[
dνh
dνh1

]
(θi) (1.5)

converges almost surely to mh/mh1 . Of course, to use (1.5) we need to have an expression for

the Radon-Nikodym derivative. Assuming we do have such an expression, one difficulty we

face is that when h is not close to h1, the estimate (1.5) may be unstable, because [dνh/dνh1 ]

may vary greatly in the region where the θi’s are likely to be.

This paper is organized as follows. In Section 2 we give a formula for the Radon-Nikodym

derivative [dνh/dνh1 ] for models based on mixtures of Dirichlet processes, such as (1.2). We

also discuss a way of producing estimates like (1.5), but which have small variance over a wide

range of h’s. In Section 3 we give two illustrations on model selection questions that arise in

applications of these Dirichlet-based models. In Section 4 we discuss some implementation

issues and other work on estimation of Bayes factors in nonparametric Bayes models. In the

Appendix we give a proof of the result in Section 2 concerning the Radon-Nikodym derivative,

and also a proof of a formula that is used in the second illustration in Section 3.

2 Theoretical Development

Consider (1.2) stated more generally:

conditional on ψj, Yj
indep∼ Pj(ψj), j = 1, . . . ,m, (2.1a)

conditional on F, ψj
iid∼ F, j = 1, . . . ,m, (2.1b)

conditional on ϑ F ∼ DMϑGϑ , (2.1c)

ϑ ∼ λ. (2.1d)

Here, Gϑ is a parametric family of distributions, and the precision parameter in (2.1c) is now

allowed to depend on ϑ. Let h =
(
{Gϑ}ϑ∈Ω, λ, {Mϑ}ϑ∈Ω

)
, and as before, let νh denote the

distribution of θ = (ϑ, ψ). Let hi =
(
{G(i)

ϑ }ϑ∈Ω, λ
(i), {M (i)

ϑ }ϑ∈Ω

)
, for i = 1, 2, be two given

instances of the model. Typically, the distributions νh1 and νh2 on θ are mutually absolutely

continuous (whereas the distributions on F are not), and Theorem 1 gives a formula for the

Radon-Nikodym derivative. Define also νpar,hi to be the distribution of θ under the parametric

version of this model, where (2.1b) and (2.1c) are replaced simply by ψj
iid∼ G

(i)
ϑ [and where hi

is now just ({G(i)
ϑ }ϑ∈Ω, λ

(i))].
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2.1 The Radon-Nikodym Derivative for Some Models Based on Dirichlet
Mixtures

For ψ ∈ Rm, let d = d(ψ) be the number of distinct values of ψ, and let ψ(1) < ψ(2) < · · · <
ψ(d) be the ordered distinct values. Let Γ denote the gamma function. We will sometimes

slightly abuse notation and write ν1, ν2, νpar,1, and νpar,2 instead of νh1 , νh2 , νpar,h1 , and νpar,h2 in

order to avoid double and triple subscripting. We will consider the following conditions:

A1 λ(1) � λ(2) and [dλ(1)/dλ(2)] is continuous;

A2 For each ϑ, G(i)
ϑ has density g(i)

ϑ , for i = 1, 2;

A3 g
(i)
· (·) are jointly continuous in ϑ and ψ, and M (i)

ϑ are continuous in ϑ, for i = 1, 2;

A4 g
(1)
ϑ (ψ) = 0 whenever g(2)

ϑ (ψ) = 0 for all ϑ and all ψ.

Theorem 1 Assume the conditions stated above.

(i) The Radon-Nikodym derivative [dν1/dν2] is given by[
dν1

dν2

]
(ϑ, ψ) =

{
d∏
r=1

g
(1)
ϑ (ψ(r))

g
(2)
ϑ (ψ(r))

}(
M

(1)
ϑ

M
(2)
ϑ

)d {
Γ
(
M

(1)
ϑ

)
Γ
(
M

(2)
ϑ +m

)
Γ
(
M

(2)
ϑ

)
Γ
(
M

(1)
ϑ +m

)}[dλ(1)

dλ(2)

]
(ϑ). (2.2)

(ii) The Radon-Nikodym derivative [dνpar,1/dν2] is given by

[
dνpar,1

dν2

]
(ϑ, ψ) =


[

m∏
j=1

g
(1)
ϑ (ψj)

g
(2)
ϑ (ψj)

](
m−1∏
j=1

M
(2)
ϑ + j

M
(2)
ϑ

)[
dλ(1)

dλ(2)

]
(ϑ) if d = m,

0 if d < m.

(2.3)

A1 and A4 are absolute continuity conditions in one direction (e.g. G(1)
ϑ � G

(2)
ϑ , but not

G
(2)
ϑ � G

(1)
ϑ ); however, in all typical applications we will have absolute continuity in both

directions, and the choice of λ(2) and G(2)
ϑ will be based on convenience.

We now discuss the role of the number of distinct observations in the formulas. Suppose

α is any finite non-atomic measure, and F ∼ Dα. If given F , ψ1, . . . , ψm
iid∼ F , then the ψj’s

form clusters, with the ψj’s in the same cluster being equal. If the value of α(R) decreases, the

number of distinct observations tends to decrease.

For a given cluster configuration c, let κc, a measure on Rm, be “Lebesgue measure for that

configuration,” defined as Lebesgue measure on the hyperplane defined by the configuration.

As a simple example, if m = 2 and the configuration is determined by the equality ψ1 = ψ2,

then κc is Lebesgue measure on the 45◦ line in R2. If κ =
∑

c κc where the sum is over all
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possible configurations, then the distribution of ψ is absolutely continuous with respect to κ.

Therefore, returning to model (2.1), if we let LebΩ be Lebesgue measure on Ω (recall that Ω

is the space of ϑ’s), we see that if λ is absolutely continuous with respect to LebΩ, then νh is

absolutely continuous with respect to ρ = κ× LebΩ (and this absolute continuity continues to

hold under the parametric version of this model).

Comments on Theorem 1

1 If the parametric families {G(1)
ϑ } and {G(2)

ϑ } are the same, then the first term on the right

side of (2.2) and (2.3) is 1, and the formulas simplify.

