Introducing Monte Carlo Methods with R

Christian P. Robert Université Paris Dauphine xian@ceremade.dauphine.fr George Casella University of Florida casella@ufl.edu

Based on

- Introducing Monte Carlo Methods with R, 2009, Springer-Verlag
- Data and R programs for the course available at http://www.stat.ufl.edu/ casella/IntroMonte/

Use R!	Robert • Casella	Use F
Robert - Casella Introducing Monte Carlo Methods with R		Christian P. Robert George Casella
Comparisonal biologicaps based on simulations have non-bosome are searched part of the interaction in these kits for any provide state of the interaction when the interaction of the i	Introducing Mont	Introducing Monte Carlo Methods with R
 Michallon, He has each user algebra data in back, including Tick Browsen Channe, 2001, which recover the 15M vehicle converting tables, which is an each of the sector of the sector and the	Introducing Monte Carlo Methods with R	Springer

Chapter 1: Basic R Programming

"You're missing the big picture," he told her. "A good album should be more than the sum of its parts."

Ian Rankin

Exit Music

This Chapter

- ► We introduce the programming language R
- ▶ Input and output, data structures, and basic programming commands
- ► The material is both crucial and unavoidably sketchy

Basic R Programming Introduction

- \blacktriangleright This is a quick introduction to R
- \blacktriangleright There are entire books devoted to R
 - \triangleright R Reference Card

> available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf

- ► Take Heart!
 - \triangleright The syntax of R is simple and logical

 \triangleright The best, and in a sense the only, way to learn R is through trial-and-error

Embedded help commands help() and help.search()
 help.start() opens a Web browser linked to the local manual pages

Basic R Programming Why **R** ?

- ► There exist other languages, most (all?) of them faster than R, like Matlab, and even free, like C or Python.
- ► The language combines a sufficiently high power (for an interpreted language) with a very clear syntax both for statistical computation and graphics.
- \blacktriangleright R is a flexible language that is *object-oriented* and thus allows the manipulation of complex data structures in a condensed and efficient manner.
- ► Its graphical abilities are also remarkable
 - \triangleright Possible interfacing with IAT_EX using the package Sweave.

Basic R Programming Why R ?

- ▶ **R** offers the additional advantages of being a free and open-source system ▶ There is even an **R** newsletter, R-News
 - ▷ Numerous (free) Web-based tutorials and user's manuals
- ► It runs on all platforms: Mac, Windows, Linux and Unix
- \blacktriangleright R provides a powerful *interface*
 - ▷ Can integrate programs written in other languages
 - ▷ Such as C, C++, Fortran, Perl, Python, and Java.
- \blacktriangleright It is increasingly common to see people who develop new methodology simultaneously producing an R package
- ► Can interface with **WinBugs**

Basic R Programming Getting started

- ► Type 'demo()' for some demos; demo(image) and demo(graphics)
- ▶ 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
- ► Type 'q()' to quit R.
- ► Additional packages can be loaded via the library command, as in
 - > library(combinat) # combinatorics utilities
 - > library(datasets) # The R Datasets Package
 - \triangleright There exist hundreds of packages available on the Web.
 - > install.package("mcsm")
- \blacktriangleright A library call is required each time **R** is launched

Basic R Programming R objects

▶ **R** distinguishes between several types of *objects*

▷ scalar, vector, matrix, time series, data frames, functions, or graphics.

 \triangleright An ${\tt R}$ object is mostly characterized by a mode

 \triangleright The different modes are

- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as "Blue", "binomial", "male", or "y=a+bx"),

 \blacktriangleright The R function **str** applied to any R object will show its structure.

Basic R Programming Interpreted

- \blacktriangleright R operates on those types as a regular function would operate on a scalar
- \triangleright R is interpreted \Rightarrow Slow
- ► Avoid loops in favor of matrix mainpulations

$Basic \ R \ Programming - The \ \textbf{vector} \ class$

	build the object a containing a numeric vector of dimension 5 with elements 5, 5.6, 1, 4, -5
> a[1]	display the first element of a
> b=a[2:4]	build the numeric vector \mathbf{b} of dimension 3
> d=a[c(1,3,5)]	with elements 5.6, 1, 4 build the numeric vector \mathbf{d} of dimension 3
> 2*a	with elements 5, 1, -5 multiply each element of a by 2
> b%%3	and display the result provides each element of b modulo 3

Basic R Programming More **vector** class

- > e=3/d build the numeric vector e of dimension 3 and elements 3/5, 3, -3/5
- > sum(d) calculate the sum of d
- > length(d) display the length of d

Basic R Programming Even more **vector** class

	t(d)	transpose d , the result is a row vector
>	t(d)*e	elementwise product between two vectors with identical lengths
>	t(d)%*%e	matrix product between two vectors
>	g=c(sqrt(2),log(10))	with identical lengths build the numeric vector \mathbf{g} of dimension 2
>	e[d==5]	and elements $\sqrt{2}$, log(10) build the subvector of e that contains the
>	a[-3]	components e[i] such that d[i]=5 create the subvector of a that contains
>	is.vector(d)	all components of a but the third. display the logical expression TRUE if
		a vector and FALSE else

Basic R Programming Comments on the **vector** class

The ability to apply scalar functions to vectors: Major Advantage of R.
 > lgamma(c(3,5,7))

 \triangleright returns the vector with components $(\log \Gamma(3), \log \Gamma(5), \log \Gamma(7))$.

▶ Functions that are specially designed for vectors include

sample, permn, order, sort, and rank

All manipulate the order in which the components of the vector occur.
permn is part of the combinat library

The components of a vector can also be identified by names.
 For a vector x, names(x) is a vector of characters of the same length as x

Basic R Programming The **matrix**, **array**, and **factor** classes

- ► The matrix class provides the **R** representation of matrices.
- \blacktriangleright A typical entry is
 - > x=matrix(vec,nrow=n,ncol=p)

 \triangleright Creates an $n \times p$ matrix whose elements are of the dimension np vector **vec**

- ► Some manipulations on matrices
 - \triangleright The standard matrix product is denoted by %*%,
 - \triangleright while * represents the term-by-term product.
 - ▷ diag gives the vector of the diagonal elements of a matrix
 - > crossprod replaces the product t(x)%*%y on either vectors or matrices > crossprod(x,y) more efficient
 - ▷ apply is easy to use for functions operating on matrices by row or column

Basic R Programming Some **matrix** commands

>	<pre>x1=matrix(1:20,nrow=5)</pre>	build the numeric matrix $x1$ of dimension
		5×4 with first row 1, 6, 11, 16
>	<pre>x2=matrix(1:20,nrow=5,byrow=T)</pre>	build the numeric matrix $\mathbf{x2}$ of dimension
		5×4 with first row 1, 2, 3, 4
>	> a=x1%*%t(x2)	matrix product
>	→ c=x1*x2	term-by-term product between $\mathtt{x1}$ and $\mathtt{x2}$
>	dim(x1)	display the dimensions of $x1$
>	→ b[,2]	select the second column of ${\tt b}$
>	→ b[c(3,4),]	select the third and fourth rows of b
>	→ b[-2,]	delete the second row of b
>	<pre>rbind(x1,x2)</pre>	vertical merging of x1 and x2rbind(*)rbind
>	<pre>cbind(x1,x2)</pre>	horizontal merging of x1 and x2rbind(*)rbind
>	> apply(x1,1,sum)	calculate the sum of each row of $x1$
>	as.matrix(1:10)	turn the vector $1:10$ into a 10×1 matrix

▶ Lots of other commands that we will see throughout the course

Basic R Programming The list and data.frame classes The Last One

 \blacktriangleright A list is a collection of arbitrary objects known as its *components*

> li=list(num=1:5,y="color",a=T) create a list with three arguments

The last class we briefly mention is the data frame
 A list whose elements are possibly made of differing modes and attributes
 But have the same length

- > v1=sample(1:12,30,rep=T)
- > v2=sample(LETTERS[1:10],30,rep=T)
- > v3=runif(30)
- > v4=rnorm(30)
- > xx=data.frame(v1,v2,v3,v4)

simulate 30 independent uniform $\{1, 2, ..., 12\}$ simulate 30 independent uniform $\{a, b, ..., j\}$ simulate 30 independent uniform [0, 1]simulate 30 independent standard normals create a data frame

► R code

Probability distributions in ${\tt R}$

 $\blacktriangleright R$, or the web, has about all probability distributions

▶ Prefixes: p, d,q, r

Distribution	Core	Parameters	Default Values
Beta	beta	shape1, shape2	
Binomial	binom	size, prob	
Cauchy	cauchy	location, scale	0,1
Chi-square	chisq	df	
Exponential	exp	1/mean	1
F	f	df1, df2	
Gamma	gamma	shape,1/scale	NA, 1
Geometric	geom	prob	
Hypergeometric	hyper	m, n, k	
Log-normal	lnorm	mean, sd	0,1
Logistic	logis	location, scale	0,1
Normal	norm	mean, sd	0,1
Poisson	pois	lambda	
Student	t	df	
Uniform	unif	min, max	0,1
Weibull	weibull	shape	

Basic and not-so-basic statistics t-test

► Testing equality of two means

```
> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)
```

```
One Sample t-test
data: x
t = -0.8168, df = 24, p-value = 0.4220
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4915103 0.2127705
sample estimates:
mean of x
-0.1393699
```

Basic and not-so-basic statistics Correlation

► Correlation

- > attach(faithful) #resident dataset
- > cor.test(faithful[,1],faithful[,2])

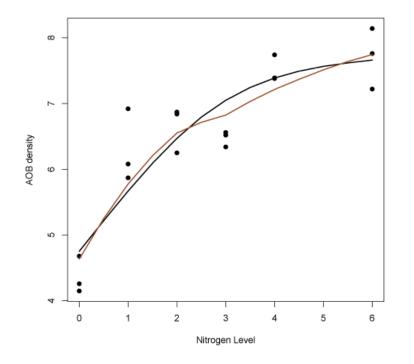
Pearson's product-moment correlation

```
data: faithful[, 1] and faithful[, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.8756964 0.9210652
sample estimates:
        cor
0.9008112
```

\triangleright R code

Basic and not-so-basic statistics Splines

- ► Nonparametric regression with **loess** function or using *natural splines*
- \blacktriangleright Relationship between nitrogen level in soil and abundance of a bacteria AOB



- Natural spline fit (dark)
 With ns=2 (linear model)
- ▶ Loess fit (*brown*) with span=1.25

► R code

Basic and not-so-basic statistics Generalized Linear Models

► Fitting a binomial (logistic) glm to the probability of suffering from diabetes for a woman within the Pima Indian population

```
> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)
```

Deviance Residuals:

Min	1Q	Median	ЗQ	Max
-1.7935	-0.8368	-0.5033	1.0211	2.2531

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -6.49870 1.17459 -5.533 3.15e-08 *** bmi 0.10519 0.02956 3.558 0.000373 *** age 0.07104 0.01538 4.620 3.84e-06 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 256.41 on 199 degrees of freedom
Residual deviance: 215.93 on 197 degrees of freedom
AIC: 221.93
Number of Fisher Scoring iterations: 4

Basic and not-so-basic statistics Generalized Linear Models – Comments

► Concluding with the significance both of the body mass index **bmi** and the age

- ► Other generalized linear models can be defined by using a different **family** value
 - > glm(y ~x, family=quasi(var="mu^2", link="log"))
 - \triangleright Quasi-Likelihood also
- Many many other proceduresTime series, anova,...
- \blacktriangleright One last one

Basic and not-so-basic statistics Bootstrap

- ▶ The bootstrap procedure uses the empirical distribution as a substitute for the true distribution to construct variance estimates and confidence intervals.
 - \triangleright A sample X_1, \ldots, X_n is resampled with replacement

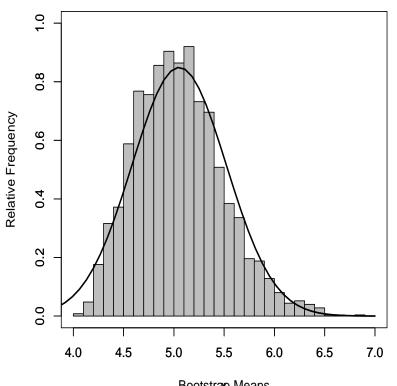
 \triangleright The empirical distribution has a finite but large support made of n^n points

▶ For example, with data y, we can create a bootstrap sample y^* using the code

```
> ystar=sample(y,replace=T)
```

 \triangleright For each resample, we can calculate a mean, variance, etc

Basic and not-so-basic statistics Simple illustration of bootstrap



Bootstrap Means

- \blacktriangleright A histogram of 2500 bootstrap means
- ► Along with the normal approximation
- ► Bootstrap shows some skewness
- \triangleright R code

Basic and not-so-basic statistics Bootstrapping Regression

► The bootstrap is not a panacea

Not always clear which quantity should be bootstrapped
In regression, bootstrapping the residuals is preferred

► Linear regression

$$Y_{ij} = \alpha + \beta x_i + \varepsilon_{ij},$$

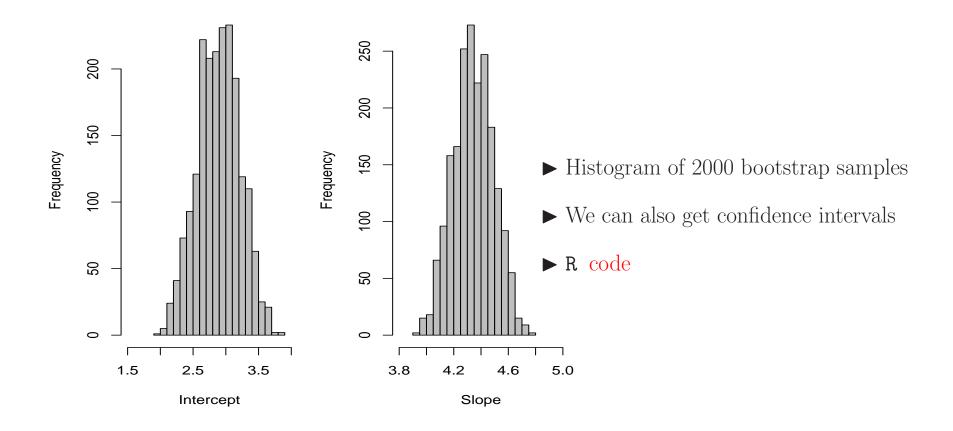
 α and β are the unknown intercept and slope, ε_{ij} are the iid normal errors

▶ The residuals from the least squares fit are given by

$$\hat{\varepsilon}_{ij} = y_{ij} - \hat{\alpha} - \hat{\beta} x_i,$$

 \triangleright We bootstrap the residuals

- \triangleright Produce a new sample $(\hat{\varepsilon}_{ij}^*)_{ij}$ by resampling from the $\hat{\varepsilon}_{ij}$'s
- \triangleright The bootstrap samples are then $y_{ij}^* = y_{ij} + \hat{\varepsilon}_{ij}^*$



Basic R Programming Some Other Stuff

► Graphical facilities

 \triangleright Can do a lot; see **plot** and **par**

► Writing new **R** functions

 \triangleright h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

 \triangleright We will do this a lot

 \blacktriangleright Input and output in **R**

> write.table, read.table, scan

► Don't forget the mcsm package

Chapter 2: Random Variable Generation

"It has long been an axiom of mine that the little things are infinitely the most important."

