
Exploiting Tierney’s new shared library mechanism

B. Narasimhan
Department of Statistics

Stanford University
Stanford, CA 94305

Draft of July 1, 1998

Contents

1 Introduction 1

2 Avoiding some overhead with calling C functions 1
2.1 An example . 2

Abstract

A very flexible shared library mechanism has been introduced by Tierney in the new release of
Lisp-Stat. This is a document in progress that records some of my experiments in getting the best of
both the Lisp-Stat and C worlds.

1 Introduction

There are times when one wishes to avoid the overhead associated with lisp functions and lisp data types.
In some programs I have written, for example, there is a dire need for speed in dynamic graphic compu-
tations. Recent releases of Lisp-Stat have introduced many features, among them are the new shared
library mechanism and support for C-LONG and C-DOUBLE arrays. In this document, I record some of my
experiments in exploiting these features. I must confess there might be pitfalls that I am not aware of. Let
me know if you spot any.

2 Avoiding some overhead with calling C functions

In [1] and [2] Tierney describes how call-cfun actually works. To glue the C program and Lisp-Stat
together the arguments passed to the C routine are actually coerced into either C long or C double
sequences. Then copies of the sequences are passed to the actual routine. In some cases, it might be
desirable to get rid of this coercing and copying overhead provided the programmer takes care to ensure
that all requirements are met. Such a routine could then be used to great effect when these arrays are stored
in data slots in an object. Of course, it is assumed then that such an object will not be garbage-collected.

In my applications, I have need for manipulating large arrays both in C and Lisp-Stat. In order to
have both C and Lisp-Stat share the same data, I previously used C programs based on Xlisp internals
to manage this. There were some drawbacks to this approach.

1

July 1, 1998 xlisp-dynload.nw 2

1. The header file xlisp.h had to be included and the poor user had to know where to find it.

2. There could conceivably have been some flags used in compiling Lisp-Stat that would have to be
replicated in compiling the C programs to be safe.

3. If any of the Lisp-Stat internals changed, the programs might bomb.

4. Platform specific issues might intrude in a big way.

With the modern mechanism, it appears that all these problems can be elegantly avoided. I present an
illustrative example below.

2.1 An example

Consider the following C function which basically prints the contents of an array.

2a C Routine FOO 2a

#include <stdio.h>

void foo(n, x)
int *n;
double *x;

{
int i;

for (i = 0; i < *n; i++) {
printf("x[%d] is %f\n", i, x[i]);

}
}

Now suppose I have an array in Lisp-Stat of type C-DOUBLE that I wish to pass to this function
without the usual copying overhead associated with call-cfun, how could I do it? In other words, how
could I “share” the same data in C and Lisp-Stat?

The following modified function of Tierney helps.

2b Call by reference oldcfun.lsp 2b (3b)

(defun call-by-reference-oldcfun (name lib &rest args)
"Applies function NAME from shared library handle LIB with arguments.

All compound data are passed by reference but simple ones are not."
(let* ((fun-addr (shlib::shlib-symaddr lib name))

(argvecs (mapcar #’lisp-to-arg-if-not-compound-data args))
(arg-addrs (mapcar #’array-data-address argvecs)))

(apply #’shlib::call-by-address fun-addr arg-addrs)))
Defines:
call-by-reference-oldcfun, used in chunk 3.

July 1, 1998 xlisp-dynload.nw 3

The helper routine lisp-to-arg-if-not-compound-data is needed.

3a Helper routine 3a (3b)

(defun lisp-to-arg-if-not-compound-data (x)
(if (compound-data-p x)

x
(if (integerp x)

(coerce (list x) ’(vector c-long))
(coerce (list x) ’(vector c-double)))))

Defines:
list-to-arg-if-not-compound-data, never used.

For extraction here is a package.

3b Call by Reference Package 3b

(defpackage "CALL-BY-REFERENCE" (:use "XLISP"))
(in-package "CALL-BY-REFERENCE")
Helper routine 3a

Call by reference oldcfun.lsp 2b

(export
’(call-by-reference-oldcfun))

Uses call-by-reference-oldcfun 2b.

Here then is an example session after creating the shared library libfoo.so.

3c Example 3c

(require "call-by-reference")
(use-package "CALL-BY-REFERENCE")
(def lib (shlib::shlib-open "./libfoo.so"))
(def n 24)
(def x (make-array ’(2 3 4) :initial-contents (iseq 23 0)

:element-type ’c-double))
(call-by-reference-oldcfun "foo" lib n x)

Uses call-by-reference-oldcfun 2b.

July 1, 1998 xlisp-dynload.nw 4

List of code chunks

This list is generated automatically. The numeral is that of the first definition of the chunk.

C Routine FOO 2a

Call by reference oldcfun.lsp 2b

Call by Reference Package 3b

Example 3c

Helper routine 3a

Index

Here is a list of the identifiers used, and where they appear. Underlined entries indicate the place of defini-
tion. This index is generated automatically.
call-by-reference-oldcfun: 2b, 3b, 3c
list-to-arg-if-not-compound-data: 3a

References

[1] Luke Tierney. LISP-STAT: An Object-oriented Environment for Statistical Computing and Dynamic
Graphics. John Wiley & Sons (New York, Chichester), 1990.

[2] Luke J. Tierney. Shared libraries for xlisp-stat. URL
http://www.stat.umn.edu/˜luke/xls/projects/, 1998.

