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Abstract

We consider a Bayesian random effects model that is commonly used in meta-analysis,

in which the random effects have a t distribution, with degrees of freedom parameter to be

estimated. We develop a Markov chain Monte Carlo algorithm for estimating the posterior

distribution in this model, and establish geometric convergence of the algorithm. The geomet-

ric convergence rate has important theoretical and practical ramifications. Indeed, it implies

that, under standard second moment conditions, the ergodic averages used to estimate posterior

quantities of interest satisfy central limit theorems. Moreover, it guarantees the consistency

of a batch means estimate of the asymptotic variance in the CLT, which in turn allows for the

construction of asymptotically valid standard errors. We show how our Markov chain can be

used, in conjunction with an importance sampling method, to carry out an empirical Bayes

approach for estimating the degrees of freedom parameter. To illustrate our methodology we

consider a meta-analysis of studies that link intake of non-steroidal anti-inflammatory drugs

to a reduction in colon cancer risk, in which some of the studies are outliers. To model the

distribution of the study effects we consider the family of t distributions, as well as a fam-

ily of mixtures of Dirichlet process priors centered at the t distributions, and show how our

methodology can be used to make a choice of model.

Key words and phrases: Dirichlet process, Empirical Bayes, importance sampling, meta-

analysis



1 Introduction

Bayesian hierarchical models are often used to deal with random effects, and a commonly

used model is the following:

conditional on θi, Yi
ind∼ N (θi, σ

2
i ), i = 1, . . . , K, (1.1a)

conditional on µ, τ, θi
iid∼ N (µ, τ 2), i = 1, . . . , K, (1.1b)

(µ, τ) ∼ νc. (1.1c)

In (1.1a), Yi is a single summary statistic from experiment i, based on a sample of size mi,

and θi is a latent parameter particular to that experiment. (Usually the variance is unknown,

but as is commonly done in meta-analysis, we assume that experiment i gives an estimate

σ̂2
i that is accurate enough so that assuming σ̂2

i equals the true value does not cause any

problem.) The prior νc in (1.1c), indexed by the hyperparameter c = (c1, c2, c3, c4), is the

prior in which µ ∼ N (c1, c2), 1/τ 2 ∼ Gam(c3, c4), and µ and τ are independent. Typically

one takes something like c = (0, 1000, .1, .1) or anything giving a fairly diffuse prior.

Whereas the normality assumption in line (1.1a) is typically supported by some the-

oretical result, such as the asymptotic normality of maximum likelihood estimates, the

normality assumption in line (1.1b) generally doesn’t have any justification and is made

solely for the sake of convenience. In certain situations, for example when study effects are

highly disparate and one wishes to accommodate outliers, a good alternative to line (1.1b)

is θi
iid∼ td(µ, τ

2), where td(µ, τ 2) is the t distribution with d degrees of freedom, location

µ, and scale τ . We will then want to select d, with the choice d = ∞ signifying the choice

of the normal distribution. In all of the many previous uses of this model, the degrees of

freedom parameter has been chosen in an ad-hoc manner [see, e.g., Smith et al. (1995) and

Gelman et al. (2004, sect. 17.4), among many others]—with a decision on whether to use a t

rather than a normal often based on whether or not inferences are different—and subsequent

inference carried out without careful consideration of the validity of the inference.
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Here we seek a principled approach for specifying the degrees of freedom parameter.

Denote Y = (Y1, . . . , YK)T and θ = (θ1, . . . , θK)T . Let ρd be the prior density of (θ, µ, τ)

specified by model (1.1) when we use a t distribution with d degrees of freedom instead of

a normal in (1.1b), and let ρd,y be the corresponding posterior given Y = y. The marginal

density of Y is given by

md(y) =

∫∫∫
`y(θ)ρd(θ, µ, τ) dθ dµ dτ,

where `y(θ) is the likelihood function specified in (1.1a). For convenience of notation, ρ∞,

ρ∞,y and m∞(y) will denote the corresponding quantities when a normal distribution is

used in (1.1b). An empirical Bayes approach selects the value of d that maximizes md (we

now suppress the dependence of md(y) on y, since y is fixed throughout). In principle,

the maximizing value of d can be obtained via the EM algorithm, by treating θ as missing.

Implementation of the EM algorithm appears to present some nontrivial issues; but a more

significant problem is that it gives only the maximizing value, whereas in the present situa-

tion it is also of interest to know the entire marginal likelihood function md. For example,

in one of the two illustrations in Section 4, the likelihood at ∞ is nearly the same as the

likelihood at the maximum (see Figure 2(A)), and this is useful to know, since we would

not use a t model if we knew that a normal model is adequate.