Arthur Conan Doyle A Case of Identity

This Chapter

- ► We present practical techniques that can produce random variables
- ► From both standard and nonstandard distributions
- ► First: Transformation methods
- ► Next: Indirect Methods Accept-Reject

Introduction

 \blacktriangleright Monte Carlo methods rely on

The possibility of producing a supposedly endless flow of random variablesFor well-known or new distributions.

- ▶ Such a simulation is, in turn,
 - \triangleright Based on the production of uniform random variables on the interval (0, 1).
- ► We are not concerned with the details of producing uniform random variables
- ▶ We assume the existence of such a sequence

$\begin{array}{c} \mbox{Introduction}\\ \mbox{Using the R} \ \mbox{Generators} \end{array}$

 ${\tt R}$ has a large number of functions that will generate the standard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a $\mathcal{G}(5/2, 9/2)$ distribution

- \blacktriangleright It is therefore,
 - \triangleright Counter-productive
 - ⊳ Inefficient
 - \triangleright And even dangerous,
- ► To generate from those standard distributions
- \blacktriangleright If it is built into ${\tt R}\,$, use it
- ▶ But....we will practice on these.

 \blacktriangleright The principles are essential to deal with distributions that are not built into **R**.

Uniform Simulation

- ► The uniform generator in **R** is the function **runif**
- ▶ The only required entry is the number of values to be generated.
- ► The other optional parameters are **min** and **max**, with **R** code
- > runif(100, min=2, max=5)

will produce 100 random variables $\mathcal{U}(2,5)$.

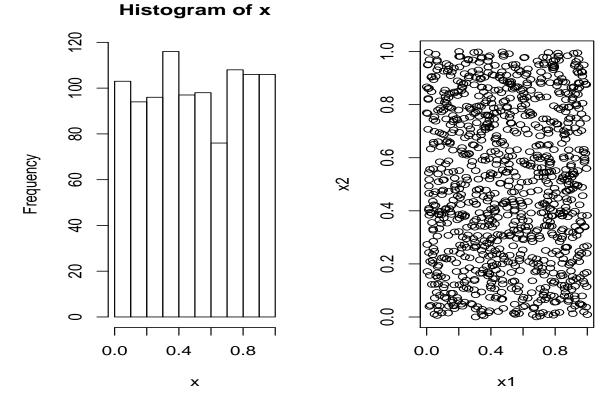
Uniform Simulation Checking the Generator

- \blacktriangleright A quick check on the properties of this uniform generator is to
- \triangleright Look at a histogram of the X_i 's,
- \triangleright Plot the pairs (X_i, X_{i+1})

 \triangleright Look at the estimate autocorrelation function

- ► Look at the R code
 - > Nsim=10^4 #number of random numbers > x=runif(Nsim) > x1=x[-Nsim] #vectors to plot > x2=x[-1] #adjacent pairs > par(mfrow=c(1,3)) > hist(x) > plot(x1,x2) > acf(x)

Uniform Simulation Plots from the Generator



▶ Histogram *(left)*, pairwise plot *(center)*, and estimated autocorrelation function *(right)* of a sequence of 10^4 uniform random numbers generated by runif.

Uniform Simulation Some Comments

▶ Remember: **runif** does not involve randomness per se.

▶ It is a deterministic sequence based on a random starting point.

► The R function **set.seed** can produce the same sequence.

```
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481
```

▶ Setting the seed determines all the subsequent values

The Inverse Transform

The Probability Integral Transform
 Allows us to transform a uniform into any random variable

▶ For example, if X has density f and cdf F, then we have the relation

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t,$$

and we set U = F(X) and solve for X

► Example 2.1

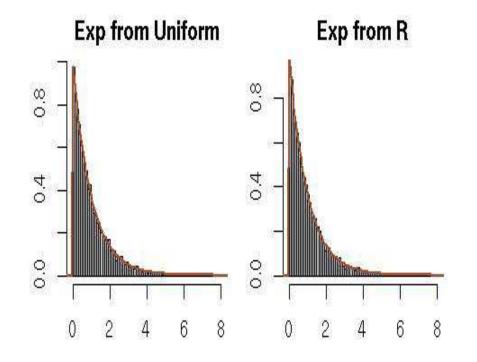
- \triangleright If $X \sim \mathcal{E}xp(1)$, then $F(x) = 1 e^{-x}$
- \triangleright Solving for x in $u = 1 e^{-x}$ gives $x = -\log(1 u)$

Generating Exponentials

> Nsim=10^4

#number of random variables

- > U=runif(Nsim)
- > X=-log(U) #transforms of uniforms
- > Y=rexp(Nsim) #exponentials from R
- > par(mfrow=c(1,2)) #plots
- > hist(X,freq=F,main="Exp from Uniform")
- > hist(Y,freq=F,main="Exp from R")



- ▶ Histograms of exponential random variables
 - \triangleright Inverse transform (right)
 - \triangleright R command rexp (*left*)
 - $\triangleright \mathcal{E}xp(1)$ density on top

Generating Other Random Variables From Uniforms

▶ This method is useful for other probability distributions

 \triangleright Ones obtained as a transformation of uniform random variables

► Logistic pdf:
$$f(x) = \frac{1}{\beta} \frac{e^{-(x-\mu)/\beta}}{[1+e^{-(x-\mu)/\beta}]^2}$$
, cdf: $F(x) = \frac{1}{1+e^{-(x-\mu)/\beta}}$.
► Cauchy pdf: $f(x) = \frac{1}{\pi\sigma} \frac{1}{1+(\frac{x-\mu}{\sigma})^2}$, cdf: $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan((x-\mu)/\sigma)$.

General Transformation Methods

 \blacktriangleright When a density f is linked in a relatively simple way

 \triangleright To another distribution easy to simulate

 \triangleright This relationship can be use to construct an algorithm to simulate from f

▶ If the X_i 's are iid $\mathcal{E}xp(1)$ random variables,

 \triangleright Three standard distributions can be derived as

$$Y = 2\sum_{j=1}^{\nu} X_j \sim \chi_{2\nu}^2, \qquad \nu \in \mathbb{N}^*,$$

$$Y = \beta \sum_{j=1}^{a} X_j \sim \mathcal{G}(a,\beta), \qquad a \in \mathbb{N}^*,$$

$$Y = \frac{\sum_{j=1}^{a} X_j}{\sum_{j=1}^{a+b} X_j} \sim \mathcal{B}e(a,b), \qquad a, b \in \mathbb{N}^*,$$

where $\mathbb{N}^* = \{1, 2, ...\}.$

General Transformation Methods χ_6^2 Random Variables

► For example, to generate χ_6^2 random variables, we could use the R code

- > U=runif(3*10^4)
- > U=matrix(data=U,nrow=3) #matrix for sums
- > X=-log(U) #uniform to exponential
- > X=2* apply(X,2,sum) #sum up to get chi squares

▶ Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())

user system elapsed

0.104 0.000 0.107

user system elapsed

- 0.004 0.000 0.004
- ▶ test1 corresponds to the R code above
- ▶ test2 corresponds to X=rchisq(10⁴,df=6)

General Transformation Methods Comments

- ▶ These transformations are quite simple and will be used in our illustrations.
- ► However, there are limits to their usefulness,
- \triangleright No odd degrees of freedom
- \triangleright No normals
- ▶ For any specific distribution, efficient algorithms have been developed.
- \blacktriangleright Thus, if **R** has a distribution built in, it is almost always worth using

General Transformation Methods A Normal Generator

- ▶ Box–Muller algorithm two normals from two uniforms
- ▶ If U_1 and U_2 are iid $\mathcal{U}_{[0,1]}$
- \blacktriangleright The variables X_1 and X_2

$$X_1 = \sqrt{-2\log(U_1)} \cos(2\pi U_2)$$
, $X_2 = \sqrt{-2\log(U_1)} \sin(2\pi U_2)$,

► Are iid $\mathcal{N}(0, 1)$ by virtue of a change of variable argument.

- ▶ The Box–Muller algorithm is exact, not a crude CLT-based approximation
- \blacktriangleright Note that this is *not* the generator implemented in **R**
 - \triangleright It uses the probability inverse transform
 - \triangleright With a very accurate representation of the normal cdf

General Transformation Methods Multivariate Normals

► Can simulate a multivariate normal variable using univariate normals
 ▷ Cholesky decomposition of Σ = AA'

$$\triangleright Y \sim \mathcal{N}_p(0, I) \Rightarrow AY \sim \mathcal{N}_p(0, \Sigma)$$

There is an R package that replicates those steps, called rmnorm
 In the mnormt library

> Can also calculate the probability of hypercubes with the function sadmvn > sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B) [1] 9.012408e-05 attr(,"error") [1] 1.729111e-08

 \blacktriangleright B is a positive-definite matrix

▶ This is quite useful since the analytic derivation of this probability is almost always impossible.

Discrete Distributions

- ▶ To generate discrete random variables we have an "all-purpose" algorithm.
- ▶ Based on the inverse transform principle
- ► To generate X ~ P_θ, where P_θ is supported by the integers,
 ▷ We can calculate—the probabilities
 ▷ Once for all, assuming we can store them

$$p_0 = P_{\theta}(X \le 0), \quad p_1 = P_{\theta}(X \le 1), \quad p_2 = P_{\theta}(X \le 2), \quad \dots,$$

 \triangleright And then generate $U \sim \mathcal{U}_{[0,1]}$ and take

$$X = k$$
 if $p_{k-1} < U < p_k$.

Discrete Distributions Binomial

• Example To generate $X \sim \mathcal{B}in(10, .3)$

▷ The probability values are obtained by pbinom(k,10,.3)

$$p_0 = 0.028, \quad p_1 = 0.149, \quad p_2 = 0.382, \dots, p_{10} = 1,$$

▷ And to generate $X \sim \mathcal{P}(7)$, take $p_0 = 0.0009, \quad p_1 = 0.0073, \quad p_2 = 0.0296, \dots,$

▷ Stopping the sequence when it reaches 1 with a given number of decimals. ▷ For instance, $p_{20} = 0.999985$.

► Check the R code

Discrete Distributions Comments

- ► Specific algorithms are usually more efficient
- ▶ Improvement can come from a judicious choice of the probabilities first computed.
- For example, if we want to generate from a Poisson with λ = 100
 ▷ The algorithm above is woefully inefficient
 ▷ We expect most of our observations to be in the interval λ ± 3√λ
 ▷ For λ = 100 this interval is (70, 130)
 ▷ Thus, starting at 0 is quite wasteful
- ▶ A first remedy is to "ignore" what is outside of a highly likely interval
 ▷ In the current example P(X < 70) + P(X > 130) = 0.00268.

Discrete Distributions Poisson R Code

- \blacktriangleright R code that can be used to generate Poisson random variables for large values of lambda.
- \blacktriangleright The sequence t contains the integer values in the range around the mean.
- > Nsim=10⁴; lambda=100
- > spread=3*sqrt(lambda)
- > t=round(seq(max(0,lambda-spread),lambda+spread,1))
- > prob=ppois(t, lambda)
- > X=rep(0,Nsim)
- > for (i in 1:Nsim){
- + u=runif(1)
- + X[i]=t[1]+sum(prob<u)-1 }
- ▶ The last line of the program checks to see what interval the uniform random variable fell in and assigns the correct Poisson value to X.

Discrete Distributions Comments

- ► Another remedy is to start the cumulative probabilities at the mode of the discrete distribution
- ► Then explore neighboring values until the cumulative probability is almost 1.

- ▶ Specific algorithms exist for almost any distribution and are often quite fast.
- \blacktriangleright So, if **R** has it, use it.
- \blacktriangleright But **R** does not handle every distribution that we will need,

Mixture Representations

- \blacktriangleright It is sometimes the case that a probability distribution can be naturally represented as a *mixture distribution*
- \blacktriangleright That is, we can write it in the form

$$f(x) = \int_{\mathcal{Y}} g(x|y)p(y) \, \mathrm{d}y \quad \text{or} \quad f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x) \, ,$$

 \triangleright The mixing distribution can be continuous or discrete.

