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As advances in computational technology have made it possible to apply Bayesian methods
to situations that are increasingly complex, using a wider variety of models that are increas-
ingly more sophisticated, problems regarding model choice are now of central importance. As
a result, the development of methods for doing model selection is now at the forefront of re-
search in Bayesian statistics. This is reflected by many of the papers on Bayesian methods in
this issue ofStatistica Sinica, on topics ranging from variable selection in generalized linear
models (Wang and George) to the need to choose between Bayesian nonparametric models and
their parametric counterparts (Dunson; Bulla, Muliere, and Walker). This note describes some
thoughts regarding future directions in Bayesian model selection, focusing on computational
challenges. We briefly describe some unrelated approaches to Bayesian model selection that
are currently used and argue that much can be gained by combining them. We proceed at a
low technical level and make our points through a discussion of concrete examples; however
application of the ideas is not limited to those examples.

Bayesian model selection is usually described as follows. We have dataY , and possible
modelsM1, . . . ,Mk, where for eachj, Mj is defined by a family of distributionspθj

, θj ∈
Θj, together with a prior onΘj. TheΘj ’s need not be of the same dimension. We may or may
not have a prior distribution on the set of models. The objective is to select “the best model,” or
in the case where we have a prior on the set of models, the objective is to select the model with
the highest posterior probability. When no single model is clearly the best, we report a set of
plausible models or models with high posterior probability. It is helpful to take a slightly more
general view, and not restrict the set of models to be finite. To make our points, we consider
two examples of a rather different character.

Example 1 We start with the following simple three-level hierarchical model:

conditional onψj, Yj
indep∼ N (ψj, σ

2
j ), j = 1, . . . ,m (1a)

conditional onµ, τ, ψj
iid∼ N (µ, τ 2), j = 1, . . . ,m (1b)

(µ, τ) ∼ νc (1c)

Here, we assume that the variancesσ2
j are known, andνc is the normal/inverse gamma prior,

indexed by the vectorc = (c1, c2, c3, c4), i.e. 1/τ 2 ∼ gamma(c1, c2), and givenτ , µ ∼
N (c3, τc4). This model is typically used to model random effects situations:Yj is a single
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summary statistic from experimentj, based on a sample of sizenj. (Usually the variance is
unknown, but we assume that experimentj gives an estimatêσj that is accurate enough so that
assuminĝσj equals the true value does not cause any problem.)

Whereas the normality assumption in line (1a) is typically supported by some theoretical
result, such as the asymptotic normality of maximum likelihood estimates, the normality as-
sumption in line (1b) generally doesn’t have any justification and is made solely for the sake

of convenience. In certain situations, a good alternative to line (1b) isψj
iid∼ td,µ,τ , wheretd,µ,τ

is thet distribution withd degrees of freedom, locationµ, and scaleτ . We will then want to
selectd, with the choiced = ∞ signifying the choice of the normal distribution.

In order to emphasize thatd is a hyperparameter in the model we defineθ = (ψ, µ, τ),
whereψ = (ψ1, . . . , ψm), and recast (1) as follows:

conditional onθ, Yj
indep∼ N (ψj, σ

2
j ), j = 1, . . . ,m

θ ∼ νh,

where the prior is now changed to

νh(θ) =
(∏m

j=1 td,µ,τ (ψj)
)
λc(µ, τ), (2)

whereλc is the normal/inverse gamma prior indexed byc. Here, the set of models is the family
{νh, h ∈ H} and the hyperparameter ish = (d, c). When looked at in this way, we see that
choosing the hyperparameter of the priorνh involves a model selection step (choice of number
of degrees of freedomd), in addition to selection of the prior on(µ, τ).

Example 2 In a standard formulation of the problem of Bayesian variable selection in linear
regression, we have a response variableY and a set of predictorsX1, . . . , Xp, each a vector of
lengthm. For every subsetγ of {1, . . . , p} we have a potential modelMγ given by

Y = 1mβ0 +Xγβγ + ε, (3)

where1m is the vector ofm 1’s,Xγ is the design matrix whose columns consist of the predictor
vectors corresponding to the subsetγ, βγ is the vector of coefficients for that subset, and
ε ∼ Nm(0, σ2I). The most commonly used prior on the unknown parametersβγ andσ is
Zellner’sg-prior (Zellner 1986), indexed by a hyperparameterg. If we letpγ denote the number
of variables in the subsetγ, this prior, which we will denote byπγ, is described as follows:

(σ2, β0) ∼ p(σ2, β0) ∝ 1/σ2, and givenσ, βγ ∼ Npγ

(
0, gσ2(X ′

γXγ)
−1

)
. (4)

Although this prior is improper, the resulting posterior distribution is proper.