To discuss estimation of md as d varies, define the Bayes factor for the model based on

the t distribution with d degrees of freedom vs. the model based on the normal distribution

by

B(d,∞) =
md

m∞
. (1.2)

Clearly the information about d in B(d,∞) is the same as the information in md, but as

will be seen shortly, it is much easier to estimate B(d,∞) than it is to estimate md. Typ-

ical Markov chain Monte Carlo (MCMC) algorithms for dealing with model (1.1) give as

output a sequence (θ(i), µ(i), τ (i)), i = 1, . . . , n for which the marginal distribution is ap-
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proximately the posterior distribution. If an ergodic chain is run under model (1.1)—with a

normal distribution in (1.1b)—then B(d,∞) may be estimated very conveniently by

B̂(d,∞) =
1

n

n∑
i=1

ρd(θ
(i), µ(i), τ (i))

ρ∞(θ(i), µ(i), τ (i))
. (1.3)

Indeed, we have

B̂(d,∞) =
md

m∞

1

n

n∑
i=1

`y(θ
(i))ρd(θ

(i), µ(i), τ (i))/md

`y(θ(i))ρ∞(θ(i), µ(i), τ (i))/m∞

=
md

m∞

1

n

n∑
i=1

ρd,y(θ
(i), µ(i), τ (i))

ρ∞,y(θ(i), µ(i), τ (i))

a.s.−→ md

m∞

∫∫∫
ρd,y(θ, µ, τ)

ρ∞,y(θ, µ, τ)
ρ∞,y(θ, µ, τ) dθ dµ dτ =

md

m∞
. (1.4)

When we present an estimate such as (1.3), it is important to also provide error margins

for the estimate and unfortunately, this is rarely done with estimates produced by MCMC

(Flegal et al. 2008); we return to this point in Section 5 of the present paper. Now, whereas

the almost sure convergence in (1.4) results from simple ergodicity of the chain, a central

limit theorem, which is required in order to produce asymptotically valid standard errors,

requires further regularity conditions. To be specific, suppose that we want to estimate

the posterior expectation of some function g(θ, µ, τ). The ergodic theorem implies that

(1/n)
∑n

i=1 g(θ(i), µ(i), τ (i)) is a strongly consistent estimator. However, a central limit the-

orem for this estimator may not exist unless (i) the Markov chain mixes fast enough and (ii)

the random variable g(θ, µ, τ) has enough moments (with respect to ρ∞,y). Various sets of

conditions exist (Chan and Geyer 1994) but here we mention only that a typical condition

is that the Markov chain is geometrically ergodic and that g(θ, µ, τ) has a finite moment of

order 2 + ε, for some ε > 0.

Geometric ergodicity of the standard Markov chains for dealing with model (1.1), a fixed

scan Gibbs and a block Gibbs sampler, was established by Hobert and Geyer (1998). Unfor-

tunately, the moment condition is problematic: the random variable ρd(θ, µ, τ)/ρ∞(θ, µ, τ)

does not even have a finite second moment when (θ, µ, τ) ∼ ρ∞,y, because the tails of the
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t distribution are much heavier than those of the normal. Thus, the standard chains yield a

Bayes factor estimate which does not satisfy a CLT, and since there is no CLT, the target

parameter that the usual methods of estimating standard errors (such as those based on batch

means and regeneration) are designed to estimate is not even defined.

Suppose that instead we run a chain based on model (1.1), but with a t distribution with

d1 degrees of freedom (d1 < ∞) in (1.1b). It is not hard to see that ρd(θ, µ, τ)/ρd1(θ, µ, τ)

has moments of all orders when (θ, µ, τ) ∼ ρd1,y, and so the estimate

B̂(d, d1) =
1

n

n∑
i=1

ρd(θ
(i), µ(i), τ (i))

ρd1(θ
(i), µ(i), τ (i))

(1.5)

will satisfy a central limit theorem if we can establish geometric ergodicity of the chain.

In this paper we present an efficient Markov chain algorithm for estimating the posterior

distribution for model (1.1) with a t distribution in line (1.1b), and establish geometric

ergodicity of the chain. The benefits of these results are that they enable us to deal with

the preliminary model choice issue of selecting the degrees of freedom parameter; and once

we have decided on the model and run a Markov chain for that model, the combination

of a central limit theorem and a method for estimating the variance such as batching will

allow us to get valid error margins for estimates we obtain in subsequent inference. Our

development puts the use of this model on a firm footing, which is useful since this is one

of the most commonly used models in applied Bayesian work.

There is a close correspondence between our random effects model and the one con-

sidered by Hobert and Geyer (1998). Consequently, the associated block Gibbs samplers

are also similar, although there are some significant differences; e.g., our algorithm has

three steps per iteration while theirs has only two. Due to the similarity between the two

algorithms, we are able to exploit a few of the simple (exact) expectation calculations from

Hobert and Geyer (1998) in the early stages of our proof of geometric ergodicity. However,

the latter part of the proof contains new analysis.
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This paper is organized as follows. In Section 2 we describe a model that is equivalent

to the version of model (1.1) in which the distribution of the random effects is a t, and

describe the Gibbs sampling algorithm. In Section 3 we state and prove a theorem that

asserts that our Markov chain is geometrically ergodic, and discuss estimation of variability.

Section 4 gives an illustration of the use of Bayes factors to select the model in a meta-

analysis example. Section 5 contains closing remarks that include a discussion of results on

geometric ergodicity in concrete models of statistical interest.