2 Suppose furthermore that the M (i)
ϑ ’s do not depend on ϑ, and consider now (2.2). The

quantity in the second set of braces in (2.2) is then constant in ϑ, and (2.2) simplifies to[
dν1

dν2

]
(ϑ, ψ) = C

(
M (1)

M (2)

)d [
dλ(1)

dλ(2)

]
(ϑ),

where C is a constant. Assume also that λ(1) = λ(2). Suppose θ(2)
1 , . . . , θ

(2)
n is Markov

chain output from the posterior ν2,y. If M (1) > M (2) and the d(ψi)’s are large, then the

values of (M (1)/M (2))d are large, and from (1.5) we see that the estimate of the Bayes

factor in favor of the model indexed by h1 is large. This is as one would expect: the model

indexed by h2 expected more ties, but didn’t see them, and so the model indexed by h1

better explains the data. Theorem 1 may be used in a number of ways, and on occasion

may be applied in the following kind of situation. Suppose we are considering models

indexed by h = ({Gϑ}ϑ∈Ω,M, λ), where we wish to let M vary, and suppose that Gϑ is

not conjugate to Pj(ψj), making implementation of MCMC more difficult. We may then

consider a model where instead of using Gϑ we use a more convenient parametric family

G
(c)
ϑ which is conjugate to Pj(ψj), and run a Markov chain under this model for some value

M (c) of the precision parameter. Equation (2.2) becomes{
d∏
r=1

gϑ(ψ(r))

g
(c)
ϑ (ψ(r))

}(
M

M (c)

)d {Γ(M)Γ
(
M (c) +m

)
Γ(M (c))Γ(M +m)

}
.

Care has to be exercised when the tails of Gϑ are heavier than those of G(c)
ϑ , and we may

use this as long as we ascertain that the simulation size is big enough to produce adequate

accuracy in our estimates.

3 Consider now (2.3), and suppose for simplicity that the parametric families {G(1)
ϑ } and
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{G(2)
ϑ } are the same, λ(1) = λ(2), and M (2)

ϑ ≡M . Then,[
dνpar,1

dν2

]
(ϑ, ψ) =

(
m−1∏
j=1

M + j

M

)
I(d(ψ) = m). (2.4)

We recognize
∏m−1

j=1 ((M + j)/M) as the reciprocal of the (prior) probability that the ψj’s

are distinct, under the model indexed by h2. Suppose Markov chain output is generated from

the posterior corresponding to the model indexed by h2. The Bayes factor in favor of the

parametric model indexed by h1 is the expectation of (2.4) [see (1.4)], which is ν2,y{d =

m}/ν2{d = m}. Therefore, the parametric model is favored if and only if in the Markov

chain output the event {d = m} occurs more often than was expected a priori under the

model indexed by h2.

As M →∞, [dνpar,1/dν2] converges monotonically downwards towards 1 if d(ψ) = m. We

see from (2.4) that for any M , νpar,1 � ν2, but the reverse is not true.

4 Special cases of Part (i) of Theorem 1 already exist in the literature. Doss (1994a) states

without proof a version for the case of censored data (which corresponds to a nonparametric

Bayesian model where the likelihood function is the indicator of a censoring set). Liu (1996)

states the result in a simple case which permits an elegant short proof. The method of proof

that we use relies on a martingale-based calculation of the Radon-Nikodym derivative. It

has the advantage that it can be applied to other nonparametric priors, for example variants

of the Dirichlet such as the “symmetrized Dirichlets” that were studied by Diaconis and

Freedman (1986a,b) and “conditional Dirichlets” that were studied by Doss (1985a,b), Burr

et al. (2003), and Burr and Doss (2005), and are used in the illustration of Section 3.2. We

know of no other method that can do this.

2.2 Estimation of the Family of Bayes Factors

Consider the estimate (1.5), where θ1, . . . , θn is Markov chain output from νh1,y. This estimate

will be asymptotically normal if

(i) the Markov chain mixes fast enough, and

(ii) the random variable [dνh/dνh1 ](θ) (where θ ∼ νh1,y) has a high enough moment.

Weakening condition (i) requires strengthening condition (ii) and vice versa. For example, if

the chain is uniformly ergodic, then we need only a second moment in (ii) (Cogburn 1972). If

the chain is only geometrically ergodic then in (ii) we need a moment of order 2 + ε, for some

ε > 0 [Theorem 18.5.3 of Ibragimov and Linnik (1971)]. See Chan and Geyer (1994) for a
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discussion of various sets of assumptions for a central limit theorem to hold, and Geyer (1992)

for a discussion of estimation of the variance.

Unfortunately, this estimate suffers a serious defect: unless h is close to h1, νh can be nearly

singular with respect to νh1 over the region where the θi’s are likely to be, and the result is that

although the estimate is consistent, it can have infinite variance. From a practical point of view,

this means that there is effectively a “radius” around h1 within which one can safely move.

Let H be the set of hyperparameter values over which h will vary. Buta and Doss (2010)

discuss a method that involves selecting k hyperparameter points h1, . . . , hk ∈ H, and for each

j ∈ {1, . . . , k} getting ergodic Markov chain samples θ(j)
i , i = 1, . . . , nj from the posterior

νhj ,y. Instead of [dνh/dνh1 ], the Radon-Nikodym derivative
[
dνh/d

(∑k
s=1wsνhs

)]
is used,

where w1, . . . , wk > 0 are appropriately chosen. The ws’s need not add up to 1. Let n =∑k
j=1 nj be the total sample size, let aj = nj/n, and recall that `y(·) is the likelihood function.