To generate a random variable X using such a representation,
 we can first generate a variable Y from the mixing distribution
 Then generate X from the selected conditional distribution

Mixture Representations Generating the Mixture

► Continuous

$$f(x) = \int_{\mathcal{Y}} g(x|y)p(y) \, \mathrm{d}y \Rightarrow y \sim p(y) \text{ and } X \sim f(x|y), \text{ then } X \sim f(x)$$

► Discrete

$$f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x) \Rightarrow i \sim p_i \text{ and } X \sim f_i(x), \text{ then } X \sim f(x)$$

► Discrete Normal Mixture **R** code

 $\triangleright p_1 * N(\mu_1, \sigma_1) + p_2 * N(\mu_2, \sigma_2) + p_3 * N(\mu_3, \sigma_3)$

Mixture Representations Continuous Mixtures

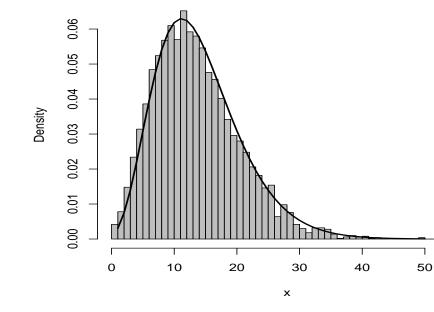
▶ Student's t density with ν degrees of freedom

$$X|y \sim \mathcal{N}(0, \nu/y)$$
 and $Y \sim \chi_{\nu}^2$.

▷ Generate from a χ^2_{ν} then from the corresponding normal distribution ▷ Obviously, using **rt** is slightly more efficient

• If X is negative binomial $X \sim \mathcal{N}eg(n, p)$ • $X|y \sim \mathcal{P}(y)$ and $Y \sim \mathcal{G}(n, \beta)$,

 \triangleright R code generates from this mixture



Accept–Reject Methods Introduction

- ▶ There are many distributions where transform methods fail
- For these cases, we must turn to *indirect* methods
 We generate a candidate random variable
 Only accept it subject to passing a test
- ► This class of methods is extremely powerful.
 - \triangleright It will allow us to simulate from virtually any distribution.
- ► Accept-Reject Methods
 - \triangleright Only require the functional form of the density f of interest
 - $\triangleright f = \text{target}, g = \text{candidate}$
- \blacktriangleright Where it is simpler to simulate random variables from g

Accept–Reject Methods Accept–Reject Algorithm

- ► The only constraints we impose on this candidate density g
 ▷ f and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).
 ▷ There is a constant M with f(x)/g(x) ≤ M for all x.
- ► $X \sim f$ can be simulated as follows.
 - \triangleright Generate $Y \sim g$ and, independently, generate $U \sim \mathcal{U}_{[0,1]}$.

$$\triangleright$$
 If $U \leq \frac{1}{M} \frac{f(Y)}{q(Y)}$, set $X = Y$.

- \triangleright If the inequality is not satisfied, we then discard Y and U and start again.
- ▶ Note that $M = \sup_x \frac{f(x)}{g(x)}$
- ▶ $P(\text{Accept}) = \frac{1}{M}$, Expected Waiting Time = M

Accept–Reject Algorithm **R** Implementation

Succinctly, the Accept–Reject Algorithm is

Accept–Reject Method

- 1. Generate $Y \sim g$, $U \sim \mathcal{U}_{[0,1]}$;
- 2. Accept X=Y if $U\leq f(Y)/Mg(Y);$
- 3. Return to 1 otherwise.

▶ **R** implementation: If **randg** generates from g

```
> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y))
{
     u=runif(1)*M
     y=randg(1)
     }
```

 \blacktriangleright Produces a single generation y from f

Accept–Reject Algorithm Normals from Double Exponentials

► Candidate
$$Y \sim \frac{1}{2} \exp(-|y|)$$

► Target
$$X \sim \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

 $\frac{\frac{1}{\sqrt{2\pi}} \exp(-y^2/2)}{\frac{1}{2} \exp(-|y|)} \leq \frac{2}{\sqrt{2\pi}} \exp(1/2)$

 \triangleright Maximum at y = 1

► Accept Y if
$$U \le \exp(-.5Y^2 + |Y| - .5)$$

 \blacktriangleright Look at R code

Accept–Reject Algorithm Theory

- ► Why does this method work?
- ► A straightforward probability calculation shows

$$P(Y \leq x | \text{Accept}) = P\left(Y \leq x | U \leq \frac{f(Y)}{Mg(Y)}\right) = P(X \leq x)$$

 \triangleright Simulating from g, the output of this algorithm is exactly distributed from f.

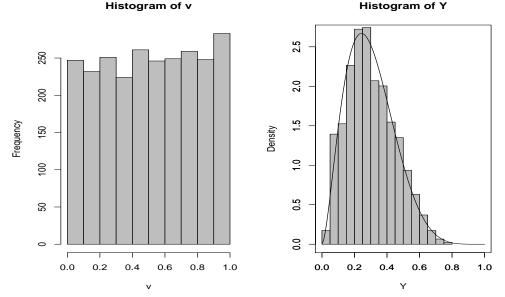
4

► The Accept-Reject method is applicable in any dimension

- \blacktriangleright As long as g is a density over the same space as f.
- ▶ Only need to know f/g up to a constant
- \blacktriangleright Only need an upper bound on M

Accept–Reject Algorithm Betas from Uniforms

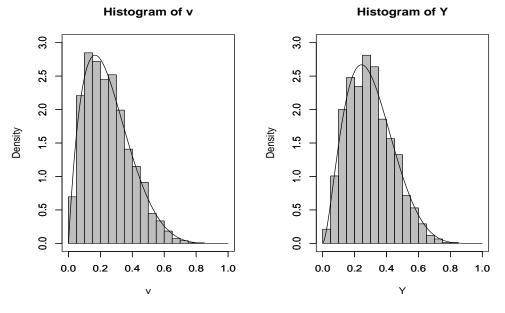
- Generate $X \sim \text{beta}(a, b)$.
- No direct method if a and b are not integers.
- Use a uniform candidate
- For a = 2.7 and b = 6.3



► Acceptance Rate =37%

Accept–Reject Algorithm Betas from Betas

- Generate $X \sim \text{beta}(a, b)$.
- No direct method if a and b are not integers.
- Use a beta candidate
- For a = 2.7 and b = 6.3, $Y \sim \text{beta}(2, 6)$



► Acceptance Rate =60%

Accept–Reject Algorithm Betas from Betas-Details

- ► Beta density $\propto x^a(1-x)^b$
- \blacktriangleright Can generate if a and b integers

▶ If not, use candidate with a_1 and b_1 integers

$$\frac{y^a(1-y)^b}{y^{a_1}(1-y)^{b_1}} \text{ maximized at } y = \frac{a-a_1}{a-a_1+b-b_1}$$

 \triangleright Need $a_1 < a$ and $b_1 < b$

 \blacktriangleright Efficiency \uparrow as the candidate gets closer to the target

 \blacktriangleright Look at R code

Accept–Reject Algorithm Comments

Some key properties of the Accept-Reject algorithm::

1. Only the ratio f/M is needed

 \triangleright So the algorithm does not depend on the normalizing constant.

- 2. The bound $f \leq Mg$ need not be tight
 - \triangleright Accept–Reject is valid, but less efficient, if M is replaced with a larger constant.
- 3. The probability of acceptance is $1/M\,$
 - \triangleright So M should be as small as possible for a given computational effort.

Chapter 3: Monte Carlo Integration

"Every time I think I know what's going on, suddenly there's another layer of complications. I just want this damn thing solved."

> John Scalzi The Last Colony

This Chapter

- ► This chapter introduces the major concepts of Monte Carlo methods
- ► The validity of Monte Carlo approximations relies on the Law of Large Numbers
- ► The versatility of the representation of an integral as an expectation

Monte Carlo Integration Introduction

 \blacktriangleright We will be concerned with evaluating integrals of the form

$$\int_{\mathcal{X}} h(x) f(x) \, \mathrm{d}x,$$

 $\triangleright f$ is a density

 \triangleright We can produce an almost infinite number of random variables from f

► We apply probabilistic results

 \triangleright Law of Large Numbers

 \triangleright Central Limit Theorem

► The Alternative - Deterministic Numerical Integration

- \triangleright R functions area and integrate
- \triangleright OK in low (one) dimensions
- \triangleright U sually needs some knowledge of the function

Classical Monte Carlo Integration The Monte Carlo Method

► The generic problem: Evaluate

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) \, \mathrm{d}x,$$

 $\triangleright X$ takes its values in \mathcal{X}

► The Monte Carlo Method

 \triangleright Generate a sample (X_1, \ldots, X_n) from the density f

▷ Approximate the integral with

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) ,$$

Classical Monte Carlo Integration Validating the Monte Carlo Method

► The Convergence

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) \to \int_{\mathcal{X}} h(x) f(x) \, \mathrm{d}x = \mathbb{E}_f[h(X)]$$

 \triangleright Is valid by the Strong Law of Large Numbers

▶ When $h^2(X)$ has a finite expectation under f,

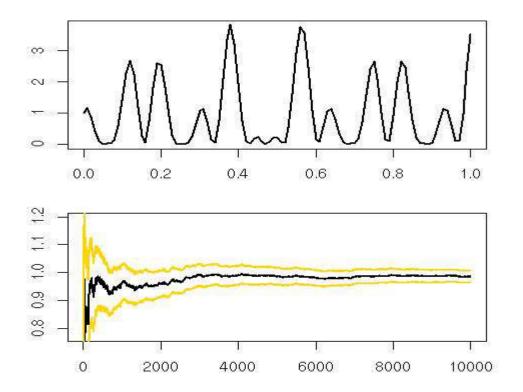
$$\frac{\overline{h}_n - \mathbb{E}_f[h(X)]}{\sqrt{v_n}} \to \mathcal{N}(0, 1)$$

 \triangleright Follows from the Central Limit Theorem

$$\triangleright v_n = \frac{1}{n^2} \sum_{j=1}^n [h(x_j) - \overline{h}_n]^2.$$

Classical Monte Carlo Integration A First Example

► Look at the function

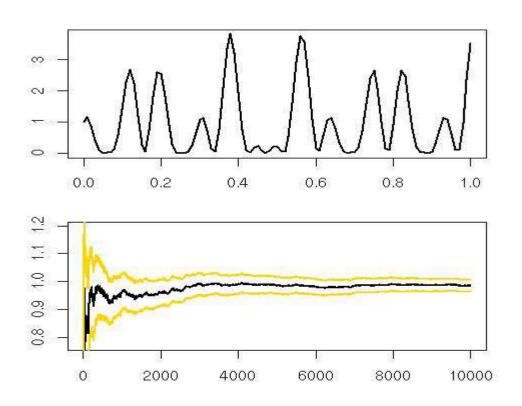


►
$$h(x) = [\cos(50x) + \sin(20x)]^2$$

► Monitoring Convergence

► R code

Classical Monte Carlo Integration A Caution



► The confidence band produced in this figure is not a 95% confidence band in the classical sense

► They are Confidence Intervals were you to stop at a chosen number of iterations

Classical Monte Carlo Integration Comments

- 4
 - ► The evaluation of the Monte Carlo error is a bonus
 - ▶ It assumes that v_n is a proper estimate of the variance of \overline{h}_n
 - ▶ If v_n does not converge, converges too slowly, a CLT may not apply

Classical Monte Carlo Integration Another Example

► Normal Probability

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{x_i \le t} \to \Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \mathrm{d}y$$

- \triangleright The exact variance $\Phi(t)[1-\Phi(t)]/n$
- \triangleright Conservative: Var $\approx 1/4n$

▷ For a precision of four decimals ▷ Want $2 \times \sqrt{1/4n} \le 10^{-4}$ simulations ▷ Take $n = (10^4)^2 = 10^8$

▶ This method breaks down for tail probabilities

Importance Sampling Introduction

▶ Importance sampling is based on an alternative formulation of the SLLN

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) \, \mathrm{d}x = \mathbb{E}_g\left[\frac{h(X)f(X)}{g(X)}\right] ;$$

 $\triangleright f$ is the target density

 $\rhd g$ is the candidate density

▷ Sound Familiar?

Importance Sampling Introduction

▶ Importance sampling is based on an alternative formulation of the SLLN

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) \, \mathrm{d}x = \mathbb{E}_g\left[\frac{h(X)f(X)}{g(X)}\right] ;$$

 $\triangleright f$ is the target density

 $\triangleright~g$ is the candidate density

 \triangleright Sound Familiar? – Just like Accept–Reject

► So

$$\frac{1}{n} \sum_{j=1}^{n} \frac{f(X_j)}{g(X_j)} h(X_j) \to \mathbb{E}_f[h(X)]$$

 \blacktriangleright As long as

 $\triangleright \operatorname{Var}\left(h(X)f(X)/g(X)\right) < \infty$ $\triangleright \operatorname{supp}(g) \supset \operatorname{supp}(h \times f)$

Importance Sampling Revisiting Normal Tail Probabilities

► $Z \sim \mathcal{N}(0, 1)$ and we are interested in the probability P(Z > 4.5)

▶ > pnorm(-4.5,log=T)
[1] -12.59242

▶ Simulating Z⁽ⁱ⁾ ~ N(0, 1) only produces a hit once in about 3 million iterations!
 ▶ Very rare event for the normal

 \triangleright Not-so-rare for a distribution sitting out the re!