2 Models and a Gibbs Sampling Algorithm

2.1 A Hierarchical Model With t-Distributed Random Effects

Consider the following hierarchical model:

conditional on θ, µ, λθ, Yi
ind∼ N (θi, γ

−1
i ), i = 1, . . . , K, (2.1a)

conditional on µ, λθ, θi
iid∼ td(µ, λ

−1
θ ), i = 1, . . . , K, (2.1b)

µ ∼ N (µ0, λ
−1
0 ) λθ ∼ Gam(α, β), (2.1c)

where at the bottom level µ and λθ are independent. In (2.1a) and (2.1b), γi = 1/σ2
i and

λθ = 1/τ 2; it is much more convenient to work with the γi’s and λθ. Note that (2.1) is

the same as (1.1) except that we have a t distribution instead of a normal in the middle

of the hierarchy. As mentioned earlier, we assume that experiment i gives an estimate γ̂i

that is for practical purposes equal to γi. This is commonly done and does not present a

problem unless the individual studies involve very small samples (DuMouchel 1990), in

which situation one would want to put prior distributions on the γi’s. For definiteness, we

note that by X ∼ Gam(α, β) we mean X is a random variable supported on the positive

half-line with density proportional to xα−1e−xβ , and by X ∼ td(µ, λ
−1
θ ) we mean that X is

a random variable whose density is proportional to
[
d+ λθ(x− µ)2

]−(d+1)/2. Let π denote
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the prior density of (θ, µ, λθ) under this model, and let πy denote the posterior density given

Y = y.

Now consider a more complex hierarchical model given by

conditional on θ, λ, µ, λθ, Yi
ind∼ N (θi, γ

−1
i ), i = 1, . . . , K, (2.2a)

conditional on λ, µ, λθ, θi
iid∼ N (µ, λ−1

θ λ−1
i ), i = 1, . . . , K, (2.2b)

µ ∼ N (µ0, λ
−1
0 ) λθ ∼ Gam(α, β) λi

iid∼ Gam(d/2, d/2), i = 1, . . . , K, (2.2c)

where λ = (λ1, . . . , λK)T , and at the bottom level everything is independent. For this

model, let π∗ and π∗y denote the prior and posterior densities of (θ, λ, µ, λθ), respectively,

and let m∗(y) denote the marginal density of Y .

We will write πy(θ, µ, λθ) and π(θ, µ, λθ | y) interchangeably, and we will slightly abuse

notation and use π generically to denote various distributions under model (2.1), e.g. π(θ),

π(µ), and π(λθ) will denote the marginal distributions of θ, µ, and λθ, respectively. A

similar remark applies to π∗. Also, even though π, πy, π∗, π∗y and m∗ all depend on d, this

dependence is suppressed, since d is now fixed.

Clearly,

π∗(θ, λ, µ, λθ | y) =
f(y | θ, λ, µ, λθ)π∗(θ |λ, µ, λθ)π∗(λ)π∗(µ)π∗(λθ)

m∗(y)
, (2.3)

where f(y | θ, λ, µ, λθ) is the likelihood function given in (2.2a). Note that f(y | θ, λ, µ, λθ)

does not depend on λ, µ, and λθ, and this is the function that was denoted `y(θ) in Section 1.

The posterior marginal density of (θ, µ, λθ) is π∗(θ, µ, λθ | y) =
∫
π∗(θ, λ, µ, λθ | y) dλ, and

a calculation shows that
∫
π∗(θ, λ, µ, λθ | y) dλ = π(θ, µ, λθ | y). (This is the standard calcu-

lation that shows that a t distribution may be viewed as a gamma mixture of scaled normals.)

We conclude that π∗(θ, µ, λθ | y) = π(θ, µ, λθ | y). Hence, if we can develop an MCMC al-

gorithm with stationary density π∗(θ, λ, µ, λθ | y), then we can use this MCMC algorithm to

study π(θ, µ, λθ | y)—we just throw away the λ’s.
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We note that the prior in (2.1c) specifies that µ and λθ are independent. This is different

from another “normal / inverse gamma” prior in which λθ ∼ Gam(α, β), and given λθ,

µ ∼ N (µ0, λ
−1
0 λ−1

θ ), which is often used because it is conjugate to the normal distribution

with two parameters unknown (see e.g. Berger 1985, p. 288). In our situation, there is no

reason to prefer this normal / inverse gamma prior.

2.2 Conditional Distributions and a Gibbs Sampler

Let ζ = (θ1, . . . , θK , µ)T . We will consider a block Gibbs sampler whose components are

λθ, λ and ζ . (In what is below, the data vector Y is fixed, and all distributions are conditional

on Y = y, although this conditioning is not stated explicitly.) It is easy to show that

given λ, ζ, λθ ∼ Gam
(K

2
+ α,

1

2

∑
i

λi(θi − µ)2 + β
)
.

It is also easy to show that

given λθ, ζ, λi
ind∼ Gam

(d+ 1

2
,
λθ
2

(θi − µ)2 +
d

2

)
.

Now, it follows from (2.3) that the conditional density of ζ given λ and λθ is proportional to

exp

{
−1

2

[
−2

K∑
i=1

θi(γiyi +µλθλi) +
K∑
i=1

θ2
i (λθλi + γi) +µ2

(
λ0 +λθ

K∑
i=1

λi

)
− 2µλ0µ0

]}
.

From this we deduce that given λ and λθ, ζ has a multivariate normal distribution. All

we have to do is identify the mean vector and the covariance matrix. This unnormalized

multivariate normal density is nearly identical to the corresponding density in Hobert and

Geyer’s (1998) block Gibbs sampler, and the calculations we now perform to identify the

mean and covariance matrix follow theirs closely. First, the covariance matrix, V , satisfies

V −1 =

 D2 −λθλ

−λθλT λ0 + λθ
∑K

i=1 λi

 ,
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in which D is a K ×K diagonal matrix whose i-th diagonal element is dii =
√
λθλi + γi.