If we took ws = asmh1/mhs , we would have

1

n

k∑
j=1

nj∑
i=1

[
dνh

d
(∑k

s=1wsνhs
)](θ

(j)
i ) =

1

n

k∑
j=1

nj∑
i=1

[
d(`yνh)

d
(∑k

s=1ws`yνhs
)](θ

(j)
i ) (2.5a)

=
mh

mh1

k∑
j=1

1

nj

nj∑
i=1

aj

[
d(`yνh/mh)

d
(∑k

s=1 as`yνhs/mhs

)](θ
(j)
i )

a.s.−→ mh

mh1

k∑
j=1

aj

∫ [
dνh,y

d
(∑k

s=1 asνhs,y
)] dνhj ,y =

mh

mh1

. (2.5b)

The “ a.s.−→” in (2.5b) indicates convergence in the almost sure sense. The ratios mh1/mhs are

needed to form the ws’s, but in general these ratios are unknown, and must be estimated.

This estimation problem may be stated as follows. For j = 1, . . . , k, we have samples

θ
(j)
i , i = 1, . . . , nj from densities fj , where fj = hj/cj , and the hj’s are known functions,

but the normalizing constants cj are unknown. We wish to simultaneously estimate all ratios

cl/cs, l, s = 1, . . . , k. This problem has been considered by many authors (Gill et al. 1988;

Meng and Wong 1996; Kong et al. 2003; Tan 2004). Let r be the vector consisting of the k

ratios r = (r1, . . . , rk) = (c1/c1, . . . , c1/ck). Gill et al. (1988) show that an estimate of r may

be obtained as the solution of the system of k equations

(rl)
−1 =

1

n

k∑
j=1

nj∑
i=1

ql(θ
(j)
i )∑k

s=1 asqs(θ
(j)
i )rs

, l = 1, . . . , k, (2.6)

where, as before, n =
∑k

j=1 nj and aj = nj/n. They showed that under the assumption that

the samples are iid, if r̂ is the solution to (2.6), then n1/2(r̂ − r) is asymptotically normal.
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Meng and Wong (1996), Kong et al. (2003), and Tan (2004) also considered this problem, and

arrived at exactly the same estimate, although from rather different perspectives. Geyer (1994)

established asymptotic normality of r̂ when for each j, θ(j)
i , i = 1, . . . , nj are Markov chains

satisfying certain mixing conditions. Our situation conforms to this setup. We can generate

samples from νhj ,y, the normalizing constants mhj are the marginal likelihoods mhj(y) =∫
`y(θ) νhj(dθ), and we know the Radon-Nikodym derivatives [dνhl/dνhs ] for all l, s. (From

inspection of (2.6), we see that the qj’s appear only through the ratios ql/qs.) Thus, we can use

the method of Gill et al. (1988) to arrive at an estimate of the needed ratios mh1/mhs .

We now return to the quantity on the left side of (2.5a). Buta and Doss (2010) propose a

two-stage procedure, whereby in Stage 1, for j = 1, . . . , k, we obtain Markov chain samples

from νhj ,y and use these to estimate the ratios required in forming the ws’s, and in Stage 2, we

generate new and independent samples and use those to calculate the quantity on the left side

of (2.5a), using the ws’s formed in Stage 1. Call this estimate B̂(h, h1). Buta and Doss (2010)

show that under the assumption that the chains satisfy certain mixing conditions, this estimate

is asymptotically normal, and they also show how to estimate its asymptotic variance. Viewed

as a function of h, the estimate is far more stable (i.e. has a smaller variance for a wide range

of h’s). All the examples in this paper use this estimate.

Part (ii) of Theorem 1 states that if h1 = (v1,M1), where M1 < ∞ and h = (v,∞),

then νh � νh1 . But as mentioned earlier, the reverse is not true. Therefore, if we obtain a

sample from the posterior corresponding to the nonparametric model (2.1), we can estimate

B(h, h1) even if h corresponds to the parametric version of this model. More generally, we

may use a skeleton set h1 = (v1,M1), . . . , hk = (vk,Mk) as long as there exists at least one

j ∈ {1, . . . , k} such that Mj <∞.

3 Examples

Here we consider two examples. The distribution of latent variables is now routinely modelled

through Dirichlet process mixtures, often with no justification (formal or informal), and our

first example, which is simple and short, is included primarily to give an idea of how far from

a normal or a t the distribution of the estimates of the latent variables has to be in order to

justify using a mixture of Dirichlets. The second example is a bit more complex—it involves

a variant of the Dirichlet process—and we include it to illustrate the generality of the formula

for the Radon-Nikodym derivative given in Theorem 1 (and of the method used to obtain this

formula). Both examples are “small scale,” and the Bayes factors do not speak as loudly as in
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other data sets we have considered. The advantage of using these particular small data sets is

that the data can be visualized more easily and this enables us to gain some insight on why the

Bayes factors point to certain models.

3.1 Meta-Analysis of Studies on Decontamination of the Digestive Tract

Infections acquired in intensive care units are an important cause of mortality. One strategy

for dealing with this problem involves selective decontamination of the digestive tract (hence-

forth DDT) through the use of antibiotics. This is designed to prevent infection by preventing

carriage of potentially pathogenic micro-organisms from the oropharynx, stomach, and gut. A

large number of randomized controlled trials have been carried out to investigate the potential

benefits of this strategy. In each trial, patients in an intensive care unit were randomized to

either a treatment or a control group. The proportion of individuals who acquired an infec-

tion was recorded for the treatment and control groups and an odds ratio was reported. An

international collaborative group (Selective Decontamination of the Digestive Tract Trialists’

Collaborative Group 1993) performed a meta-analysis of the 22 studies that were published

during the period January 1984 to June 1992 using a fixed effects model, in which all the trials

were assumed to be measuring the same quantity. However, the studies varied in many ways,

for example in the kind of antibiotic used and the patient pool, and a new meta-analysis was

carried out by Smith et al. (1995), using a random effects model.

Figure 1(a) displays the data for the 22 studies. The locations of the vertical lines are the

observed log odds ratios, and their heights are proportional to the reciprocals of the estimated

standard errors. Also given by the figure is an estimate of the distribution of the study-specific

log odds ratios, using a kernel density estimate that is based on the observed log odds ratios,

with weights that reflect the estimated standard errors. (This density estimate should be viewed

with caution, since it is based on the estimated log odds ratios, and not the log odds ratios

themselves.) The figure suggests a non-normality, since it shows that there are a few studies

with an extremely significant treatment effect. To better accommodate these outlying studies,

Smith et al. (1995) suggest modelling the distribution of the random effects by a t distribution

with 4 degrees of freedom.