► Take $g = \mathcal{E}xp(1)$ truncated at 4.5:

$$g(y) = \frac{e^{-y}}{\int_{4.5}^{\infty} e^{-x} \mathrm{d}x} = e^{-(y-4.5)},$$

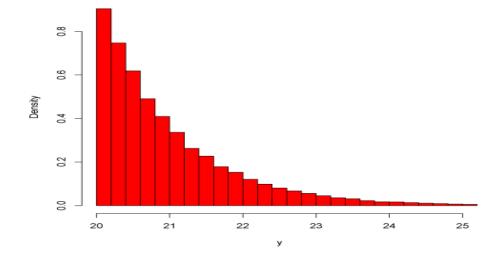
► The IS estimator is

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f(Y^{(i)})}{g(Y^{(i)})} = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-Y_i^2/2 + Y_i - 4.5}}{\sqrt{2\pi}} \qquad \text{R code}$$

Importance Sampling Normal Tail Variables

▶ The Importance sampler does not give us a sample \Rightarrow Can use Accept–Reject

► Sample $Z \sim \mathcal{N}(0, 1)$, $Z > a \Rightarrow$ Use Exponential Candidate $\frac{\frac{1}{\sqrt{2\pi}} \exp(-.5x^2)}{\exp(-(x-a))} = \frac{1}{\sqrt{2\pi}} \exp(-.5x^2 + x + a) \le \frac{1}{\sqrt{2\pi}} \exp(-.5a^{*2} + a^* + a)$ $\triangleright \text{ Where } a^* = \max\{a, 1\}$



- \blacktriangleright Normals > 20
- ► The Twilight Zone
- ► R code

Importance Sampling Comments

Importance sampling has little restriction on the choice of the candidate

- g can be chosen from distributions that are easy to simulate
 Or efficient in the approximation of the integral.
- ► Moreover, the same sample (generated from g) can be used repeatedly
 ▷ Not only for different functions h but also for different densities f.

Importance Sampling Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

► Have an observation x from a beta $\mathcal{B}(\alpha, \beta)$ distribution,

$$x \sim \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{I}_{[0,1]}(x)$$

▶ There exists a family of conjugate priors on (α, β) of the form

$$\pi(\alpha,\beta) \propto \left\{ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda} x_{0}^{\alpha} y_{0}^{\beta} \,,$$

where λ, x_0, y_0 are hyperparameters,

 \blacktriangleright The posterior is then equal to

$$\pi(\alpha,\beta|x) \propto \left\{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}$$

Importance Sampling Easy Model - Difficult Distribution -2

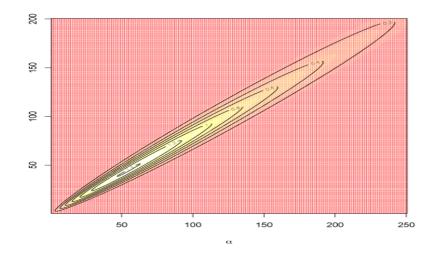
▶ The posterior distribution is intractable

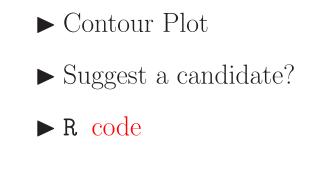
$$\pi(\alpha,\beta|x) \propto \left\{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}.$$

 \triangleright Difficult to deal with the gamma functions

 \triangleright Simulating directly from $\pi(\alpha,\beta|x)$ is impossible.

► What candidate to use?





Importance Sampling Easy Model - Difficult Distribution - 3

- \blacktriangleright Try a Bivariate Student's T (or Normal)
- ► Trial and error

 \triangleright Student's $\mathcal{T}(3, \mu, \Sigma)$ distribution with $\mu = (50, 45)$ and

$$\Sigma = \begin{pmatrix} 220 & 190\\ 190 & 180 \end{pmatrix}$$

 \triangleright Produce a reasonable fit

 $\triangleright R$ code

▶ Note that we are using the fact that

$$X \sim f(x) \Rightarrow \Sigma^{1/2} X + \mu \sim f\left((x - \mu)' \Sigma^{-1} (x - \mu)\right)$$

Importance Sampling Easy Model - Difficult Distribution – Posterior Means

▶ The posterior mean of α is

$$\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta = \int \int \left[\alpha \frac{\pi(\alpha, \beta | x)}{g(\alpha, \beta)} \right] g(\alpha, \beta) d\alpha d\beta \approx \frac{1}{M} \sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}$$

where

$$\triangleright \pi(\alpha, \beta | x) \propto \left\{ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda + 1} [xx_0]^{\alpha} [(1 - x)y_0]^{\beta}$$
$$\triangleright g(\alpha, \beta) = \mathcal{T}(3, \mu, \Sigma)$$

▶ Note that $\pi(\alpha, \beta | x)$ is not normalized, so we have to calculate

$$\frac{\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta}{\int \int \pi(\alpha, \beta | x) d\alpha d\beta} \approx \frac{\sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}{\sum_{i=1}^{M} \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}$$

► The same samples can be used for every posterior expectation

Importance Sampling Probit Analysis

Example: Probit posterior importance sampling approximation

► y are binary variables, and we have covariates $x \in \mathbb{R}^p$ such that $\Pr(y = 1|x) = 1 - \Pr(y = 0|x) = \Phi(x^T\beta), \quad \beta \in \mathbb{R}^p.$

▶ We return to the dataset Pima.tr, x=BMI

A GLM estimation of the model is (using centered x)
>glm(formula = y ~ x, family = binomial(link = "probit"))

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44957 0.09497 -4.734 2.20e-06 ***