The mean, ζ0, is the solution to

V −1ζ0 = (γ1y1, γ2y2, . . . , γKyK , λ0µ0)
T .

Let

t =
K∑
i=1

γiλθλi
λθλi + γi

= λθ

K∑
i=1

λi − λ2
θ

K∑
i=1

λ2
i (λθλi + γi)

−1.

Write the Cholesky factorization of the precision matrix as V −1 = LLT , where L is a

lower-triangular matrix. The elements of L can be calculated “by hand” and it is straight-

forward to show that

L−1 =

 D−1 0

cTD−1
√
λ0+t

1√
λ0+t

 ,

where cT is a 1×K row vector whose i-th element is λθλi/dii. We can now easily compute

V and ζ0. Indeed, V = (L−1)TL−1 and

ζ0 = (L−1)TL−1(γ1y1, γ2y2, . . . , γKyK , λ0µ0)
T

To simulate from the conditional distribution of ζ given λ, λθ, draw a (K + 1)-variate stan-

dard normal, Z, and take (L−1)TZ + ζ0. We now have all the conditional distributions

needed to implement a Gibbs sampler on (λθ, λ, ζ).

Next we give the variances and covariances (that is, the elements of V ), along with upper

bounds that will be used later. We have

Var(θi |λθ, λ) =
1

λθλi + γi

[
1 +

λ2
θλ

2
i

(λθλi + γi)(λ0 + t)

]
≤ 1

γi
+

1

λ0

,

Cov(θi, θj |λθ, λ) =
λ2
θλiλj

(λθλi + γi)(λθλj + γj)(λ0 + t)
≤ 1

λ0

,

Cov(θi, µ |λθ, λ) =
λθλi

(λθλi + γi)(λ0 + t)
≤ 1

λ0

,

Var(µ |λθ, λ) =
1

λ0 + t
≤ 1

λ0

.
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Moreover,

E(µ |λθ, λ) =
K∑
j=1

γjyj Cov(θj, µ |λθ, λ) + λ0µ0 Var(µ |λθ, λ)

=
1

λ0 + t

[
K∑
j=1

γjλθλjyj
λθλi + γj

+ µ0λ0

]
.

Note that E(µ |λθ, λ) is a convex combination of the yj’s and µ0. Thus, it is uniformly

bounded by a constant. Also,

E(θi |λθ, λ) =
K∑
j=1

γjyj Cov(θi, θj |λθ, λ) + λ0µ0 Cov(θi, µ |λθ, λ)

=
λθλi

λθλi + γi

[
1

λ0 + t

[
K∑
j=1

γjλθλjyj
λθλj + γj

+ µ0λ0

]]
+

γiyi
λθλi + γi

.

This shows that E(θi |λθ, λ) is a convex combination of E(µ |λθ, λ) and yi, so is also uni-

formly bounded by a constant.

3 Geometric Ergodicity and Valid Estimates of Variability

3.1 Geometric Ergodicity

Consider a block-Gibbs sampler on the state space

X = RK
+ × R+ × RK+1

that updates λ, then λθ, then ζ; that is, if we write the current state as (λ′, λ′θ, ζ
′) and the

next state as (λ, λθ, ζ), then the Markov transition density is given by

k(λ, λθ, ζ |λ′, λ′θ, ζ ′) = π∗y(λ |λ′θ, ζ ′)π∗y(λθ |λ, ζ ′)π∗y(ζ |λ, λθ). (3.1)

Let Km(x, ·) denote the m-step Markov transition distribution corresponding to (3.1), and

let Π∗y denote the distribution corresponding to π∗y .
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Harris Ergodicity of the chain governed by (3.1) is the condition that ‖Km(x, ·) −

Π∗y(·)‖ → 0 for all x ∈ X , where ‖ · ‖ denotes supremum over all Borel subsets of X .

This condition is guaranteed by the so-called “usual regularity conditions,” namely that the

chain has an invariant probability measure, is irreducible, aperiodic, and Harris recurrent;

see Theorem 13.0.1 of Meyn and Tweedie (1993). These usual regularity conditions are

typically easy to check; they are implied for example if the Markov transition function

has a density which is everywhere positive, which is the case for (3.1). Geometric ergod-

icity is the much stronger condition that there exist a constant c ∈ [0, 1) and a function

M : X → [0,∞) such that for any m ∈ N,

‖Km(x, ·)− Π∗y(·)‖ ≤M(x)cm for all x.

Theorem 1 The chain driven by (3.1) is geometrically ergodic.

Proof As in Hobert and Geyer (1998), we will prove that the Gibbs sampler is geometrically

ergodic by finding a “drift function” w : RK
+ × R+ × RK+1 → R+ that is unbounded off

compact sets [see (3.2) below] and satisfies

E
(
w(λ, λθ, ζ)

∣∣λ′, λ′θ, ζ ′) ≤ ρw(λ′, λ′θ, ζ
′) + L,

where ρ ∈ (0, 1), L ∈ R, and where the expectation is taken with respect to the transition

density in (3.1).

We will need to calculate some conditional expectations with respect to the transition

density in (3.1). We use “last” as a shorthand for the variables of the last iteration, i.e.