It is natural to ask whether the apparent deviation from normality is strong enough to justify

using a t distribution, and if it is, then what should be the degrees of freedom parameter.

Actually, it is not clear that a t distribution would make for a good fit, and a Dirichlet-based

model might be a better candidate. Therefore, we will consider the broader class of models

given by (1.2) and use our methodology to select the two parameters v and M . The model used

10
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Figure 1: Estimate of distribution of the study-specific effect ψ for the DDT data and PlA2 data. Data

are represented by vertical lines, whose locations are the estimates of the log odds ratios and whose

heights are proportional to the reciprocals of the estimated standard errors.

by Smith et al. (1995) corresponds to the choice (v,M) = (4,∞).

Let Yj denote the observed log odds ratio for study j, let σj be the corresponding standard

error, and let ψj be the true log odds ratio, i.e. the log odds ratio that would be observed if the

sample size for study j was infinite. By the well-known asymptotic normality of the observed

log odds ratio, we see that (2.1a) is satisfied, where Pj(ψj) is just the N (ψj, σ
2
j ) distribution,

and we may therefore use model (2.1). Let NIG(c1, c2, c3, c4) be the normal / inverse gamma

distribution on (µ, τ) with parameters c1, c2, c3, c4, and let m(v,M) be the marginal likelihood

of the data when in model (2.1) we have the location/scale family of t distributions with v

degrees of freedom (which gives rise to a non-conjugate model), precision parameter M , and

λ = NIG(.1, .1, 0, 1000). This choice of λ gives a fairly diffuse prior on (µ, τ). For unity of

notation, we will use the convention that a t distribution with infinite degrees of freedom is just

the normal distribution. Also, m(tv,∞) will denote the marginal likelihood of the data under

the parametric version of the model. Define the Bayes factor

B(v,M) =
m(v,M)

m(∞, 16)
, v,M ∈ (0,∞].

We are interested in estimating B(v,M) as v and M vary.

To this end, we used the estimate described in Section 2.2 in order to achieve greater sta-

bility. Specifically, we used chains of length 100,000 each from the posterior corresponding

to model (2.1) where Gϑ in (2.1c) is the normal family, with M starting at 1 and increasing
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by factors of 2 up to 128, and also one chain of length 100,000 corresponding to the paramet-

ric version of the model, all using λ = NIG(.1, .1, 0, 1000), for a total of nine chains. These

nine chains form the Stage 1 samples which are used to form the estimate r̂ of the vector

r = (r1, . . . , r9) discussed in Section 2.2. We then ran nine new chains, each of length 10,000,

corresponding to the same skeleton grid, to form the quantity on the left side of (2.5a), via

Theorem 1, using the estimate r computed in Stage 1, to estimate B(v,M). (Note that we

are taking h1 = (∞, 16) to be the baseline hyperparameter value.) The estimate r̂ obtained in

Stage 1 is computed only once; by contrast, the estimate on the left side of (2.5a) needs to be

computed for each value of h. So the sample sizes in Stage 1 can be taken to be quite large,

whereas those in Stage 2 must be relatively small. This is the reason why we used chains of

length 100,000 in Stage 1 but only 10,000 in Stage 2.

Figure 2 shows that the Bayes factors are highest for the Dirichlet centered at the normal

distribution (the maximum turns out to be achieved whenM = 15), and the difference between

the Bayes factor for the Dirichlet with M = 15 and that for the Dirichlet with M = ∞ is so

slight that there is hardly a justification for using a nonparametric Bayes model. The simple

normal distribution suffices, a useful piece of information that would have been difficult to

obtain without this formal analysis.
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Figure 2: Model assessment for the DDT data. Shown are plots of Bayes factors for Dirichlet models

centered at the location/scale families of normal and t distributions with 1, 2, and 4 degrees of freedom,

as M varies.

We carried out side calculations that show that the t1 and t2 distributions give estimates of

the mean of the predictive distribution of a future study that are quite a bit larger than estimates
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based on the normal, but Figure 2 shows that these estimates are not appropriate. Interestingly,

the t1 distribution provides such a bad fit (B(1,∞) = .014) that using a Dirichlet with small

M (around 2) improves the fit by allowing enough deviation from this t.

Since the apparent deviation from normality in Figure 1 is not strong enough to warrant

using a model more complicated than a simple normal, we created a hypothetical data set in

which the standard error of the most outlying study (for which Yj = −3.62) is decreased by

a factor of 5. Figure 3 shows the new Bayes factors, and these now indicate that the most

appropriate model is the one based on the t4 distribution (without involvement of Dirichlet

processes).
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Figure 3: Model assessment for perturbed version of the DDT data in which the standard error for the

observation with the smallest log odds ratio is decreased by a factor of 5.

3.2 Meta-Analysis of Data on PlA2 Polymorphism and Risk of Heart Dis-
ease

We revisit the data set analyzed by Burr et al. (2003). Very briefly, this involved a meta-analysis

of studies that investigate a purported link between presence of a certain genetic trait “PlA2

polymorphism” and increased risk of coronary heart disease (CHD). There were 12 studies,

each of which was a case-control study. The cases were individuals with CHD and the controls

were individuals with no history of CHD, and the exposure variable was presence/absence of

the PlA2 polymorphism. The studies reported an odds ratio, together with a standard error. We

work on the log scale, and the framework is the same as for the DDT example. (A log odds ratio
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greater than 0 indicates that the polymorphism is associated with increased risk of CHD.) The

data set is presented in detail in Burr et al. (2003), but the bottom part of Figure 1(b) enables

a quick visual scan of the data. Because the studies gave wildly conflicting results, Burr et al.

(2003) were primarily interested in the basic question of whether the mean of the distribution

of the study-specific effects was greater than 0, for example to determine whether or not one

should carry out further studies.