x 0.06479 0.01615 4.011 6.05e-05 ***

----

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

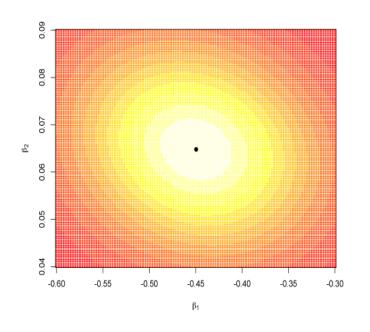
So BMI has a significant impact on the possible presence of diabetes.
```

Importance Sampling Bayesian Probit Analysis

▶ From a Bayesian perspective, we use a vague prior

 $\triangleright \beta = (\beta_1, \beta_2)$, each having a $\mathcal{N}(0, 100)$ distribution

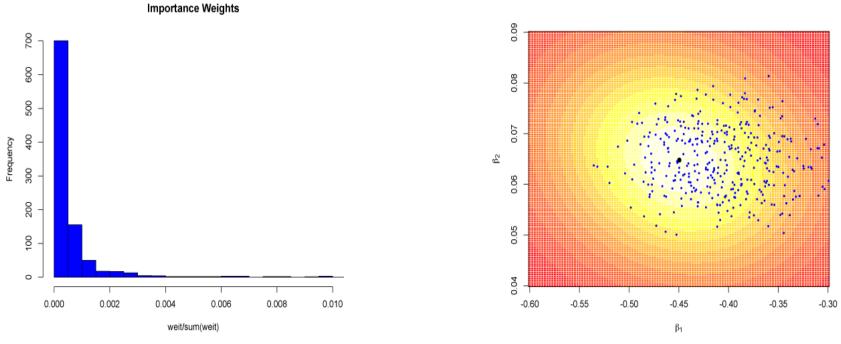
► With Φ the normal cdf, the posterior is proportional to $\prod_{i=1}^{n} \left[\Phi(\beta_1 + (x_i - \bar{x})\beta_2)^{y_i} \left[\Phi(-\beta_1 - (x_i - \bar{x})\beta_2)^{1-y_i} \times e^{-\frac{\beta_1^2 + \beta_2^2}{2 \times 100}} \right]^{1-y_i} \right]$



Level curves of posterior
MLE in the center
R code

Importance Sampling Probit Analysis Importance Weights

- ▶ Normal candidate centered at the MLE no finite variance guarantee
- ▶ The importance weights are rather uneven, if not degenerate



▶ Right side = reweighted candidate sample (\mathbf{R} code)

Somewhat of a failure

Chapter 5: Monte Carlo Optimization

"He invented a game that allowed players to predict the outcome?" **Susanna Gregory** To Kill or Cure

This Chapter

- ► Two uses of computer-generated random variables to solve optimization problems.
- ► The first use is to produce stochastic search techniques
 - ▷ To reach the maximum (or minimum) of a function
 - ▷ Avoid being trapped in local maxima (or minima)
 - > Are sufficiently attracted by the global maximum (or minimum).
- ▶ The second use of simulation is to approximate the function to be optimized.

Monte Carlo Optimization Introduction

- Optimization problems can mostly be seen as one of two kinds:
 Find the extrema of a function h(θ) over a domain Θ
 Find the solution(s) to an implicit equation g(θ) = 0 over a domain Θ.
- ► The problems are exchangeable

▷ The second one is a minimization problem for a function like $h(\theta) = g^2(\theta)$ ▷ while the first one is equivalent to solving $\partial h(\theta) / \partial \theta = 0$

 \blacktriangleright We only focus on the maximization problem

Monte Carlo Optimization Deterministic or Stochastic

▶ Similar to integration, optimization can be deterministic or stochastic

- Deterministic: performance dependent on properties of the function
 such as convexity, boundedness, and smoothness
- ► Stochastic (simulation)
 - \triangleright Properties of h play a lesser role in simulation-based approaches.
- ▶ Therefore, if h is complex or Θ is irregular, chose the stochastic approach.

Monte Carlo Optimization Numerical Optimization

R has several embedded functions to solve optimization problems
 The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood $\mathcal{C}(\theta,1)$

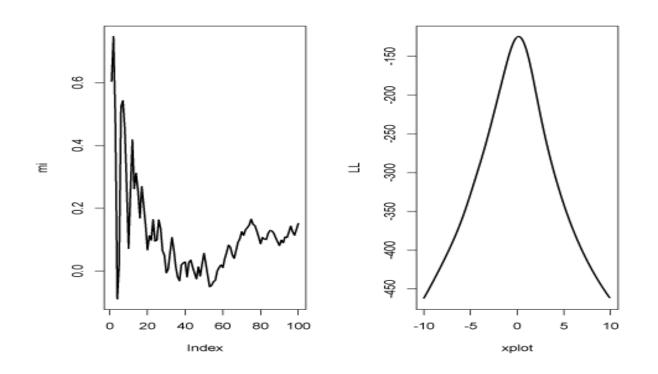
▶ When maximizing the likelihood of a Cauchy $C(\theta, 1)$ sample,

$$\ell(\theta|x_1,...,x_n) = \prod_{i=1}^n \frac{1}{1+(x_i-\theta)^2},$$

► The sequence of maxima (MLEs) $\rightarrow \theta^* = 0$ when $n \rightarrow \infty$.

▶ But the journey is not a smooth one...

Monte Carlo Optimization Cauchy Likelihood



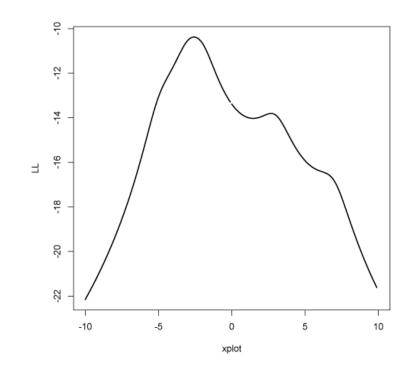
MLEs (*left*) at each sample size, n = 1, 500, and plot of final likelihood (*right*).
 Why are the MLEs so wiggly?

 \triangleright The likelihood is not as well-behaved as it seems

Monte Carlo Optimization Cauchy Likelihood-2

► The likelihood $\ell(\theta|x_1, \ldots, x_n) = \prod_{i=1}^n \frac{1}{1 + (x_i - \theta)^2}$

- ► Is like a polynomial of degree 2n
- ▶ The derivative has 2n zeros
- ▶ Hard to see if n = 500
- ▶ Here is n = 5
- \triangleright R code



Monte Carlo Optimization Newton-Raphson

► Similarly, **nlm** is a generic **R** function using the Newton-Raphson method

▶ Based on the recurrence relation

$$\theta_{i+1} = \theta_i - \left[\frac{\partial^2 h}{\partial \theta \partial \theta^{\mathrm{T}}}(\theta_i)\right]^{-1} \frac{\partial h}{\partial \theta}(\theta_i)$$

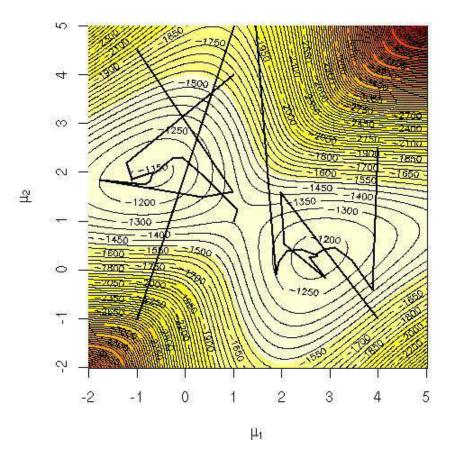
 \blacktriangleright Where the matrix of the second derivatives is called the *Hessian*

This method is perfect when h is quadratic
But may also deteriorate when h is highly nonlinear

▷ It also obviously depends on the starting point θ_0 when h has several minima.

Monte Carlo Optimization Newton-Raphson; Mixture Model Likelihood

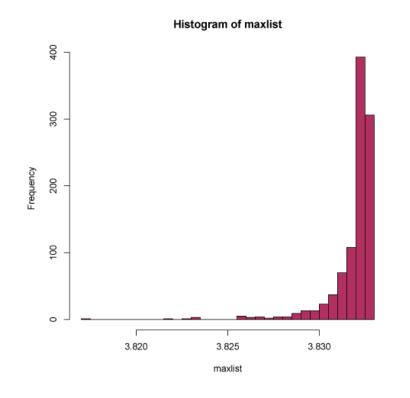
► Bimodal Mixture Model Likelihood $\frac{1}{4}\mathcal{N}(\mu_1, 1) + \frac{3}{4}\mathcal{N}(\mu_2, 1)$

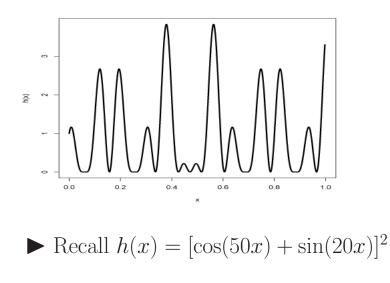


- ▶ Sequences go to the closest mode
- ► Starting point (-1, -1) has a steep gradient
 - \triangleright By passes the main mode (-0.68, 1.98)
 - ▷ Goes to other mode (lower likelihood)

Stochastic search A Basic Solution

A natural if rudimentary way of using simulation to find max_θ h(θ)
 Simulate points over Θ according to an arbitrary distribution f positive on Θ
 Until a high value of h(θ) is observed





- ► Max=3.8325
- ► Histogram of 1000 runs

Stochastic search Stochastic Gradient Methods

- ► Generating direct simulations from the target can be difficult.
- ► Different stochastic approach to maximization
 - \triangleright Explore the surface in a local manner. \triangleright A Markov Chain

 $\triangleright \text{ Can use } \theta_{j+1} = \theta_j + \epsilon_j \qquad \qquad \triangleright \text{ The random component } \epsilon_j \text{ can be arbitrary}$

► Can also use features of the function: Newton-Raphson Variation

$$\theta_{j+1} = \theta_j + \alpha_j \nabla h(\theta_j) , \qquad \alpha_j > 0 ,$$

 $\triangleright \text{ Where } \nabla h(\theta_j) \text{ is the gradient}$ $\triangleright \alpha_j \text{ the step size}$

Stochastic search Stochastic Gradient Methods-2

\blacktriangleright In difficult problems

 \triangleright The gradient sequence will most likely get stuck in a local extremum of h.

► Stochastic Variation

$$\nabla h(\theta_j) \approx \frac{h(\theta_j + \beta_j \zeta_j) - h(\theta_j + \beta_j \zeta_j)}{2\beta_j} \zeta_j = \frac{\Delta h(\theta_j, \beta_j \zeta_j)}{2\beta_j} \zeta_j \,,$$

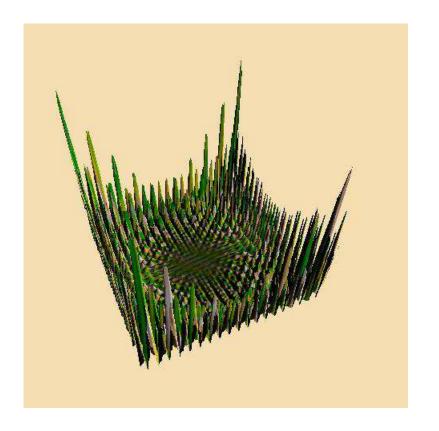
 \triangleright (β_j) is a second decreasing sequence

 $\triangleright \zeta_j$ is uniform on the unit sphere $||\zeta|| = 1$.

\blacktriangleright We then use

$$\theta_{j+1} = \theta_j + \frac{\alpha_j}{2\beta_j} \,\Delta h(\theta_j, \beta_j \zeta_j) \,\zeta_j$$

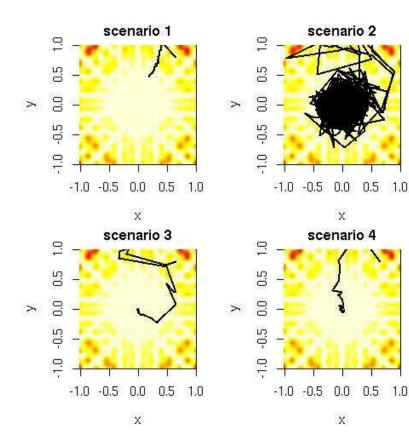
Stochastic Search A Difficult Minimization



- Many Local Minima
 Global Min at (0,0)
- \blacktriangleright Code in the text

Stochastic Search A Difficult Minimization – 2

Scenario	1	2	3	4
$lpha_j\ eta_j$	$\frac{1/\log(j+1)}{1/\log(j+1)^{.1}}$	$1/100 \log(j+1)$ $1/\log(j+1)^{.1}$	$\frac{1/(j+1)}{1/(j+1)^{.5}}$	$\frac{1/(j+1)}{1/(j+1)^{.1}}$



- $\blacktriangleright \alpha \downarrow 0$ slowly, $\sum_j \alpha_j = \infty$
- ▶ $\beta \downarrow 0$ more slowly, $\sum_j (\alpha_j / \beta_j)^2 < \infty$
- ► Scenarios 1-2: Not enough energy
- ► Scenarios 3-4: Good

Simulated Annealing Introduction

- ► This name is borrowed from Metallurgy:
- A metal manufactured by a slow decrease of temperature (*annealing*)
 Is stronger than a metal manufactured by a fast decrease of temperature.
- ▶ The fundamental idea of simulated annealing methods
 - \triangleright A change of scale, or temperature
 - \triangleright Allows for faster moves on the surface of the function h to maximize.
 - \triangleright Rescaling partially avoids the trapping attraction of local maxima.
- \blacktriangleright As T decreases toward 0, the values simulated from this distribution become concentrated in a narrower and narrower neighborhood of the local maxima of h

Simulated Annealing Metropolis Algorithm/Simulated Annealing

- Simulation method proposed by Metropolis $et \ al. (1953)$
- Starting from θ_0 , ζ is generated from

 $\zeta \sim$ Uniform in a neighborhood of θ_0 .

 \bullet The new value of θ is generated as

$$\theta_1 = \begin{cases} \zeta & \text{with probability } \rho = \exp(\Delta h/T) \land 1\\ \theta_0 & \text{with probability } 1 - \rho, \end{cases}$$

 $\circ \Delta h = h(\zeta) - h(\theta_0)$

- If $h(\zeta) \ge h(\theta_0), \zeta$ is accepted
- If $h(\zeta) < h(\theta_0), \zeta$ may still be accepted
- This allows escape from local maxima

Simulated Annealing Metropolis Algorithm - Comments

- Simulated annealing typically modifies the temperature T at each iteration
- It has the form
- 1. Simulate ζ from an instrumental distribution with density $g(|\zeta-\theta_i|);$
- 2. Accept $heta_{i+1}=\zeta$ with probability

$$\rho_i = \exp\{\Delta h_i/T_i\} \wedge 1;$$

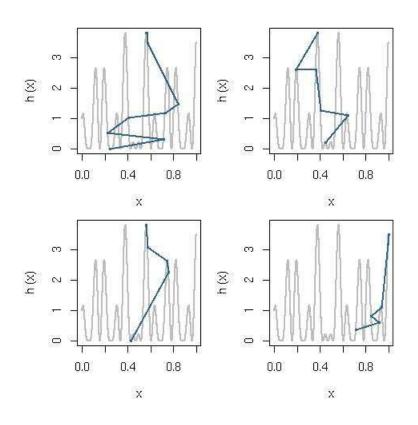
take $heta_{i+1}= heta_i$ otherwise.

- 3. Update T_i to T_{i+1} .
- All positive moves accepted
- As $T \downarrow 0$

• Harder to accept downward moves • No big downward moves

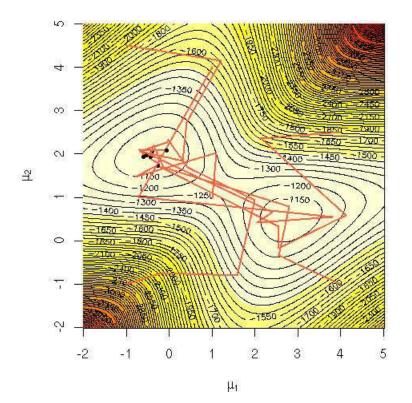
• Not a Markov Chain - difficult to analyze

Simulated Annealing Simple Example



- ► Trajectory: $T_i = \frac{1}{(1+i)^2}$
- \blacktriangleright Log trajectory also works
- Can Guarantee Finding Global Max
- ► R code

Simulated Annealing Normal Mixture



- ► Previous normal mixture
- \blacktriangleright Most sequences find max
- ► They visit both modes

Stochastic Approximation Introduction

- ▶ We now consider methods that work with the objective function h
 ▷ Rather than being concerned with fast exploration of the domain Θ.
- Unfortunately, the use of those methods results in an additional level of error
 Due to this approximation of h.
- ▶ But, the objective function in many statistical problems can be expressed as ▷ $h(x) = \mathbb{E}[H(x, Z)]$
 - \triangleright This is the setting of so-called missing-data models

Stochastic Approximation Optimizing Monte Carlo Approximations

▶ If $h(x) = \mathbb{E}[H(x, Z)]$, a Monte Carlo approximation is

$$\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} H(x, z_i),$$

 $\triangleright Z_i$'s are generated from the conditional distribution f(z|x).

▶ This approximation yields a convergent estimator of h(x) for every value of x

- \triangleright This is a pointwise convergent estimator
- \triangleright Its use in optimization setups is not recommended
- \triangleright Changing sample of Z_i 's \Rightarrow unstable sequence of evaluations
- \triangleright And a rather noisy approximation to $\arg\max h(x)$

Stochastic Approximation Bayesian Probit

Example: Bayesian analysis of a simple probit model

► $Y \in \{0, 1\}$ has a distribution depending on a covariate X: $P_{\theta}(Y = 1 | X = x) = 1 - P_{\theta}(Y = 0 | X = x) = \Phi(\theta_0 + \theta_1 x),$

 \triangleright Illustrate with Pima.tr dataset, Y = diabetes indicator, X =BMI

► Typically infer from the marginal posterior $\arg \max_{\theta_0} \int \prod_{i=1} \Phi(\theta_0 + \theta_1 x_n)^{y_i} \Phi(-\theta_0 - \theta_1 x_n)^{1-y_i} d\theta_1 = \arg \max_{\theta_0} h(\theta_0)$

 \triangleright For a flat prior on θ and a sample (x_1, \ldots, x_n) .

Stochastic Approximation Bayesian Probit – Importance Sampling

- ▶ No analytic expression for h
- The conditional distribution of θ₁ given θ₀ is also nonstandard
 > Use importance sampling with a t distribution with 5 df
 > Take μ = 0.1 and σ = 0.03 (MLEs)
- ► Importance Sampling Approximation

$$\widehat{h}_0(\theta_0) = \frac{1}{M} \sum_{m=1}^M \prod_{i=1}^M \Phi(\theta_0 + \theta_1^m x_n)^{y_i} \Phi(-\theta_0 - \theta_1^m x_n)^{1-y_i} \mathfrak{t}_5(\theta_1^m; \mu, \sigma)^{-1},$$

Stochastic Approximation Importance Sampling Evaluation

▶ Plotting this approximation of h with t samples simulated for each value of θ_0

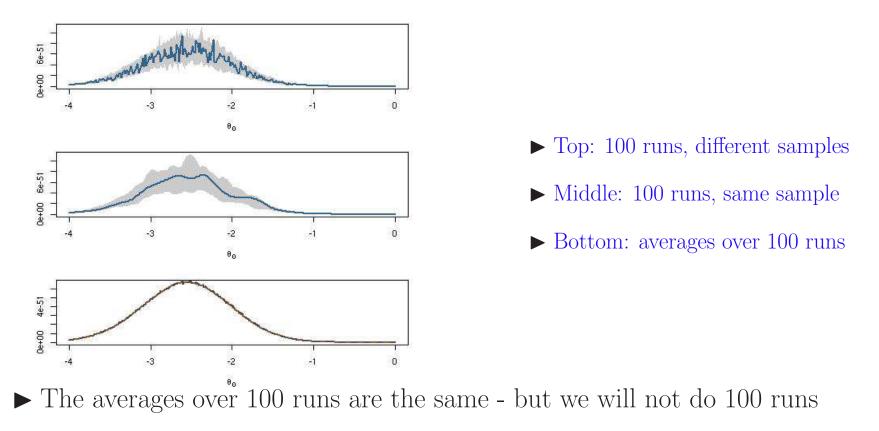
▷ The maximization of the represented \hat{h} function is not to be trusted as an approximation to the maximization of h.

▶ But, if we use the same t sample for all values of θ₀
▷ We obtain a much smoother function

We use importance sampling based on a single sample of Z_i's
 Simulated from an importance function g(z) for all values of x
 Estimate h with

$$\hat{h}_m(x) = \frac{1}{m} \sum_{i=1}^m \frac{f(z_i|x)}{g(z_i)} H(x, z_i).$$

Stochastic Approximation Importance Sampling Likelihood Representation



▶ R code: Run pimax(25) from mcsm

Stochastic Approximation Comments

► This approach is not absolutely fool-proof
 ▷ The precision of ĥ_m(x) has no reason to be independent of x
 ▷ The number m of simulations has to reflect the most varying case.

As in every importance sampling experiment
 The choice of the candidate g is influential
 In obtaining a good (or a disastrous) approximation of h(x).

► Checking for the finite variance of the ratio $f(z_i|x)H(x,z_i)/g(z_i)$ ▷ Is a minimal requirement in the choice of g

Missing-Data Models and Demarginalization Introduction

- ▶ Missing data models are special cases of the representation $h(x) = \mathbb{E}[H(x, Z)]$
- ▶ These are models where the density of the observations can be expressed as

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \, \mathrm{d}z$$
.

- ▶ This representation occurs in many statistical settings
 - ▷ Censoring models and mixtures
 - ▷ Latent variable models (tobit, probit, arch, stochastic volatility, etc.)