(λ′, λ′θ, ζ
′). Conditional expectations given “last” are computed iteratively as follows:

E[w(λ, λθ, ζ) | last] = E
{
E
{
E[w(λ, λθ, ζ) |λ, λθ]

∣∣λ, last
} ∣∣∣ last

}
.
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Define the following functions:

w1 =
1

λθ
, w2 =

∑
i

1√
λi
, w3 =

∑
i

(θi − µ)2, w4 =
∑
i

γi(yi − θi)2,

w5 = ecλθ , w6 =
∑
i

ecλi , w7 =
∑
i

[
λθ(θi − µ)2 + d

] 1
2 ,

where c is a positive constant. Our drift function will take the form w =
∑7

i=1Aiwi where

the Ai’s are positive constants to be determined. By definition, the function w is unbounded

off compact sets if

the level set {(λ, λθ, ζ) : w(λ, λθ, ζ) ≤ T} is compact for every T > 0 (3.2)

(see Meyn and Tweedie 1993, p. 191). However since w is continuous, to show (3.2) it is

enough to show that |θi| is bounded for each i, |µ| is bounded, λθ is bounded away from

both 0 and∞, and the same is true for the λi’s. Since w5 →∞ as λθ →∞ and w1 →∞ as

λθ → 0, we know that λθ is contained as specified. A similar argument involving w6 and w2

shows that the λi’s are also contained. Since w4 → ∞ as |θi| → ∞, we have θi contained,

and given that θi is contained, w3 →∞ as |µ| → ∞ so µ is contained as well. We conclude

that w is unbounded off compact sets.

We now start computing the required expectations. The terms w5 and w6 are easy to

bound. Let 0 < c < min{β, d/2} and note that

E
(
ecλθ

∣∣λ, last
)

=

(
β + 1

2

∑
i λi(θ

′
i − µ′)2

β + 1
2

∑
i λi(θ

′
i − µ′)2 − c

)α+K/2

≤
( β

β − c

)α+K/2

= const,

where “const” is a quantity that is independent of any variables (it does of course depend

on K and the hyperparameters). Similarly,

E
(
ecλi

∣∣ last
)

=

(
d/2 +

λ′θ
2

(θ′i − µ′)2

d/2 +
λ′θ
2

(θ′i − µ′)2 − c

)(d+1)/2

≤
( d/2

d/2− c

)(d+1)/2

= const.

Hence, E
(
ecλθ

∣∣ last
)
≤ const and E

(
ecλi

∣∣ last
)
≤ const.

Using the inequalities stated at the end of Section 2.2, we have

E(w3(ζ) |λθ, λ) =
∑
i

Var
[
(θi − µ)

∣∣λθ, λ]+
∑
i

(
E
[
(θi − µ)

∣∣λθ, λ])2 ≤ const.
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Thus, E(w3(ζ) |λθ) ≤ const. Similarly, E(w4(ζ) | last) ≤ const.

Now, as long as K ≥ 2, K
2

+ α > 1, and we have

E(w1(λθ) |λ, last) =
2β +

∑
i λi(θ

′
i − µ′)2

K + 2α− 2
.

Hence,

E(w1(λθ) | last) =
2β +

∑
i(θ
′
i − µ′)2E(λi | last)

K + 2α− 2

=
2β +

∑
i

[
(d+1)(θ′i−µ′)2
λ′θ(θ

′
i−µ′)2+d

]
K + 2α− 2

≤ 2β

K + 2α− 2
+

(d+ 1)

d(K + 2α− 2)

∑
i

(θ′i − µ′)2

= const +
(d+ 1)

d(K + 2α− 2)
w3(ζ

′).

Since (d+ 1)/2 > 1/2, we have

E
(
λ
−1/2
i

∣∣ last
)

=
Γ
(
d
2

)
√

2 Γ
(
d+1
2

)[λ′θ(θ′i − µ′)2 + d
] 1

2 ,

so,

E(w2(λ) | last) =
Γ
(
d
2

)
√

2 Γ
(
d+1
2

)∑
i

[
λ′θ(θ

′
i − µ′)2 + d

] 1
2 =

Γ
(
d
2

)
√

2 Γ
(
d+1
2

) w7(λ
′
θ, ζ
′).

Jensen’s inequality implies that

E
{[
λθ(θi − µ)2 + d

] 1
2

∣∣∣λ, λθ} ≤ {λθE[(θi − µ)2
∣∣λ, λθ]+ d

} 1
2 ≤

[
aλθ + d

] 1
2 ,

where a is a positive constant. A second application of Jensen’s inequality gives

E
(√

aλθ + d
∣∣λ, last

)
≤
[
aE(λθ |λ, last) + d

] 1
2 =

[
a(K + 2α)∑

i λi(θ
′
i − µ′)2 + 2β

+ d

] 1
2

≤ const.

Hence, E(w7(λθ, ζ) | last) ≤ const.

Now, choose any ρ ∈ (0, 1) and define

A1 = ρ
d(K + 2α− 2)

(d+ 1)
and A2 = ρ

√
2 Γ
(
d+1
2

)
Γ
(
d
2

) .
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Let A3 = A4 = · · · = A7 = 1. Putting everything together, we have

E
[
w(λ, λθ, ζ)

∣∣λ′, λ′θ, ζ ′] ≤ const + ρw3(ζ
′) + ρw7(λ

′
θ, ζ
′) ≤ const + ρw(λ′, λ′θ, ζ

′).

The chain is therefore geometrically ergodic.

Let x0, x1, . . . be a Markov chain driven by (3.1), let l be a real-valued function of x,

and suppose we wish to form confidence intervals for the posterior expectation of l(x).