In a parametric model such as (1.1) the parameter µ has a well-defined role as the mean

of the distribution of the study-specific effects, whereas in (1.2), µ is not equal to the mean

of F . For this reason, Burr et al. (2003) consider model (1.2) (with a normal distribution in

line (1.2c)) and replace (1.2c) with

conditional on µ, τ, F ∼ DµMN (µ,τ2) (1.2c′)

where DµMN (µ,τ2) is a Dirichlet conditioned on median(F ) = µ. In this model, the parameter

µ has a well-defined role as the median of F (by construction). Additionally, the distribution

of µ in this model is less affected by outliers than is the distribution of the mean of F in

the model where we use ordinary (i.e. “unconditional”) Dirichlets [this last is hard to handle

even with Sethuraman’s (1994) construction of the Dirichlet process]. Burr et al. (2003) argue

that the model based on mixtures of conditional Dirichlets is therefore useful in situations

where there is concern that a few poorly designed studies might have undue influence on the

meta-analysis. Here we will consider model (1.2), with (1.2c) replaced by (1.2c′), i.e. using

conditional Dirichlets, and we will in addition allow for the location-scale family to be a family

of t distributions with v degrees of freedom, with v = ∞ corresponding to the normal family.

We will consider the choice of M and v.

For h = (v,M), let νh denote the (prior) distribution of (ψ, µ, τ) under model (1.2), where

in (1.2d) λc = NIG(.1, .1, 0, 1000), and let m(v,M) denote the marginal likelihood of the data

under this model. Also, let νch and mc(v,M) denote the corresponding quantities for the model

involving conditional Dirichlets, i.e. where instead of (1.2c) we have F ∼ DµMtv,µ,τ
(Dirichlet

conditioned on med(F ) = µ). We would like to estimate the Bayes factor

mc(v,M)

mc(v1,M1)
v,M ∈ (0,∞] (3.1)

for some fixed h1 = (v1,M1), but it turns out to be equally useful, and far more convenient, to

estimate the Bayes factor
mc(v,M)

m(v1,M1)
v,M ∈ (0,∞]. (3.2)
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The family of Bayes factors equation (3.1) and (3.2) differ by a multiplicative constant, and as

mentioned earlier, from the point of view of model selection, multiplicative factors are imma-

terial.

Estimating (3.2) is done very conveniently if we have a Markov chain sample θ1, . . . , θn

from the posterior νh1,y, which corresponds to the prior νh1 (unconditional Dirichlet) and we

have a formula for the Radon-Nikodym derivative [dνch/dνh1 ], for in this case,

1

n

n∑
i=1

[
dνch
dνh1

]
(θi)

a.s.−→ mc(v,M)

m(v1,M1)

(see (1.4)). In the appendix, we prove that[
dνch
dνh1

]
(ψ, µ, τ) =

{
d∏
r=1

tv
(ψ(r)−µ

τ

)
tv1
(ψ(r)−µ

τ

)}(M
M1

)d {Γ(M1 +m)Γ2
(
M
2

)
Γ(M1)2m

}
K(ψ, µ), (3.3a)

where

K(ψ, µ) =
[
Γ
(
M/2 +

∑m
j=1 I(ψj < µ)

)
Γ
(
M/2 +

∑m
j=1 I(ψj > µ)

)]−1

. (3.3b)

(We do not need to write a corresponding formula for [dνcpar,h/dνh1 ] since it is clear that

[dνcpar,h/dνh1 ] = [dνpar,h/dνh1 ].)

The function K is interesting: viewed as a function of µ, K(ψ, µ) has a maximum when

µ is at the median of the ψj’s, and as µ moves away from the median in either direction, it is

constant between the ψj’s, and decreases by jumps at each ψj . This effect is stronger when M

is small. The interpretation is as follows. Suppose that θ(i) = (ψ(i), µ(i), τ (i)), i = 1, . . . , n

is Markov chain output from the posterior corresponding to model (1.2) (mixture of ordinary

Dirichlets). If the θ(i)’s are such that µ(i) is close to the median of (ψ
(i)
1 , . . . , ψ

(i)
m ), which is

likely under the model based on conditional Dirichlets (since µ is the median of F , and is

therefore expected to be close to the median of the ψj’s, as these are a sample from F ), then

the estimate of the Bayes factor in favor of the model based on conditional Dirichlets is large.

As before, an estimate based on several Markov chains enables us to reliably estimate

the Bayes factors over a wider range of values of h, and this is what we will use. We ran

Markov chains exactly as in Section 3.1 (i.e. under the model that involves ordinary Dirichlets

as opposed to conditional Dirichlets, and with the same λ) except that we used values of M

starting at 1/4 and increasing by factors of 2 up to 32. Define the Bayes factor

Bc(v,M) =
mc(v,M)

m(∞, 4)
. (3.4)
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Figure 4 gives a plot of the Bayes factor (3.4) as M varies, for v = 1, 2, 4,∞ (bottom four

lines). Note that the denominator in (3.4) refers to a point outside of the model. We may write

mc(v,M)

mc(∞, 4)
= Bc(v,M)

m(∞, 4)

mc(∞, 4)
(3.5)

and note that the second term on the right side of (3.5) is available from Figure 4. So we may

rescale the plots in Figure 4 to get estimates of mc(v,M)/mc(∞, 4), but as mentioned earlier,

there is no need to do so. Figure 4 suggests that the model based on conditional Dirichlets

centered at the family of normal distributions provides a better fit than does the parametric

model. For example, mc(∞, 1/4)/mc(∞,∞) = 3.16 which, according to the scale of Jeffreys,

is “substantial” evidence in favor of the nonparametric model with M = 1/4 as compared with

the parametric model. In view of the usual aversion to using very small values of M , Figure 4

suggests that it is reasonable to use the valueM = 1. This is the value used by Burr et al. (2003)

(with no justification), who show that the analysis based on this choice gives conclusions that

are more conservative than those based on a parametric model.
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Figure 4: Model assessment for the PlA2 data. Bottom four lines are plots of Bayes factors for the

conditional Dirichlet models centered at the location/scale families of normal and t distributions with 1,

2, and 4 degrees of freedom, as M varies, relative to the Dirichlet models centered at the normal family

with M = 4. Top line is a plot of the Bayes factor for the conditional Dirichlet vs. Dirichlet models,

with M starting at .4.