 - \triangleright Genetics: Missing SNP calls

Missing-Data Models and Demarginalization Mixture Model

Example: Normal mixture model as a missing-data model

- ► Start with a sample (x_1, \ldots, x_n)
- ► Introduce a vector $(z_1, \ldots, z_n) \in \{1, 2\}^n$ such that $P_{\theta}(Z_i = 1) = 1 - P_{\theta}(Z_i = 2) = 1/4, \quad X_i | Z_i = z \sim \mathcal{N}(\mu_z, 1),$

► The (observed) likelihood is then obtained as $\mathbb{E}[H(\mathbf{x}, \mathbf{Z})]$ for $H(\mathbf{x}, \mathbf{z}) \propto \prod_{i; z_i=1} \frac{1}{4} \exp\{-(x_i - \mu_1)^2/2\} \prod_{i; z_i=2} \frac{3}{4} \exp\{-(x_i - \mu_2)^2/2\}$,

 \blacktriangleright We recover the mixture model

$$\frac{1}{4}\mathcal{N}(\mu_1,1) + \frac{3}{4}\mathcal{N}(\mu_2,1)$$

 \triangleright As the marginal distribution of X_i .

Missing-Data Models and Demarginalization Censored–Data Likelihood

Example: Censored–data likelihood

► Censored data may come from experiments

Where some potential observations are replaced with a lower boundBecause they take too long to observe.

- Suppose that we observe Y_1, \ldots, Y_m , iid, from $f(y \theta)$ \triangleright And the (n - m) remaining (Y_{m+1}, \ldots, Y_n) are censored at the threshold a.
- ► The corresponding likelihood function is

$$L(\theta|\mathbf{y}) = [1 - F(a - \theta)]^{n - m} \prod_{i=1}^{m} f(y_i - \theta),$$

 $\triangleright F$ is the cdf associated with f

Missing-Data Models and Demarginalization Recovering the Observed Data Likelihood

▶ If we had observed the last n - m values

 \triangleright Say $\mathbf{z} = (z_{m+1}, \ldots, z_n)$, with $z_i \ge a \ (i = m+1, \ldots, n)$,

▷ We could have constructed the (complete data) likelihood

$$L^{c}(\theta|\mathbf{y},\mathbf{z}) = \prod_{i=1}^{m} f(y_{i} - \theta) \prod_{i=m+1}^{n} f(z_{i} - \theta).$$

► Note that

$$L(\theta|\mathbf{y}) = \mathbb{E}[L^{c}(\theta|\mathbf{y}, \mathbf{Z})] = \int_{\mathcal{Z}} L^{c}(\theta|\mathbf{y}, \mathbf{z}) k(\mathbf{z}|\mathbf{y}, \theta) \, \mathrm{d}\mathbf{z},$$

- \triangleright Where $k(\mathbf{z}|\mathbf{y}, \theta)$ is the density of the missing data
- \triangleright Conditional on the observed data
- ▷ The product of the $f(z_i \theta)/[1 F(a \theta)]$'s
- $\triangleright f(z \theta)$ restricted to $(a, +\infty)$.

Missing-Data Models and Demarginalization Comments

▶ When we have the relationship

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \, \mathrm{d}z$$
.

 $\triangleright \mathbf{Z}$ merely serves to simplify calculations

 \triangleright it does not necessarily have a specific meaning

► We have the complete-data likelihood $L^c(\theta|\mathbf{x}, \mathbf{z})) = f(\mathbf{x}, \mathbf{z}|\theta)$ ▷ The likelihood we would obtain

 \triangleright Were we to observe (**x**, **z**), the complete data

► REMEMBER:

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \, \mathrm{d}z$$
.

The EM Algorithm Introduction

The EM algorithm is a deterministic optimization technique
 Dempster, Laird and Rubin 1977

▶ Takes advantage of the missing data representation

- \triangleright Builds a sequence of easier maximization problems
- \triangleright Whose limit is the answer to the original problem
- We assume that we observe $X_1, \ldots, X_n \sim g(\mathbf{x}|\theta)$ that satisfies

$$g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) \,\mathrm{d}\mathbf{z},$$

 $\triangleright \text{ And we want to compute } \hat{\theta} = \arg \max L(\theta | \mathbf{x}) = \arg \max g(\mathbf{x} | \theta).$

The EM Algorithm First Details

► With the relationship $g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) \, \mathrm{d}\mathbf{z}$, $\triangleright (\mathbf{X}, \mathbf{Z}) \sim f(\mathbf{x}, \mathbf{z}|\theta)$

The conditional distribution of the missing data Z
 Given the observed data x is

$$k(\mathbf{z}|\boldsymbol{\theta}, \mathbf{x}) = f(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) \big/ g(\mathbf{x}|\boldsymbol{\theta}) \,.$$

 \blacktriangleright Taking the logarithm of this expression leads to the following relationship

$$\underbrace{\log L(\theta | \mathbf{x})}_{\text{Obs. Data}} = \underbrace{\mathbb{E}_{\theta_0}[\log L^c(\theta | \mathbf{x}, \mathbf{Z})]}_{\text{Complete Data}} - \underbrace{\mathbb{E}_{\theta_0}[\log k(\mathbf{Z} | \theta, \mathbf{x})]}_{\text{Missing Data}},$$

► Where the expectation is with respect to $k(\mathbf{z}|\theta_0, \mathbf{x})$.

▶ In maximizing log $L(\theta | \mathbf{x})$, we can ignore the last term

The EM Algorithm Iterations

► Denoting

$$Q(\theta|\theta_0, \mathbf{x}) = \mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{Z})],$$

► EM algorithm indeed proceeds by maximizing $Q(\theta|\theta_0, \mathbf{x})$ at each iteration $\triangleright \text{ If } \hat{\theta}_{(1)} = \operatorname{argmax} Q(\theta|\theta_0, \mathbf{x}), \ \hat{\theta}_{(0)} \rightarrow \hat{\theta}_{(1)}$

► Sequence of estimators $\{\hat{\theta}_{(j)}\}$, where

$$\hat{\theta}_{(j)} = \operatorname{argmax} Q(\theta | \hat{\theta}_{(j-1)})$$

- ► This iterative scheme
 - \triangleright Contains both an expectation step
 - \triangleright And a maximization step
 - \triangleright Giving the algorithm its name.

The EM Algorithm The Algorithm

Pick a starting value $\hat{\theta}_{(0)}$ and set m=0.

Repeat

1. Compute (the E-step)

$$Q(\theta|\hat{\theta}_{(m)}, \mathbf{x}) = \mathbb{E}_{\hat{\theta}_{(m)}}[\log L^{c}(\theta|\mathbf{x}, \mathbf{Z})],$$

where the expectation is with respect to $k(\mathbf{z}|\hat{ heta}_{(m)},\mathbf{x})$.

2. Maximize $Q(heta|\hat{ heta}_{(m)},\mathbf{x})$ in heta and take (the M-step)

$$\hat{\theta}_{(m+1)} = \arg \max_{\theta} Q(\theta | \hat{\theta}_{(m)}, \mathbf{x})$$

and set m = m + 1

until a fixed point is reached; i.e., $\hat{ heta}_{(m+1)} = \hat{ heta}_{(m)}.$ fixed point

The EM Algorithm Properties

 ▶ Jensen's inequality ⇒ The likelihood increases at each step of the EM algorithm
 L(\(\heta_{(j+1)} | \mathbf{x})) ≥ L(\(\heta_{(j)} | \mathbf{x})),
 ⊳ Equality holding if and only if Q(\(\heta_{(j+1)} | \(\heta_{(j)}, \mathbf{x})) = Q(\(\heta_{(j)} | \(\heta_{(j)}, \mathbf{x})).

 $1 \quad J \quad 0 \quad J \quad V \quad (J+1) \mid (J) \quad J \quad V \quad (J) \mid (J) \quad J$

► Every limit point of an EM sequence {θ̂_(j)} is a stationary point of L(θ|**x**)
 ▷ Not necessarily the maximum likelihood estimator

 \triangleright In practice, we run EM several times with different starting points.

▶ Implementing the EM algorithm thus means being able to

- (a) Compute the function $Q(\theta'|\theta, \mathbf{x})$
- (b) Maximize this function.

The EM Algorithm Censored Data Example

▶ The complete-data likelihood is

$$L^{c}(\theta|\mathbf{y},\mathbf{z}) \propto \prod_{i=1}^{m} \exp\{-(y_{i}-\theta)^{2}/2\} \prod_{i=m+1}^{n} \exp\{-(z_{i}-\theta)^{2}/2\},\$$

 \blacktriangleright With expected complete-data log-likelihood

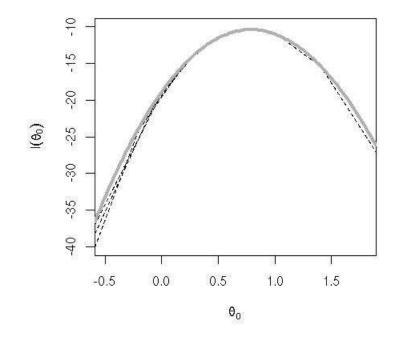
$$Q(\theta|\theta_0, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^m (y_i - \theta)^2 - \frac{1}{2} \sum_{i=m+1}^n \mathbb{E}_{\theta_0}[(Z_i - \theta)^2],$$

 \triangleright the Z_i are distributed from a normal $\mathcal{N}(\theta, 1)$ distribution truncated at a.

► M-step (differentiating $Q(\theta|\theta_0, \mathbf{y})$ in θ and setting it equal to 0 gives $\hat{\theta} = \frac{m\bar{y} + (n-m)\mathbb{E}_{\theta'}[Z_1]}{n}.$

 \triangleright With $\mathbb{E}_{\theta}[Z_1] = \theta + \frac{\varphi(a-\theta)}{1-\Phi(a-\theta)},$

The EM Algorithm Censored Data MLEs



► EM sequence $\hat{\theta}^{(j+1)} = \frac{m}{n}\bar{y} + \frac{n-m}{n} \left[\hat{\theta}^{(j)} + \frac{\varphi(a-\hat{\theta}^{(j)})}{1-\Phi(a-\hat{\theta}^{(j)})} \right]$ ► Climbing the Likelihood

 \triangleright R code

The EM Algorithm Normal Mixture

▶ Normal Mixture Bimodal Likelihood

$$Q(\theta'|\theta, \mathbf{x}) = -\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[Z_i (x_i - \mu_1)^2 + (1 - Z_i) (x_i - \mu_2)^2 \big| \mathbf{x} \right].$$

Solving the M-step then provides the closed-form expressions

$$\mu_1' = \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i | \mathbf{x} \right]$$

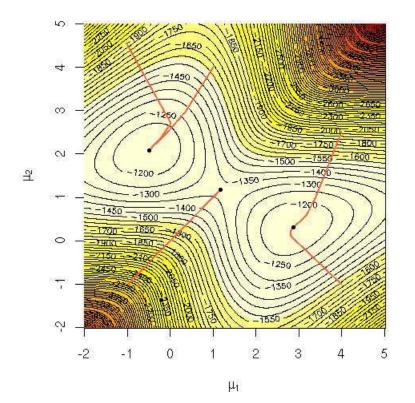
and

$$\mu_2' = \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1-Z_i) x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1-Z_i) | \mathbf{x} \right].$$

Since

$$\mathbb{E}_{\theta}\left[Z_{i}|\mathbf{x}\right] = \frac{\varphi(x_{i}-\mu_{1})}{\varphi(x_{i}-\mu_{1})+3\varphi(x_{i}-\mu_{2})},$$

The EM Algorithm Normal Mixture MLEs



► EM five times with various starting points
► Two out of five sequences → higher mode
► Others → lower mode

Monte Carlo EM Introduction

► If computation $Q(\theta|\theta_0, \mathbf{x})$ is difficult, can use Monte Carlo

► For $\mathbf{Z}_1, \dots, \mathbf{Z}_T \sim k(\mathbf{z} | \mathbf{x}, \hat{\theta}_{(m)})$, maximize $\hat{Q}(\theta | \theta_0, \mathbf{x}) = \frac{1}{T} \sum_{i=1}^T \log L^c(\theta | \mathbf{x}, \mathbf{z}_i)$

► Better: Use importance sampling

⊳ Since

$$\arg\max_{\theta} L(\theta|\mathbf{x}) = \arg\max_{\theta} \log \frac{g(\mathbf{x}|\theta)}{g(\mathbf{x}|\theta_{(0)})} = \arg\max_{\theta} \log \mathbb{E}_{\theta_{(0)}} \left[\frac{f(\mathbf{x}, \mathbf{z}|\theta)}{f(\mathbf{x}, \mathbf{z}|\theta_{(0)})} \middle| \mathbf{x} \right],$$

 \triangleright Use the approximation to the log-likelihood

$$\log L(\theta | \mathbf{x}) \approx \frac{1}{T} \sum_{i=1}^{T} \frac{L^{c}(\theta | \mathbf{x}, \mathbf{z}_{i})}{L^{c}(\theta_{(0)} | \mathbf{x}, \mathbf{z}_{i})},$$

Monte Carlo EM Genetics Data

Example: Genetic linkage.

 \blacktriangleright A classic example of the EM algorithm

▶ Observations (x_1, x_2, x_3, x_4) are gathered from the multinomial distribution

$$\mathcal{M}\left(n;\frac{1}{2}+\frac{\theta}{4},\frac{1}{4}(1-\theta),\frac{1}{4}(1-\theta),\frac{\theta}{4}\right).$$

• Estimation is easier if the x_1 cell is split into two cells

 \triangleright We create the augmented model

$$(z_1, z_2, x_2, x_3, x_4) \sim \mathcal{M}\left(n; \frac{1}{2}, \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right)$$

with $x_1 = z_1 + z_2$.

▷ Complete-data likelihood: $\theta^{z_2+x_4}(1-\theta)^{x_2+x_3}$ ▷ Observed-data likelihood: $(2+\theta)^{x_1}\theta^{x_4}(1-\theta)^{x_2+x_3}$

Monte Carlo EM Genetics Linkage Calculations

► The expected complete log-likelihood function is

$$\mathbb{E}_{\theta_0}[(Z_2 + x_4)\log\theta + (x_2 + x_3)\log(1 - \theta)] = \left(\frac{\theta_0}{2 + \theta_0}x_1 + x_4\right)\log\theta + (x_2 + x_3)\log(1 - \theta),$$

 \triangleright which can easily be maximized in θ , leading to the EM step

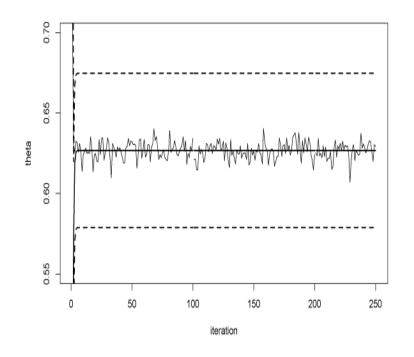
$$\hat{\theta}_1 = \left\{ \frac{\theta_0 x_1}{2 + \theta_0} \right\} \left/ \left\{ \frac{\theta_0 x_1}{2 + \theta_0} + x_2 + x_3 + x_4 \right\} \right.$$

- ► Monte Carlo EM: Replace the expectation with $\triangleright \overline{z}_m = \frac{1}{m} \sum_{i=1}^m z_i, \ z_i \sim \mathcal{B}(x_1, \theta_0/(2 + \theta_0))$
- ► The MCEM step would then be

$$\widehat{\widehat{\theta}_1} = \frac{\overline{z}_m}{\overline{z}_m + x_2 + x_3 + x_4},$$

which converges to $\hat{\theta}_1$ as m grows to infinity.

Monte Carlo EM Genetics Linkage MLEs



Note variation in MCEM sequence
Can control with ↑ simulations
R code

Monte Carlo EM Random effect logit model

Example: Random effect logit model

 \blacktriangleright Random effect logit model,

 $> y_{ij}$ is distributed conditionally on one covariate x_{ij} as a logit model

$$P(y_{ij} = 1 | x_{ij}, u_i, \beta) = \frac{\exp\{\beta x_{ij} + u_i\}}{1 + \exp\{\beta x_{ij} + u_i\}},$$

 $\triangleright u_i \sim \mathcal{N}(0, \sigma^2)$ is an unobserved random effect.

 $\triangleright (U_1, \ldots, U_n)$ therefore corresponds to the missing data **Z**

Monte Carlo EM Random effect logit model likelihood

► For the complete data likelihood with $\theta = (\beta, \sigma)$,

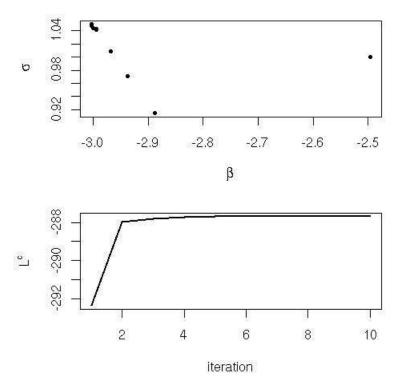
$$Q(\theta'|\theta, \mathbf{x}, \mathbf{y}) = \sum_{i,j} y_{ij} \mathbb{E}[\beta' x_{ij} + U_i|\beta, \sigma, \mathbf{x}, \mathbf{y}] - \sum_{i,j} \mathbb{E}[\log 1 + \exp\{\beta' x_{ij} + U_i\}|\beta, \sigma, \mathbf{x}, \mathbf{y}] - \sum_i \mathbb{E}[U_i^2|\beta, \sigma, \mathbf{x}, \mathbf{y}]/2\sigma'^2 - n\log\sigma',$$

 \triangleright it is impossible to compute the expectations in U_i .

- ▶ Were those available, the M-step would be difficult but feasible
- ▶ MCEM: Simulate the U_i 's conditional on $\beta, \sigma, \mathbf{x}, \mathbf{y}$ from

$$\pi(u_i|\beta,\sigma,\mathbf{x},\mathbf{y}) \propto \frac{\exp\left\{\sum_j y_{ij}u_i - u_i^2/2\sigma^2\right\}}{\prod_j \left[1 + \exp\left\{\beta x_{ij} + u_i\right\}\right]}$$

Monte Carlo EM Random effect logit MLEs



- ► Top: Sequence of β 's from the MCEM algorithm
- Bottom: Sequence of completed likelihoods

► MCEM sequence

 Increases the number of Monte Carlo steps at each iteration

► MCEM algorithm

 \triangleright Does not have EM monotonicity property

Chapter 6: Metropolis–Hastings Algorithms

"How absurdly simple!", I cried. "Quite so!", said he, a little nettled. "Every problem becomes very childish when once it is explained to you."