Suppose the chain is geometrically ergodic and there exists ε > 0 such that E
(
|l(x)|2+ε

)
<

∞. Theorem 18.5.3 of Ibragimov and Linnik (1971) implies that, with Var(l(x0)) and

Cov(l(x0), l(xj)) calculated under the assumption that x0 has the stationary distribution,

the series

κ2 = Var(l(x0)) + 2
∞∑
j=1

Cov(l(x0), l(xj)) (3.3)

converges absolutely, and if κ2 > 0, then with x0 having an arbitrary distribution, the

estimate ln = (1/n)
∑n−1

i=0 l(xi) satisfies

n1/2
(
ln − E[l(x) | y]

) d−→ N (0, κ2) as n→∞.

Construction of Valid Standard Error Estimates The existence of the CLT for ln is

important from a practical standpoint. Indeed, in conjunction with a consistent estimator of

the asymptotic variance, it allows for the construction of a valid asymptotic standard error

for ln. There are many ways to estimate the asymptotic variance. The standard methods are

batch means (Jones et al. 2006), spectral methods (Geyer 1992), and regenerative simulation

(Mykland et al. 1995). Each of these estimators is consistent under regularity conditions that

include geometric ergodicity of the Markov chain. Batch means, which is the simplest of

the three methods to implement, is the one we use in our examples.
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4 Illustration: Meta-Analysis of Studies on Non-Steroidal

Anti-Inflammatory Drugs and Risk of Colon Cancer

An important application of random effects models is in the area of meta-analysis. Here

we study a body of literature that considers the effect of non-steroidal anti-inflammatory

drugs (NSAIDs) on the risk of colon cancer, a subject currently of considerable interest and

controversy in the medical literature (see, e.g. Iwama 2009).

Over the last 15 years, a large number of studies have investigated the relationship be-

tween use of NSAIDs and development of colon cancer, either at the epidemiological or at

the cellular and molecular level, and several have strongly suggested that long-term use of

NSAIDs significantly decreases the risk of colon cancer. But the studies have been incon-

sistent, with some suggesting a weak beneficial effect and one even suggesting a negative

effect. Harris et al. (2005) gives a review of this work and discusses the epidemiologi-

cal studies that have appeared in the medical literature. Each study reports a risk ratio for

NSAIDs use vs. no NSAIDs use. This risk ratio is either simply an odds ratio obtained from

a case-control study or an odds ratio based on a multiple logistic regression analysis that

takes into account important risk factors for colon cancer.

It is not surprising that the studies give inconsistent results, since there is heterogeneity

in the subject pools (characteristics such as age, ethnicity, and health status vary across the

studies), and in the way the data were obtained (covariates to collect, statistical method

to use, etc.). It is certainly of interest to carry out a meta-analysis of these studies, and

because of the heterogeneity, it seems clear that the meta-analysis should be based on a

random effects model. There have been some meta-analyses in the medical literature, but

these were very informal: none have used a random effects model (all used fixed effects)

and they have dealt with the conflicting conclusions in ad hoc ways, for example by simply

throwing out studies with outlying results.
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Table 1 of Harris et al. (2005) gives summary information on 21 studies that relate

NSAIDs intake and risk of colon cancer. For each study, the following information is

given:

• Observed risk ratio for NSAIDs use vs. no NSAIDs use.

• Confidence interval for true risk ratio (this is equivalent to giving the standard error for

the estimate).

• Type of NSAID used.

• Dose of NSAID. This information is available for some, but not all, of the studies.

We will carry out two analyses of this data set, in order to illustrate how apparent non-

normality and outliers affect the choice of model to be used, and the effect that model

choice has on inference.

We follow convention and work on the log scale, because the normal approximation to

the distribution of a study-specific observed odds ratio is better on that scale. The vertical

lines in the left panel of Figure 1 give a visual description of the data. The locations on the

x-axis are the observed log odds ratios for the 21 studies, and the heights of the lines are

proportional to the reciprocals of the reported standard errors. Also given by the figure is

an estimate of the distribution of the study-specific log odds ratios, using a kernel density

estimate that is based on the observed log odds ratios, with weights that reflect the estimated

standard errors. (This density estimate should be viewed with caution, since it is based on

the estimated log odds ratios, and not the log odds ratios themselves.) We note that there are

two left outliers and one right outlier, although whether or not these are significant enough

to warrant using a t distribution remains to be seen.

The dose variable is available for all 15 studies for which the NSAID is aspirin, but is

not available for any of the other studies. This variable turns out to be quite important, and

none of the reviews in the medical literature have considered it. For each study j, let Lj ,
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ωj , and xj denote the observed log risk ratio, standard error, and dose, respectively, for that

study. Let ξj denote the true log risk ratio, i.e. ξj is the log risk ratio that would be obtained

if the sample sizes for study j were infinite. We consider a linear relationship between

the latent variable ξj and the dose xj , i.e. we write ξj = αj + θjxj . It is easy to see that

αj = 0, since at dose 0 we must have ξj = 0. So if we start with the model Lj ∼ N (ξj, ω
2
j )

(justified by standard asymptotic theory), we may write the model equivalently as Lj/xj ∼

N
(
θj, (ωj/xj)

2
)
. Therefore, if we use a t distribution to model the distribution of the θj’s,

we are led to precisely (2.1), with Yj = Lj/xj having standard deviation σj = ωj/xj , and

where θj plays the role of log risk ratio for study j if the dose for that study was equal to 1.