Figures 2 and 3 suggest that for the DDT data there is no need for a Bayesian nonparametric

model, while 4 suggests that for the PlA2 data there is. A look at Figure 1 reveals why. Even if
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we form the perturbed version of the DDT data, the non-normality is essentially due to outliers,

and these are handled by a t distribution. In contrast, Figure 1(b) suggests that for the PlA2 data

we have a tri-modal distribution; using a t distribution doesn’t address this problem, whereas

using a nonparametric Dirichlet-based model with a small value of M does. (In experiments

not shown here, we artificially increased the “clumping” by merging together the observations

into three groups and then moved the three groups apart from each other. The Bayes factors

then speak more strongly in favor of the nonparametric Bayes model and in fact the plots need

to be shown on a log scale.)

The analysis involving the model based on conditional Dirichlets would be incomplete if

we didn’t see whether this model provides a good fit. The top line in Figure 4 is a plot of

the Bayes factor for the conditional Dirichlet vs. the Dirichlet models as M varies, i.e. a plot

of mc(v,M)/m(v,M). This quantity does not depend on v. It may be estimated via (3.3)

separately for each M , but we may estimate it for a range of M ’s using the Markov chains run

for M = 1/4, 1/2, . . . , 32, using the methods of this paper. The plot shows that for this data

set, the model based on conditional Dirichlets provides a uniformly better fit than does the one

based on Dirichlets, with the advantage being greater for small values of M . (Of course, as

M → ∞, the Bayes factor converges to 1, since the models both converge to the parametric

model.)

R functions for calculating the Radon-Nikodym derivatives, the Bayes factor estimates, and

for producing plots such as those in Figures 2–4 are available from the author upon request.

There are many programs that run the Markov chains for Dirichlet-based models already in

existence [see Neal (2000) and Jain and Neal (2007)], and the present author’s implementation

is also available upon request. Functions for making plots of Bayes factors of conditional

Dirichlet vs. unconditional Dirichlet models are given as part of the R package bspmma (Burr

2010).

4 Discussion and Relation to Other Approaches

Choice of the Design Points Buta and Doss (2010) show how to estimate the variance of the

Bayes factor estimate discussed in Section 2.2. This variance depends on the choice of the hy-

perparameters h1, . . . , hk. To emphasize this dependence, let us denote it by V (h, h1, . . . , hk).

In the models we are considering, h = (v,M, c) and we will typically be interested primarily

in the degrees of freedom parameter v and the precision parameter M . So by a slight abuse of

notation, let us write h = (v,M), i.e. we ignore the hyperparameter of the prior on ϑ. If we fix

17



a range over which h is to vary, e.g. H = [a,∞) × [b,∞) where a, b > 0, and fix k, then we

will face the problem below.

Design Problem Find the values of h1, . . . , hk that minimize maxh∈H V (h, h1, . . . , hk).

Unfortunately, it is not possible to calculate V (h, h1, . . . , hk) analytically—even if k = 1, and

even if h and h1 differ only in the precision parameter M—let alone minimize it with respect

to 2k variables, and solving the design problem is hopeless.

In our experience, we have found that the following method works reasonably well. Having

specified the range H, we select trial values h1, . . . , hk and plot the estimated variance as a

function of h, using the variance estimate obtained in Buta and Doss (2010). If we find a

region inH where this variance is unacceptably large, we “cover” this region by moving some

hl’s closer to the region, or by simply adding new hl’s in that region, which increases k. Of

course, we note that a region of the form [a,∞) × [b,∞) is not “unbounded” in the practical

sense, as it is easy to see that B(h, h1) converges as d→∞ or M →∞, or both.

Consequences of Extrapolation Beyond Coverage Provided by the Design Points We

now give some indication of the extent to which the variability of the Bayes factor curves,

say those in Figure 2, depends on the choice of the points h1, . . . , hk. Suppose we wish to

estimate B = m(∞,∞)/m(∞,M), i.e. the Bayes factor of the parametric normal model vs.

the Dirichlet model centered at the normal family, with precision parameter M , and suppose

we run a single chain under the latter model. Let νM and νM,y denote the prior and posterior

distributions, respectively, of θ under this model. As mentioned in Comment 3 of Section 2.1,

the Bayes factor is νM,y(d = 22)/νM(d = 22), and its estimate is ν̂M,y(d = 22)/νM(d = 22),

where ν̂M,y(d = 22) is the observed proportion of θ’s for which the ψj’s are all distinct. If

we had an iid sample of size n from the posterior (a best-case scenario), the variance of this

estimate would be
νM,y(d = 22)(1− νM,y(d = 22))

n (νM(d = 22))2
. (4.1)

From accurate experiments involving Markov chains run under models with a wide range of

M ’s, we know that the Bayes factor is about 1 for M ≥ 7 (see Figure 2), i.e.

νM,y(d = 22)
.
= νM(d = 22) =

21∏
j=1

(M/(M + j)), M ≥ 7,

so that the variance in (4.1) essentially reduces to (1/n)
∏21

j=1((M + j)/M) for this range of

M ’s [the term (1 − νM,y(d = 22)) is nearly 1 for the range of M ’s we are interested in]. If

M = 7, this is about (1.1 × 108)/n, and if M = 15, this is about (5.7 × 104)/n, and only
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for M ≥ 60 do we get reasonable numbers. The point of this discussion is to stress that when

the prior νh is nearly singular with respect to all νhs , s = 1, . . . , k, over the region where the

θ
(s)
i ’s are likely to be, the estimate will be unstable. In our particular case this means that it is

essential that we run chains under a wide spectrum for the precision parameter M , if we want

to produce accurate estimates of the Bayes factor over a wide range of hyperparameter values.