Arthur Conan Doyle

The Adventure of the Dancing Men

This Chapter

- ► The first of a of two on simulation methods based on *Markov chains*
- The Metropolis–Hastings algorithm is one of the most general MCMC algorithms
 And one of the simplest.
- ► There is a quick refresher on Markov chains, just the basics.
- ▶ We focus on the most common versions of the Metropolis–Hastings algorithm.
- ► We also look at calibration of the algorithm via its acceptance rate

Metropolis–Hastings Algorithms Introduction

- We now make a fundamental shift in the choice of our simulation strategy.
 Up to now we have typically generated *iid* variables
 The Metropolis-Hastings algorithm generates *correlated* variables
 From a Markov chain
- The use of Markov chains broadens our scope of applications
 The requirements on the target f are quite minimal
 - Efficient decompositions of high-dimensional problems
 Into a sequence of smaller problems.
- ► This has been part of a Paradigm Shift in Statistics

Metropolis–Hastings Algorithms A Peek at Markov Chain Theory

- ► A minimalist refresher on Markov chains
- ► Basically to define terms

 \blacktriangleright See Robert and Casella (2004, Chapter 6) for more of the story

► A Markov chain $\{X^{(t)}\}$ is a sequence of dependent random variables $X^{(0)}, X^{(1)}, X^{(2)}, \dots, X^{(t)}, \dots$

where the probability distribution of $X^{(t)}$ depends only on $X^{(t-1)}$.

► The conditional distribution of $X^{(t)}|X^{(t-1)}$ is a *transition kernel* K, $X^{(t+1)} | X^{(0)}, X^{(1)}, X^{(2)}, \dots, X^{(t)} \sim K(X^{(t)}, X^{(t+1)}).$

Markov Chains Basics

 \blacktriangleright For example, a simple *random walk* Markov chain satisfies

$$X^{(t+1)} = X^{(t)} + \epsilon_t, \qquad \epsilon_t \sim \mathcal{N}(0, 1),$$

▷ The Markov kernel $K(X^{(t)}, X^{(t+1)})$ corresponds to a $\mathcal{N}(X^{(t)}, 1)$ density.

- Markov chain Monte Carlo (MCMC) Markov chains typically have a very strong stability property.
- ► They have a a *stationary probability distribution*

 \triangleright A *probability distribution* f such that if $X^{(t)} \sim f$, then $X^{(t+1)} \sim f$, so we have the equation

$$\int_{\mathcal{X}} K(x, y) f(x) \mathrm{d}x = f(y).$$

Markov Chains Properties

- MCMC Markov chains are also *irreducible*, or else they are useless
 The kernel K allows for free moves all over the state-space
 For any X⁽⁰⁾, the sequence {X^(t)} has a positive probability of eventually reaching any region of the state-space
- MCMC Markov chains are also *recurrent*, or else they are useless
 They will return to any arbitrary nonnegligible set an infinite number of times

Markov Chains AR(1) Process

 \blacktriangleright AR(1) models provide a simple illustration of continuous Markov chains

► Here

$$X_n = \theta X_{n-1} + \varepsilon_n , \qquad \theta \in \Re,$$

with $\varepsilon_n \sim N(0, \sigma^2)$

- ▶ If the ε_n 's are independent
 - $\triangleright X_n$ is independent from X_{n-2}, X_{n-3}, \ldots conditionally on X_{n-1} .
- ► The stationary distribution $\phi(x|\mu, \tau^2)$ is

$$\mathcal{N}\left(0, \frac{\sigma^2}{1-\theta^2}\right),$$

 \triangleright which requires $|\theta| < 1$.

Markov Chains Statistical Language

We associate the probabilistic language of Markov chains
 With the statistical language of data analysis.

Statistics		Markov Chain
marginal distribution	\Leftrightarrow	invariant distribution
proper marginals	\Leftrightarrow	positive recurrent

- If the marginals are not proper, or if they do not exist
 - \triangleright Then the chain is not positive recurrent.
 - \triangleright It is either null recurrent or transient, and both are bad.

Markov Chains Pictures of the AR(1) Process

 \blacktriangleright AR(1) Recurrent and Transient -Note the Scale

20

10

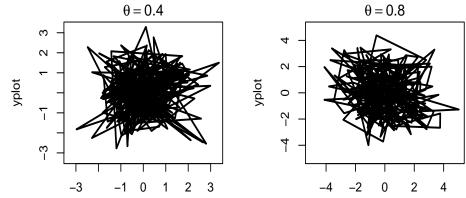
0

-20

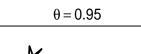
-20

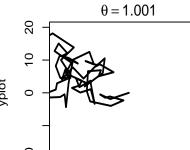
-10

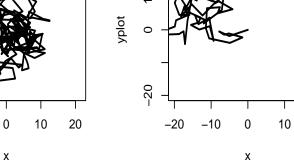
yplot



20







 \blacktriangleright R code

Markov Chains Ergodicity

 \blacktriangleright In recurrent chains, the stationary distribution is also a *limiting distribution*

▶ If f is the limiting distribution

$$X^{(t)} \to X \sim f$$
, for any initial value $X^{(0)}$

 \triangleright This property is also called *ergodicity*

 \blacktriangleright For integrable functions h, the standard average

$$\frac{1}{T}\sum_{t=1}^{T}h(X^{(t)})\longrightarrow \mathbb{E}_f[h(X)],$$

 \triangleright The Law of Large Numbers

 \triangleright Sometimes called the *Ergodic Theorem*

Markov Chains In Bayesian Analysis

- ► There is one case where convergence never occurs
- ▶ When, in a Bayesian analysis, the posterior distribution is not proper
- The use of improper priors f(x) is quite common in complex models,
 Sometimes the posterior is proper, and MCMC works (recurrent)
 Sometimes the posterior is improper, and MCMC fails (transient)
- These transient Markov chains may present all the outer signs of stability
 More later

Basic Metropolis–Hastings algorithms Introduction

▶ The working principle of Markov chain Monte Carlo methods is straightforward

- \blacktriangleright Given a target density f
 - \triangleright We build a Markov kernel K with stationary distribution f

 \triangleright Then generate a Markov chain $(X^{(t)}) \to X \sim f$

 \triangleright Integrals can be approximated by to the Ergodic Theorem

The Metropolis–Hastings algorithm is an example of those methods.
 Given the target density f, we simulate from a candidate q(y|x)
 Only need that the ratio f(y)/q(y|x) is known up to a constant

Basic Metropolis–Hastings algorithms A First Metropolis–Hastings Algorithm

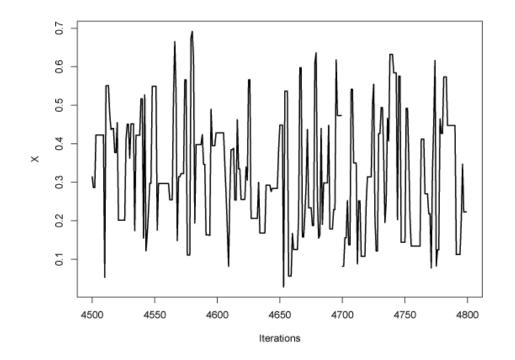
Metropolis-Hastings Given $x^{(t)}$, 1. Generate $Y_t \sim q(y|x^{(t)})$. 2. Take $X^{(t+1)} = \begin{cases} Y_t & \text{with probability} \quad \rho(x^{(t)}, Y_t), \\ x^{(t)} & \text{with probability} \quad 1 - \rho(x^{(t)}, Y_t), \end{cases}$

where

$$\rho(x,y) = \min\left\{\frac{f(y)}{f(x)} \, \frac{q(x|y)}{q(y|x)} \,, 1\right\}$$

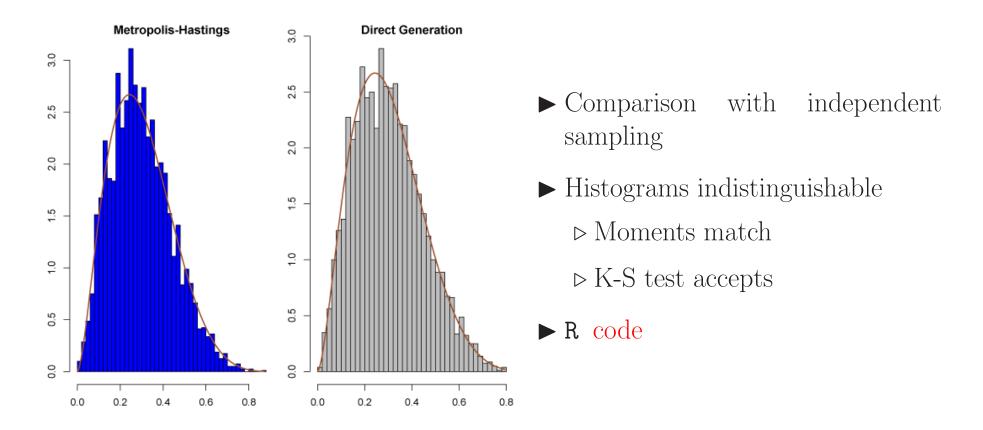
- $\blacktriangleright q$ is called the instrumental or proposal or candidate distribution
- ▶ $\rho(x, y)$ is the Metropolis–Hastings acceptance probability
- Looks like Simulated Annealing but constant temperature
 Metropolis-Hastings explores rather than maximizes

Basic Metropolis–Hastings algorithms Generating Beta Random Variables



- ► Target density f is the $\mathcal{B}e(2.7, 6.3)$
- ► Candidate q is uniform
- ► Notice the repeats
- ▶ Repeats must be kept!

Basic Metropolis–Hastings algorithms Comparing Beta densities



Basic Metropolis–Hastings algorithms A Caution

- The MCMC and exact sampling outcomes look identical, but
 Markov chain Monte Carlo sample has correlation, the iid sample does not
 This means that the quality of the sample is necessarily degraded
 We need more simulations to achieve the same precision
- ▶ This is formalized by the *effective sample size* for Markov chains later

Basic Metropolis–Hastings algorithms Some Comments

► In the symmetric case
$$q(x|y) = q(y|x)$$
,

$$\rho(x_t, y_t) = \min\left\{\frac{f(y_t)}{f(x_t)}, 1\right\}.$$

 \triangleright The acceptance probability is independent of q

► Metropolis–Hastings always accept values of y_t such that $f(y_t)/q(y_t|x^{(t)}) > f(x^{(t)})/q(x^{(t)}|y_t)$

► Values y_t that decrease the ratio may also be accepted

► Metropolis–Hastings only depends on the ratios

 $f(y_t)/f(x^{(t)})$ and $q(x^{(t)}|y_t)/q(y_t|x^{(t)})$.

 \triangleright Independent of normalizing constants

Basic Metropolis–Hastings algorithms The Independent Metropolis–Hastings algorithm

► The Metropolis–Hastings algorithm allows q(y|x)▷ We can use q(y|x) = g(y), a special case

Independent Metropolis-Hastings

Given $x^{(t)}$

- 1. Generate $Y_t \sim g(y)$.
- 2. Take

$$X^{(t+1)} = \begin{cases} Y_t & \text{ with probability } \min\left\{\frac{f(Y_t) \; g(x^{(t)})}{f(x^{(t)}) \; g(Y_t)} \;, 1\right\} \\ x^{(t)} & \text{ otherwise.} \end{cases}$$

Basic Metropolis–Hastings algorithms Properties of the Independent Metropolis–Hastings algorithm

- ► Straightforward generalization of the Accept–Reject method
- ► Candidates are independent, but still a Markov chain

The Accept-Reject sample is iid, but the Metropolis-Hastings sample is not
The Accept-Reject acceptance step requires calculating M
Metropolis-Hastings is Accept-Reject "for the lazy person"

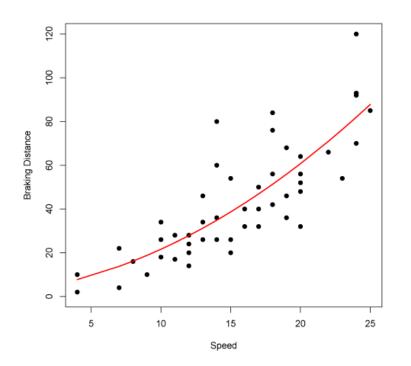
Basic Metropolis–Hastings algorithms Application of the Independent Metropolis–Hastings algorithm

We now look at a somewhat more realistic statistical example
 Get preliminary parameter estimates from a model
 Use an independent proposal with those parameter estimates.

- ► For example, to simulate from a posterior distribution $\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$ ▷ Take a normal or a t distribution centered at the MLE $\hat{\theta}$
 - ▷ Covariance matrix equal to the inverse of Fisher's information matrix.

Independent Metropolis–Hastings algorithm Braking Data

▶ The cars dataset relates braking distance (y) to speed (x) in a sample of cars.



► Model

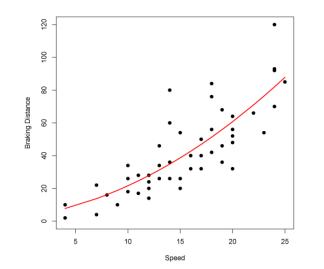
$$y_{ij} = a + bx_i + cx_i^2 + \varepsilon_{ij}$$

 \blacktriangleright The likelihood function is

$$\left(\frac{1}{\sigma^2}\right)^{N/2} \exp\left\{\frac{-1}{2\sigma^2}\sum_{ij}(y_{ij}-a-bx_i-cx_i^2)^2\right\},\$$

where $N = \sum_i n_i$

Independent Metropolis–Hastings algorithm Braking Data Least Squares Fit



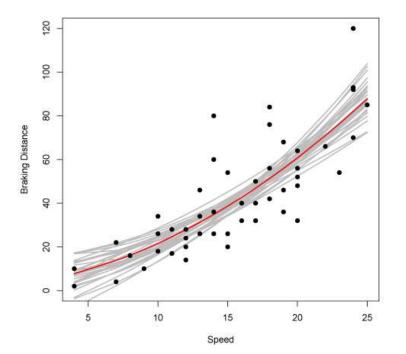
► Candidate from Least Squares

R command: $x2=x^2$; summary(lm(y^x+x2))

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.63328	14.80693	0.178	0.860
х	0.88770	2.03282	0.437	0.664
x2	0.10068	0.06592	1.527	0.133
Residual stand	lard error:	15.17 on 47	degrees	of freedom

Independent Metropolis–Hastings algorithm Braking Data Metropolis Algorithm

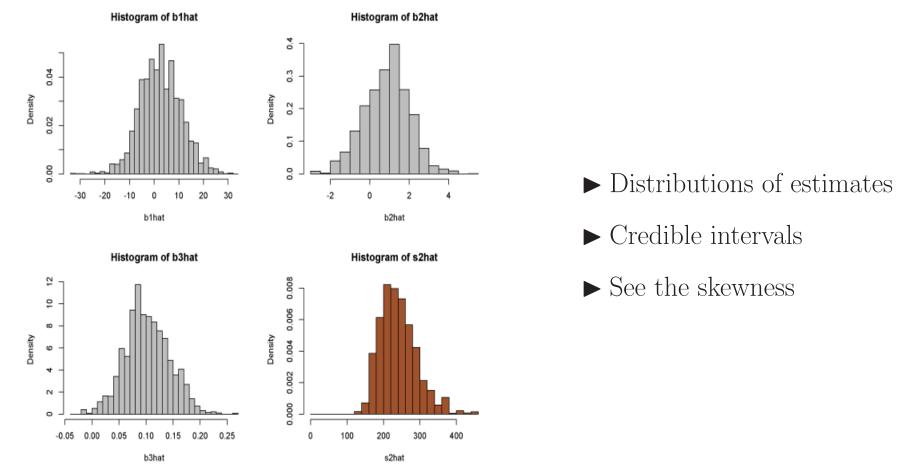


- ► Candidate: normal centered at the MLEs,
 - $a \sim \mathcal{N}(2.63, (14.8)^2),$ $b \sim \mathcal{N}(.887, (2.03)^2),$ $c \sim \mathcal{N}(.100, (0.065)^2),$

► Inverted gamma $\sigma^{-2} \sim \mathcal{G}(n/2, (n-3)(15.17)^2)$

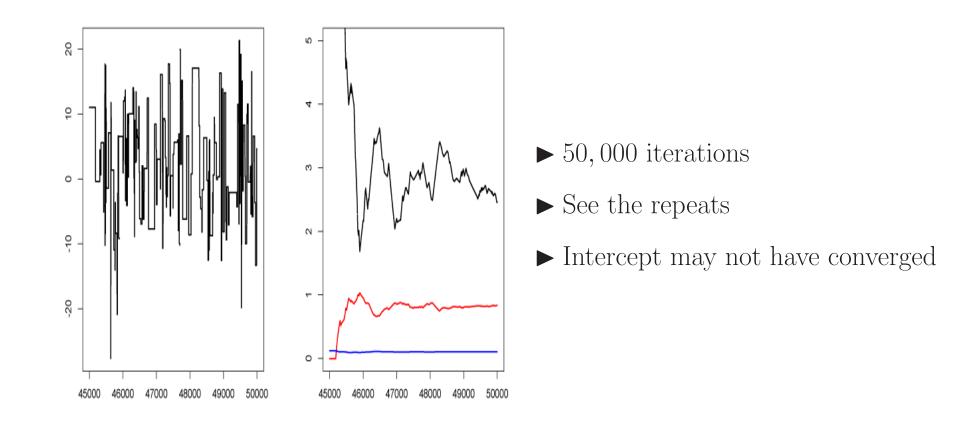
▶ See the variability of the curves associated with the simulation.

Independent Metropolis–Hastings algorithm Braking Data Coefficients



▶ Note that these are marginal distributions

Independent Metropolis–Hastings algorithm Braking Data Assessment



Random Walk Metropolis–Hastings Introduction

Implementation of independent Metropolis–Hastings can sometimes be difficult
 Construction of the proposal may be complicated

 \triangleright They ignore local information

 \blacktriangleright An alternative is to gather information stepwise

▷ Exploring the neighborhood of the current value of the chain

Can take into account the value previously simulated to generate the next value
 Gives a more local exploration of the neighborhood of the current value

Random Walk Metropolis–Hastings Some Details

▶ The implementation of this idea is to simulate Y_t according to

$$Y_t = X^{(t)} + \varepsilon_t,$$

 $\triangleright \varepsilon_t$ is a random perturbation

 \triangleright with distribution g, independent of $X^{(t)}$

 \triangleright Uniform, normal, etc...

▶ The proposal density q(y|x) is now of the form g(y - x)

▷ Typically, g is symmetric around zero, satisfying g(-t) = g(t)▷ The Markov chain associated with q is a random walk

Random Walk Metropolis–Hastings The Algorithm

Given $x^{(t)}$,

1. Generate $Y_t \sim g(y - x^{(t)})$.

2. Take

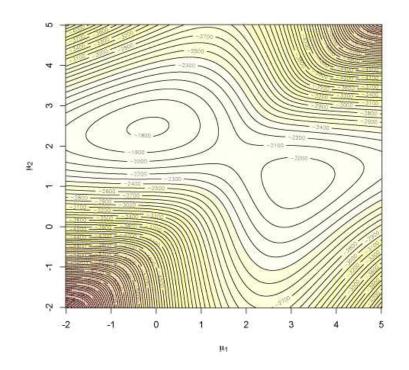
$$X^{(t+1)} = \begin{cases} Y_t & \text{ with probability } \min\left\{1, \frac{f(Y_t)}{f(x^{(t)})}\right\},\\ x^{(t)} & \text{ otherwise.} \end{cases}$$

▶ The g chain is a random walk

▷ Due to the Metropolis–Hastings acceptance step, the $\{X^{(t)}\}$ chain is not

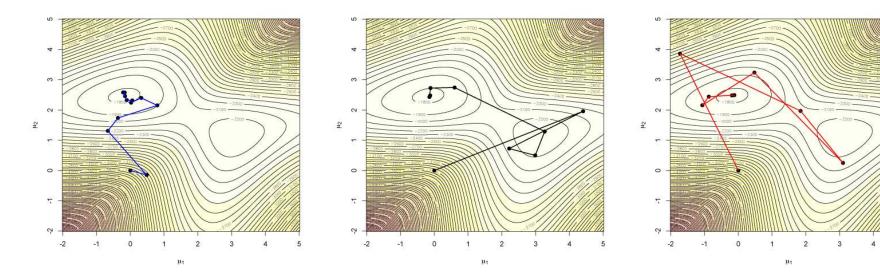
- The acceptance probability does not depend on g
 But different gs result in different ranges and different acceptance rates
- ▶ Calibrating the scale of the random walk is for good exploration

Random Walk Metropolis–Hastings Normal Mixtures



- ► Explore likelihood with random walk
- Similar to Simulated Annealing
 But constant temperature (scale)
- ▶ Multimodal ⇒ Scale is important
 ▷ Too small ⇒ get stuck
 - $\triangleright \text{Too big} \Rightarrow \text{miss modes}$

Random Walk Metropolis–Hastings Normal Mixtures - Different Scales



- ▶ Left \rightarrow Right: Scale=1, Scale=2, Scale=3
 - \triangleright Scale=1: Too small, gets stuck
 - \triangleright Scale=2: Just right, finds both modes
 - \triangleright Scale=3: Too big, misses mode

► R code

Random Walk Metropolis–Hastings Model Selection or Model Choice

- ▶ Random walk Metropolis–Hastings algorithms also apply to discrete targets.
- \blacktriangleright As an illustration, we consider a regression
 - \triangleright The swiss dataset in R
 - $\triangleright\,y{=}$ logarithm of the fertility in 47 districts of Switzerland \thickapprox 1888
 - \triangleright The covariate matrix X involves five explanatory variables