Examples1 and2 differ in an important aspect. In example1, the priorsνh are all mutually
absolutely continuous, whereas in example2 the priorsπγ are not (when a subsetγ excludes
a variable, in effect the regression coefficient for that variable is given a distribution that is
degenerate at0; therefore the vectorβ lives in a subspace ofRp of dimension less thanp).
Absolute continuity has important consequences regarding the calculation of Bayes factors.
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The marginal distribution ofY when the prior isνh is mh(y) =
∫
`y(θ)νh(θ) dθ, where

`y(θ) is the likelihood function. For two hyperparameter valuesh1 andh2, the Bayes factor of
the model indexed byh2 relative to the model indexed byh1, which we define as

B(h2, h1) =
mh2(y)

mh1(y)
,

is often used to choose betweenνh1 andνh2: whenB(h2, h1) is very small, the model indexed
by h2 is deemed less plausible.

In any problem where the priorsνh, h ∈ H are mutually absolutely continuous, in principle
it is possible to conveniently estimate all possible Bayes factors. Forh ∈ H, let νh,y denote
the posterior density ofθ givenY = y, corresponding to the priorνh. If we fix an arbitrary
hyperparameter valueh1 ∈ H, estimation of all Bayes factorsB(h, h1) can be done from a
single sample (iid or Markov chain)θ1, . . . , θn from the posteriorνh1,y, and knowledge of the
ratios of thepriors νh/νh1 (not the posteriors). We have

1

n

n∑
i=1

νh(θi)

νh1(θi)
→

∫
νh(θ)

νh1(θ)
νh1,y(θ) dθ (5)

=
mh

mh1

∫
`y(θ)νh(θ)/mh

`y(θ)νh1(θ)/mh1

νh1,y(θ) dθ

=
mh

mh1

∫
νh,y(θ)

νh1,y(θ)
νh1,y(θ) dθ =

mh

mh1

.

Therefore, the estimate in the left side of (5) is a consistent estimate of the Bayes factor
B(h, h1). (The equality

∫
νh(θ)/νh1(θ) νh1,y(θ) dθ = mh/mh1 appears in many different

guises in the literature, including in incomplete data problems in frequentist inference, in
which θ plays the role of missing data andh is the unknown parameter; see section6.5 of
Nicolae et al. (2007)).

We illustrate this on a toy example considered by Bayarri and Berger (2004). Data was gen-

erated as follows: Givenψ1, . . . , ψ5, Yj
ind∼ N (ψj, 1/2), j = 1, . . . , 5; also,ψj

iid∼ N (1, 1), j =
1, . . . , 4, and independentlyψ5 ∼ N (5, 1). The resulting data vector turned out to beY =
(1.560, 0.641, 1.982, 0.014, 6.964) with Y5 being over six standard deviations away from the
mean of the other fourYj ’s. Bayarri and Berger (2004) were interested in testing the null hy-
pothesis that the distribution of the random effects in model (1) is normal, and here we will

replace line (1b) withψj
iid∼ td,µ,τ , and we will be interested in selecting the degrees of freedom

parameter. We ran a Markov chain that gave samples from the posterior distribution for the
model where thet distribution in (2) has3 degrees of freedom and(µ, τ) has the normal/inverse
gamma distribution with parameterc = (.1, .1, 0, 1000). Keeping the prior on(µ, τ) fixed and
varying the degrees of freedom parameter, we estimated the Bayes factor using (5), producing
Figure 1. The plot suggests that a model with at distribution with1 or 2 degrees of freedom
is reasonable, but that the normal model (1) is not appropriate (the Bayes factor for thet1
distribution relative to the normal distribution is7.8).

There is a substantial literature devoted to devising estimates that improve on (5), most of
which focuses on estimating a single Bayes factor. Important references are Meng and Wong
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Figure 1: Bayes factors for the Bayarri-Berger example. The degrees of freedom parameter varies but
the hyperparameters of the normal/inverse gamma prior are fixed.

(1996), Chen and Shao (1997), Gelman and Meng (1998), and Kong et al. (2003), this last
also dealing with the problem of estimating multiple Bayes factors. When we need to estimate
B(h, h1) for a wide range ofh’s, we face the problem that the estimate (5) is unstable when
h is far fromh1. So it is better to selectk hyperparameter pointsh1, . . . , hk, and get Markov
chain samples fromνhl,y for eachl = 1, . . . , k. The priorνh1 in the denominator of the left side
of (5) is replaced by a mixturew1νh1 + · · · + wkνhk

, with appropriately chosen weights, and
the average is taken over the combined output of thek Markov chains. This results in accurate
estimation of the Bayes factor for a wider range of hyperparameter values. The selection of
the pointsh1, . . . , hk is an interesting design issue.