Relation to Previous Work One approach for dealing with the choice of the precision pa-

rameter M is to simply put a prior on it, as in the early paper by West (1992). He considers a

model of the form (2.1), except with a single Dirichlet, as opposed to a mixture of Dirichlets

[i.e. the hyperparameter is h = M , as opposed to h = (M, v, c)]. He uses a gamma prior on

M , which itself is indexed by two parameters, which must then be specified. One can consider

instead a flat prior, in which case the posterior distribution of M is proportional to the marginal

likelihood of the data, i.e. mh(y), and the mode of the posterior is then the point at which the

Bayes factor is maximized. But as is well known, for certain parameters, flat priors can be very

informative. Here, putting a flat prior onM and v in effect skews the results in favor ofM =∞
(the parametric version of the model), and in favor of v = ∞ (the normal distribution). Thus,

while the approach of putting a prior on the hyperparameters can be useful, there are problems

with it. One is that, as mentioned above, the choice of prior can have great influence on the

analysis. Another is that, in broad terms, the general interest in empirical Bayes methods arises

in part from a desire to select specific values of the hyperparameters because these give a model

that is more parsimonious and interpretable. These points are discussed more fully (in a general

context) in George and Foster (2000) and Robert (2001, Chapter 7).

Estimation of Bayes factors for nonparametric Bayes problems has been considered by sev-

eral other authors. Berger and Guglielmi (2001) consider the case where the prior is a mixture

of Polya trees. Polya trees can offer more modelling flexibility than do Dirichlet priors in that

their specification involves parameters that control the smoothness of the random distribution.

Berger and Guglielmi (2001) consider what is in essence the “case of complete data;” that is,

they consider the case where there are observations ψ1, . . . , ψj which are iid from a distribu-

tion F whose distribution is a mixture of Polya trees. Our situation [model (2.1)] is different:

although we assume that ψ1, . . . , ψj
iid∼ F , in our model we don’t observe the ψj’s. Rather,

for each j, we observe a random variable Yj which gives us partial information on ψj . (The

case where the distribution Pj in (2.1a) is degenerate at ψj would reduce to the “complete data

problem.”) The present author does not know if the calculation of Radon-Nikodym derivatives

can be extended to hierarchical models involving mixtures of Polya trees.
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Basu and Chib (2003) consider a Dirichlet-based hierarchical model similar to ours. They

consider the situation where there are specifications h1, . . . , hk of the model and they wish to

calculate Bayes factors for all possible pairs. Their method involves calculating the marginal

likelihood for each model. Casting their approach into our framework and notation to facilitate

our description of their idea, in their approach they express the marginal likelihood mhj(y) via

the identity

logmhj(y) = logmhj(y | ϑ∗) + log λ(j)(ϑ∗)− log λ(j)
y (ϑ∗). (4.2)

Here, λ(j) and λ(j)
y are the prior and posterior densities of ϑ. In (4.2), ϑ∗ is selected as a point

of high posterior density. They estimate the first term using a sequential importance sampling

scheme and the third term using the output of a Markov chain run under the specification hj .

Their approach has the advantage that they can actually estimate the marginal likelihood. On

the other hand, it requires running a separate Markov chain for each model under consideration.

In our approach, once Markov chains have been run under the models indexed by h1, . . . , hk, we

may estimate Bayes factors for a continuum of indexing values h as long as these are not too far

from all the hj’s. Another advantage of our approach is that estimation of ratios of normalizing

constants tends to be far more stable than estimation of the normalizing constants themselves.

For example, if we wish to estimatemh/mh1 , then a procedure that involves estimatingmh and

mh1 separately and then taking the ratio is not guaranteed to provide accurate estimates even

when h = h1, whereas in this case the simple estimate (1.5) gives an unbiased estimate with

zero variance.
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Appendix

Appendix A: Proof of Theorem 1

We first prove Part (i). Let ϑ(0) ∈ Ω and ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
m ) ∈ Rm be fixed. For η > 0, let

Cη

ψ(0) be the cube

Cη

ψ(0) = (ψ
(0)
1 − η/2, ψ

(0)
1 + η/2)× · · · × (ψ(0)

m − η/2, ψ(0)
m + η/2),

20



and similarly let Bη

ϑ(0) be the cube in Rp centered at ϑ(0) and with sides of width η. Our plan

is to calculate the probability of the set
{
ϑ ∈ Bη

ϑ(0) , ψ ∈ Cη

ψ(0)

}
under the two distributions ν1

and ν2, and take the ratio. The limit as η → 0 is the Radon-Nikodym derivative at (ϑ(0), ψ(0)),

by a martingale argument [see, e.g. pp. 209–210 of Durrett (1991)].

Let πi be the distribution of (ϑ, F, ψ) under the model indexed by hi, for i = 1, 2. Let

ψ
(0)
(1) < ψ

(0)
(2) < · · · < ψ

(0)
(d) be the distinct values of ψ(0)

1 , . . . , ψ
(0)
m , and let m1, . . . ,md be their

multiplicities. Denoting the set of all probability measures on R by P , we have

ν1

{
ϑ ∈ Bη

ϑ(0) , ψ ∈ Cη

ψ(0)

}
ν2

{
ϑ ∈ Bη

ϑ(0) , ψ ∈ Cη

ψ(0)

} =
π1

{
ϑ ∈ Bη

ϑ(0) , F ∈ P , ψ ∈ Cη

ψ(0)

}
π2

{
ϑ ∈ Bη

ϑ(0) , F ∈ P , ψ ∈ Cη

ψ(0)

} (A.1a)

=

∫
Bη
ϑ(0)

∫
P

m∏
j=1

[
F (ψ

(0)
j + η/2)− F (ψ

(0)
j − η/2)

]
D
M

(1)
ϑ G

(1)
ϑ

(dF )λ(1)(dϑ)

∫
Bη
ϑ(0)

∫
P

m∏
j=1

[
F (ψ

(0)
j + η/2)− F (ψ

(0)
j − η/2)

]
D
M

(2)
ϑ G

(2)
ϑ

(dF )λ(2)(dϑ)