The right panel of Figure 1 gives a visual display of the data for the 15 aspirin studies, with

dose taken into account. The deviation from normality now appears stronger.
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Figure 1: Estimate of distribution of the study-specific effect for two versions of the colon

cancer data set. Left panel pertains to all 21 studies. Study results are represented by

vertical lines, whose locations are the log risk ratios and whose heights are proportional

to the reciprocals of the standard errors. Right panel pertains to the 14 aspirin studies, all

of which include information on dose. The locations of the vertical lines are the log dose-

adjusted risk ratios and the heights are proportional to the reciprocals of the standard errors.

We would like to determine whether for either version of the data set using a t distri-

bution is warranted, and if so determine the degrees of freedom parameter. To this end, for
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each version of the data set, we ran a Markov chain of length 20,000 based on model (2.1)

with degrees of freedom parameter d1 = 4 and a normal / inverse gamma prior at the bot-

tom of the hierarchy. From this, we calculated B̂(d, d1) for d ∈ [.01, 20] and d =∞, using

formula (1.5). Figure 2 shows our results. The left panel is for all 21 studies (dose not taken

into account), and the right panel is for the aspirin studies, with dose taken into account.

In each case, the center line is actually a plot of B̂(d, d1)/B̂(∞, d1), i.e. an estimate of

B(d,∞) (it’s more natural to estimate B(d,∞) rather than B̂(d, d1), i.e. take the normal

distribution as the reference point). Also plotted are 95% confidence bands, obtained by the

method of batching, using 20 batches (this choice is consistent with recommendations made

by Flegal et al. (2008, sect. 3.1)). The confidence bands are valid pointwise. Although the

left panel in Figure 1 suggests that for the group of all studies, dose not taken into account,

outliers are present, the plot in the left panel of Figure 2 does not indicate that a t distri-

bution is needed. The situation is different for the aspirin studies, where dose is taken into

account. The right panel in Figure 2 suggests that one should use a t distribution, with about

3 degrees of freedom.

Before settling on the model based on the t3 distribution for the aspirin studies, we

consider a model in which the non-normality of the random effects is handled through a

Dirichlet process prior. Specifically, we replace line (2.1b) with

conditional on F, θi
iid∼ F, i = 1, . . . , K, (4.1a)

conditional on (µ, λθ), F ∼ DM td(µ,λ
−1
θ ), (4.1b)

and keep lines (2.1a) and (2.1c) the same. In (4.1a), DM td(d,µ,λ
−1
θ ) denotes the Dirichlet

process prior centered at the td(µ, λ−1
θ ) distribution, and with precision parameter M . For

fixed values of M and d, the prior on F specified by lines (4.1b) and (2.1c) is centered at

the two parameter family of td distributions, and the support of this prior is the set of all

probability distributions on the real line. If M is very large, the model essentially reduces
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Figure 2: Estimates of Bayes factors, together with confidence bands, for the t vs. the

normal distributions, for two versions of the colon cancer data. Left panel is for the group

of all studies, dose not taken into account. The plot does not suggest that a t distribution

is needed. Right panel is for the aspirin studies, with dose taken into account. The plot

suggests a t distribution with about 3 degrees of freedom.

to model (2.1). See Antoniak (1974) for a discussion of mixtures of Dirichlet processes.

For this more general model, we need to determine both the precision parameter M

and the degrees of freedom parameter d. Let h = (M,d), and let mh denote the marginal

likelihood of the data under hyperparameter value h. To estimate h, we may proceed as

we did before, i.e. fix a value h1 = (M1, d1) and define B(h, h1) = mh/mh1 . Now let

ρh be the distribution of (θ, µ, λθ) under the model specified by the mixture of Dirichlet

processes. This distribution is not absolutely continuous with respect to Lebesgue measure

on RK×R×R+, because there is positive probability that the θi’s are not all distinct, but for

h 6= h1, ρh is absolutely continuous with respect to ρh1 , and Doss (2009) obtains a formula

for the Radon-Nikodym derivative [dρh/dρh1 ]. Let θ(1), . . . , θ(k) denote the distinct values

of θ1, . . . , θK . When specialized to the present context, his formula is[
dρh
dρh1

]
(θ, µ, λθ) =

{
k∏
r=1

td(µ, λ
−1
θ )(θ(r))

td1(µ, λ
−1
θ )(θ(r))

}(
M

M1

)k {Γ(M)Γ
(
M1 +K

)
Γ(M1)Γ(M +K)

}
. (4.2)

In (4.2), td(µ, λ−1
θ )(θ(r)) denotes the density of the td(µ, λ−1

θ ) distribution, evaluated at θ(r),
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and Γ is the gamma function. The interpretation of this formula is as follows. Suppose

M > M1. If k, the number of distinct values in the vector (θ1, . . . , θK), is large, then the

term (M/M1)
k is large. This is to be expected: The model for which the Dirichlet precision

parameter is M1 expected to see more ties, but didn’t see them. So the model with Dirichlet

precision parameter M better explains the data. The term in the first set of braces on the

right side of (4.2) is the usual likelihood ratio of the td vs. the td1 distributions, except that

it is based on only the distinct values of θ1, . . . , θK . The term in the second set of braces on

the right side of (4.2) does not involve (θ, µ, λθ), so is a constant that can be ignored.