We now return to example2. A common approach for dealing with this variable selection
problem is to introduce a hierarchical model that involves a prior distribution on the variables
to include, and a particularly appealing choice is the independence Bernoulli prior

ρw(γ) = wpγ (1− w)p−pγ , (6)

indexed by a hyperparameterw ∈ (0, 1) (recall thatpγ ≤ p is the number of variables in subset
γ). Under this prior, each variable has probabilityw of being included, independently of all
the other variables. Here, the parameter isθ = (γ, β0, βγ, σ), and the two-level hierarchy (6)
and (4) determines its prior distribution, which we will denoteνg,w.

There exist Markov chain Monte Carlo (MCMC) methods for dealing with this situa-
tion, where the state space includes the subset indicatorγ. These produce Markov chains
(γ(1), β

(1)
0 , β

(1)
γ , σ(1)), (γ(2), β

(2)
0 , β

(2)
γ , σ(2)), . . . whose stationary distribution is the posterior

distribution of(γ, β0, βγ, σ) givenY = y, and are considerably more involved than MCMC
methods for situations where the dimension of the parameter is not changing. We mention
in particular Green’s (1995) reversible jump MCMC, Carlin and Chib (1995), Godsill (2001),
Dellaportas et al. (2002), the very recent paper Bartolucci et al. (2006) and the review paper
by Han and Carlin (2001). From the subsequenceγ(1), γ(2), . . . the posterior distribution ofγ
givenY can be estimated, which enables variable selection.

This is by no means the end of the story, since such a method presupposes we have made
a choice of the hyperparametersg andw to specify the prior. Loosely speaking, whenw is
large andg is small, the prior encourages models with many variables and small coefficients,
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whereas whenw is small andg is large, the prior concentrates its mass on parsimonious models
with large coefficients. Therefore, the hyperparameterh = (g, w) plays a very important
role, and in fact the choice ofh in effect determines the model that will be used to carry out
variable selection. For this reason there has been considerable work in finding good ways
to chooseh; see the references cited in section3 of Clyde and George (2004). In particular,
George and Foster (2000) show that the marginal distribution ofY can be written asmg,w(y) =∑

γ p(y | γ) ρw(γ), wherep(y | γ) is available in closed form, so thatmg,w(y) is available in
closed form. Therefore in principle maximization of the functionmg,w(y) with respect tog
andw can be carried out, and the maximizing values can then be used. However, this is really
feasible only ifp is relatively small because of the large number of terms that go into the
sum. (An exception arises if the design matrixX is orthogonal, in which case substantial
simplifications arise and the numerical maximization ofmg,w(y) becomes feasible even for
moderately largep.)

The approach that involves the importance sampling estimate (5) can be helpful here. It
is easy to see that for this Bayesian formulation, forh1 6= h2, the prior distributionsνh1 and
νh2 are mutually absolutely continuous. Indeed, ifh1 = (g1, w1) andh2 = (g2, w2), the
Radon-Nikodym derivative (the likelihood ratio) is given very simply by[

dνh1

dνh2

]
(γ, β0, βγ, σ) =

(
w1

w2

)pγ
(

1− w1

1− w2

)p−pγ

×
φpγ

(
βγ; 0, g1σ

2(X ′
γXγ)

−1
)

φpγ

(
βγ; 0, g2σ2(X ′

γXγ)−1
) , (7)

whereφpγ (u; a, V ) is the density of thepγ-dimensional normal distribution with meana and
covarianceV , evaluated atu. (We note that the priorsνh are distributions on{0, 1}p×Rp+1×
(0,∞) which are not absolutely continuous with respect to the product of counting measure
on{0, 1}p and Lebesgue measure onRp+1× (0,∞), and this is the reason why we refer to (7)
as a Radon-Nikodym derivative.) Therefore, we can apply (5) directly: we fix a particular
hyperparameterh1 = (g1, w1), run a chain corresponding to the priorνh1 , and use the output
to estimate the Bayes factorsB(h, h1) simultaneously for “all”h. An important feature of this
approach is that even though theνh’s are probability measures that give mass to various sets of
different dimensions, this does not cause any problem, because the calculation of[dνh1/dνh2 ]
in (7) takes place at apoint.

To conclude, posterior distributions that consist of mixtures of distributions that live in
spaces of different dimensions arise in a variety of settings, of which the variable selection
problem discussed here is but one. Other situations include hierarchical models based on
mixtures of Dirichlet process priors (Doss 2007), and a long list of examples is given in Green
(1995). There is a developing methodology for running Markov chains in spaces that are
changing dimension. There is also a developing methodology for doing model selection based
on importance sampling and variants thereof. I hope that the discussion above will show that
these methods can be usefully combined.
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