Exploiting Tierney’s new shared library mechanism

B. Narasimhan
Department of Statistics
Stanford University
Stanford, CA 94305

Draft of July 1, 1998

Contents

1 Introduction 1

2 Avoiding some overhead with calling C functions 1
21 Anexample e 2

Abstract

A very flexible shared library mechanism has been introduced by Tierney in the new release of
Li sp- St at . Thisisadocument in progress that records some of my experimentsin getting the best of
boththeLi sp- St at and C worlds.

1 Introduction

There are times when one wishes to avoid the overhead associated with lisp functions and lisp data types.
In some programs | have written, for example, there is a dire need for speed in dynamic graphic compu-
tations. Recent releases of Li sp- St at have introduced many features, among them are the new shared
library mechanism and support for C- LONGand C- DOUBLE arrays. In this document, | record some of my
experiments in exploiting these features. | must confess there might be pitfalls that | am not aware of. Let
me know if you spot any.

2 Avoiding some over head with calling C functions

In[1] and [2] Tierney describeshow cal | - cf un actually works. To gluethe C programand Li sp- St at
together the arguments passed to the C routine are actually coerced into either C | ong or C doubl e
sequences. Then copies of the sequences are passed to the actual routine. In some cases, it might be
desirable to get rid of this coercing and copying overhead provided the programmer takes care to ensure
that all requirements are met. Such aroutine could then be used to great effect when these arrays are stored
in data slotsin an object. Of course, it is assumed then that such an object will not be garbage-collected.

In my applications, | have need for manipulating large arrays both in C and Li sp- St at . In order to
have both C and Li sp- St at sharethe samedata, | previousy used C programsbased on XI i sp internals
to manage this. There were some drawbacks to this approach.

2a

2b

July 1, 1998 xl'i sp-dynl oad. nw 2

1. Theheader filex! i sp. h had to beincluded and the poor user had to know whereto find it.

2. There could conceivably have been some flags used in compiling Li sp- St at that would have to be
replicated in compiling the C programsto be safe.

3. If any of theLi sp- St at internals changed, the programs might bomb.
4. Platform specific issues might intrude in abig way.

With the modern mechanism, it appears that all these problems can be elegantly avoided. | present an
illustrative example below.
21 Anexample

Consider the following C function which basically prints the contents of an array.

(C Routine FOO 2a)=
#i ncl ude <stdi o. h>

void foo(n, x)

int *n;
doubl e *x;
{ . .
int i;
for (i =0; i <*n; i++) {
printf("x[%l] is %\n", i, x[i]);
}
}

Now suppose | have an array in Li sp- St at of type C- DOUBLE that | wish to pass to this function
without the usual copying overhead associated with cal | - c¢f un, how could | do it? In other words, how
could | “share” the samedatain Cand Li sp- St at ?

The following modified function of Tierney helps.

(Call by reference oldcfun.lsp 2b)= (3b)
(defun call-by-reference-oldcfun (name lib & est args)
"Applies function NAME fromshared |ibrary handle LIB with argunents.
Al'l compound data are passed by reference but sinple ones are not."
(let* ((fun-addr (shlib::shlib-symaddr lib nane))
(argvecs (mapcar #' lisp-to-arg-if-not-conpound-data args))
(arg-addrs (mapcar # array-data-address argvecs)))
(apply # shlib::call-by-address fun-addr arg-addrs)))

Defines:
cal | -by-reference-ol dcf un,usedin chunk 3.

3a

3b

3c

July 1, 1998 xli sp-dynl oad. nw

The helper routinel i sp-t o-arg-i f-not - conpound- dat a is needed.

(Helper routine 3a)= (3b)
(defun lisp-to-arg-if-not-conpound-data (x)
(if (compound-data-p x)
X
(if (integerp x)
(coerce (list x) '(vector c-long))
(coerce (list x) "(vector c-double)))))

Defines:
list-to-arg-if-not-conpound-dat a, never used.

For extraction hereis a package.

(Call by Reference Package 30)=
(def package " CALL-BY- REFERENCE" (:use "XLISP"))
(i n-package " CALL-BY- REFERENCE")
(Helper routine 3a)
(Call by reference oldcfun.lsp 2b)
(export
"(call -by-reference-ol dcfun))
Usescal | - by-ref erence-ol dcfun 2b.

Here then is an example session after creating the shared library | i bf 00. so.

(Example 3c)=
(require "call-by-reference")
(use-package "CALL- BY- REFERENCE")
(def lib (shlib::shlib-open "./Iibfoo.so"))
(def n 24)
(def x (make-array '(2 3 4) :initial-contents (iseq 23 0)
celenment-type ' c-double))
(call -by-reference-ol dcfun "foo" lib n x)
Usescal | - by-ref erence-ol dcf un 2b.

July 1, 1998 xl'isp-dynl oad. nw 4

List of code chunks

Thislist is generated automatically. The numeral isthat of the first definition of the chunk.
(C Routine FOO 2a)

(Call by reference oldcfun.lsp 2b)

(Call by Reference Package 3b)

(Example 3c)

(Helper routine 3a)

I ndex

Hereisalist of the identifiers used, and where they appear. Underlined entries indicate the place of defini-
tion. Thisindex is generated automatically.

cal |l - by-reference-ol dcfun: 2b, 3b, 3c

list-to-arg-if-not-conpound-data: 3a

References

[1] Luke Tierney. LISP-STAT: An Object-oriented Environment for Satistical Computing and Dynamic
Graphics. John Wiley & Sons (New York, Chichester), 1990.

[2] Luke J Tierney. Shared libraries for xlisp-stat. URL
http://ww. stat. um. edu/ " | uke/ xl s/ proj ect s/ ,1998.