To estimate B(h, h1) as h = (M,d) varies, we proceed as we did before. Suppose that

(θ(i), µ(i), λ
(i)
θ ), i = 1, . . . , n is an ergodic Markov chain whose stationary distribution is

the posterior distribution of (θ, µ, λθ) under the mixture of Dirichlet processes model. We

form the estimate (1.5), except that the ratio of densities is replaced by the Radon-Nikodym

derivative [dρh/dρh1 ]. The estimate is valid, because the integral in (1.4) is still 1 if the ratio

of densities is replaced by the Radon-Nikodym derivative, and the integration is with respect

to the probability measure ρh1 . There are many algorithms for generating Markov chains for

this model. We will not discuss these algorithms and instead refer to Jain and Neal (2007)

for a review and recent developments. Using our own implementation, we ran a Markov

chain of length 100,000 under the model indexed by M1 = 3 and d1 = 3. Figure 3 gives

plots of the Bayes factors asM varies, for four values of d, including d =∞, i.e. the normal

distribution. (The lines are actually plots of B̂(h, h1)/B̂((∞,∞), h1), i.e. they are scaled

so that we get 1 for the parametric model based on the normal distribution.) The analysis

based on Figure 3 (and on plots for other values of d, not shown in Figure 3) suggests that

there is no need for a model based on mixtures of Dirichlet processes, and that in fact the

outliers are adequately accommodated by simply using a t3 distribution.

We therefore ran Markov chains to estimate the posterior distributions under model (2.1)

with a t3 distribution in (2.1b) and also with a normal distribution in (2.1b), for the aspirin
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Figure 3: Model assessment for the aspirin and colon cancer data, when dose is taken into

account. Shown are plots of Bayes factors for Dirichlet models centered at the location/scale

families of normal and t distributions with 1, 3 and 7 degrees of freedom, as M varies. The

Bayes factor is highest for the t3 distribution, with M =∞, which corresponds simply to a

parametric model based on the t3 distribution.

studies (dose taken into account). From the output, estimates of various quantities of interest

can be obtained. In particular, we considered the predictive distribution of the log risk ratio

for a future study (this quantity is of special interest in a meta-analysis that uses a random

effects model, because in this case the unit is the study and not the individual in a study).

Figure 4 shows the predictive distribution of the log risk ratio for a future study for the

normal and t3 models. As can be seen from the figure, the t3 model gives stronger evidence

of the effectiveness of aspirin: the distribution of θnew is shifted to the left and also has

significantly less spread. This is because the study for which the log risk ratio is .4 (see

Figure 1 (B)) has less influence in the t3 model. (When the influential study is removed,

the two distributions are virtually identical. Also, for the full data set of 21 studies, where

dose is not taken into account, the normal and td distributions for d ≥ 3 all give essentially
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the same inferences, and this is consistent with the plot in Figure 2 (A)). With the Markov

chain lengths of 105 that we used and the method of batching (using 40 batches), standard

errors for all four quantities in the figure legend are less than .004.
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Figure 4: Distribution of θnew, the log risk ratio for a future aspirin study, under the normal

and t3 models. Here, p = P (θnew > 0) and m stands for mean.

5 Discussion

Before the MCMC revolution, when classical Monte Carlo methods based on iid samples

were used to estimate intractable integrals, it would have been deemed unacceptable to re-

port a Monte Carlo estimate without an accompanying asymptotic standard error (based on

the CLT). Unfortunately, this seems to have changed with the advent of MCMC. In fact, it

is actually uncommon to see an MCMC estimate accompanied by a standard error. Indeed,

Flegal et al. (2008) examined all the articles published in the 2006 volumes of Journal of the

American Statistical Association, Biometrika and Journal of the Royal Statistical Society,

Series B. They found that MCMC methods had been used in 39 of the articles, and in only

3 of the 39 cases had the authors “directly addressed the Monte Carlo error in the reported

estimates.” This is due at least in part to the fact that it is harder, both theoretically and

methodologically, to deal with the standard error problem in the MCMC context. Indeed,
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it is far more difficult to prove that MCMC-based estimates obey CLTs and, even when

such a CLT is known to exist, finding consistent estimates of the variance in the CLT is

not straightforward (see, e.g., Geyer 1992 and Jones et al. 2006). The cleanest way of es-

tablishing CLTs for MCMC-based estimators is to prove that the underlying Markov chain

converges at a geometric rate (Chan and Geyer 1994; Roberts and Rosenthal 1997, 1998).

Unfortunately, this is generally very difficult in the setting of continuous state spaces, and

it is therefore not surprising that very few of the MCMC algorithms that are currently used

in statistical applications are known to be geometrically ergodic. The exceptions include

the MCMC algorithms studied by Mengersen and Tweedie (1996), Roberts and Tweedie

(1996), Hobert and Geyer (1998), Roy and Hobert (2007), Marchev and Hobert (2004),

Roberts and Rosenthal (1999), Jarner and Hansen (2000), and Papaspiliopoulos and Roberts

(2008). (It should be noted that there is not a single result in the literature that gives geo-

metric ergodicity for any of the Markov chains used to estimate the posterior distribution in

mixture of Dirichlet process models such as the one we considered in Section 4. A compar-

ison of the various chains through a theoretical evaluation is an interesting problem, but one

we believe is difficult.)
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