=

∫
Bη
ϑ(0)

∫
P
∏m

j=1

[
F (ψ

(0)
j + η/2)− F (ψ

(0)
j − η/2)

]
D
M

(1)
ϑ G

(1)
ϑ

(dF )

ηd
∏d

l=1(ml − 1)!
λ(1)(dϑ)

∫
Bη
ϑ(0)

∫
P
∏m

j=1

[
F (ψ

(0)
j + η/2)− F (ψ

(0)
j − η/2)

]
D
M

(2)
ϑ G

(2)
ϑ

(dF )

ηd
∏d

l=1(ml − 1)!
λ(2)(dϑ)

=

∫
Bη
ϑ(0)

f 1,η

ψ(0)(ϑ)λ(1)(dϑ)∫
Bη
ϑ(0)

f 2,η

ψ(0)(ϑ)λ(2)(dϑ)
, (A.1b)

where

f 1,η

ψ(0)(ϑ) =

∫
P
∏m

j=1

[
F (ψ

(0)
j + η/2)− F (ψ

(0)
j − η/2)

]
D
M

(1)
ϑ G

(1)
ϑ

(dF )

ηd
∏d

l=1(ml − 1)!
(A.2)

and f 2,η

ψ(0)(ϑ) is defined similarly. We may rewrite (A.2) as

f 1,η

ψ(0)(ϑ) =

∫
P
∏d

l=1

[
F (ψ

(0)
(l) + η/2)− F (ψ

(0)
(l) − η/2)

]ml D
M

(1)
ϑ G

(1)
ϑ

(dF )

ηd
∏d

l=1(ml − 1)!
, (A.3)

and we have a similar expression for f 2,η

ψ(0)(ϑ). Let A(1)
l (η) = M

(1)
ϑ G

(1)
ϑ

{
(ψ

(0)
(l) − η/2, ψ

(0)
(l) +

η/2)
}
, l = 1, . . . , d, and also define A(1)

d+1(η) = M
(1)
ϑ −

∑d
l=1A

(1)
l (η). Assume that η is

so small that the sets (ψ
(0)
(l) − η/2, ψ

(0)
(l) + η/2), l = 1, . . . , d are disjoint. Note that cal-

culation of (A.3) is routine since it involves only the finite-dimensional Dirichlet distribu-

tion. The integral on the right side of (A.3) is E(Um1
1 · · ·U

md
d ) where (U1, . . . , Ud, Ud+1) ∼
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Dirichlet
(
A

(1)
1 (η), . . . , A

(1)
d+1(η)

)
, and a simple calculation shows that this expectation is equal

to

Γ
(
M

(1)
ϑ

)(∏d
l=1 Γ

(
A

(1)
l (η)

))
Γ
(
A

(1)
d+1(η)

)
(∏d

l=1 Γ
(
A

(1)
l (η) +ml

))
Γ
(
A

(1)
d+1(η)

)
Γ
(
M

(1)
ϑ +m

) .

Let

f 1
ψ(0)(ϑ) =

(
d∏
l=1

g
(1)
ϑ (ψ

(0)
(l) )

)(
M

(1)
ϑ

)d
Γ
(
M

(1)
ϑ

)
Γ
(
M

(1)
ϑ +m

) .

Using the recursion Γ(x+ 1) = xΓ(x) and the definition of the derivative, we see that for each

ϑ ∈ Θ, f 1,η

ψ(0)(ϑ) → f 1
ψ(0)(ϑ). Under the regularity conditions listed just prior to the statement

of the theorem, we see that this implies that (A.1b) converges to(
d∏
l=1

g
(1)

ϑ(0)(ψ
(0)
(l) )

g
(2)

ϑ(0)(ψ
(0)
(l) )

)(
M

(1)

ϑ(0)

M
(2)

ϑ(0)

)d
Γ
(
M

(1)

ϑ(0)

)
Γ
(
M

(2)

ϑ(0) +m
)

Γ
(
M

(2)

ϑ(0)

)
Γ
(
M

(1)

ϑ(0) +m
) [dλ(1)

dλ(2)

]
(ϑ(0)), (A.4)

and expression (A.4) thus gives [dν1/dν2].

To prove Part (ii), we reconsider the calculation. In (A.1a), the numerator is replaced by

νpar,1
{
ϑ ∈ Bη

ϑ(0) , ψ ∈ Cη

ψ(0)

}
=

∫
Bη
ϑ(0)

m∏
j=1

[
G

(1)
ϑ (ψ

(0)
j + η/2)−G(1)

ϑ (ψ
(0)
j − η/2)

]
λ(1)(dϑ)

=

∫
Bη
ϑ(0)

ηm
m∏
j=1

g
(1)
ϑ (ψ

(0)
j )λ(1)(dϑ) + op(η

m),

where the last equality follows from Assumption A3. If d < m, the ratio in (A.1a) isOp(η
m−d).

If d = m, the limit is the expression given in (2.3).

Appendix B: Proof of Equation (3.3)

We may write [
dνch
dνh1

]
(ψ, µ, τ) =

[
dνch
dνh

]
(ψ, µ, τ)

[
dνh
dνh1

]
(ψ, µ, τ),

since (i) νch � νh, as established in Burr and Doss (2005), who show that[
dνch
dνh

]
(ψ, µ, τ) =

[
Γ2
(
M
2

)
Γ(M +m)

2mΓ(M)

]
K(ψ, µ)

(see Proposition 2 and expression (A.7) of their paper) and (ii) νh � νh1 (Theorem 1 of the

present paper). In our particular case, the distribution λ on (µ, τ) is the same under νh and νh1 ,

and Theorem 1 gives simply[
dνh
dνh1

]
(ψ, µ, τ) =

{
d∏
r=1

tv
(ψ(r)−µ

τ

)
tv1
(ψ(r)−µ

τ

)}(M
M1

)d {Γ
(
M
)
Γ
(
M1 +m

)
Γ
(
M1

)
Γ
(
M +m

)}.
The result now follows after some algebraic simplifications.
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