```
> names(swiss)
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"
```

Compare the 2⁵ = 32 models corresponding to all possible subsets of covariates.
 If we include squares and twoway interactions
 2²⁰ = 1048576 models, same R code

Random Walk Metropolis–Hastings Model Selection using Marginals

 \blacktriangleright Given an ordinary linear regression with n observations,

$$\mathbf{y}|\beta, \sigma^2, X \sim \mathcal{N}_n(X\beta, \sigma^2 I_n), X \text{ is an } (n, p) \text{ matrix}$$

▶ The likelihood is

$$\ell\left(\beta,\sigma^{2}|\mathbf{y},X\right) = \left(2\pi\sigma^{2}\right)^{-n/2} \exp\left[-\frac{1}{2\sigma^{2}}(\mathbf{y}-X\beta)^{\mathrm{T}}(\mathbf{y}-X\beta)\right]$$

▶ Using Zellner's *g*-prior, with the constant g = n

$$\beta | \sigma^2, X \sim \mathcal{N}_{k+1}(\tilde{\beta}, n\sigma^2 (X^{\mathrm{T}}X)^{-1}) \text{ and } \pi(\sigma^2 | X) \propto \sigma^{-2}$$

 \triangleright The marginal distribution of **y** is a multivariate t distribution,

$$m(\mathbf{y}|X) \propto \left[\mathbf{y}'\left(I - \frac{n}{n+1}X(X'X)^{-1}X'\right)\mathbf{y} - \frac{1}{n+1}\tilde{\beta}'X'X\tilde{\beta}\right]^{-n/2}$$

▶ Find the model with maximum marginal probability

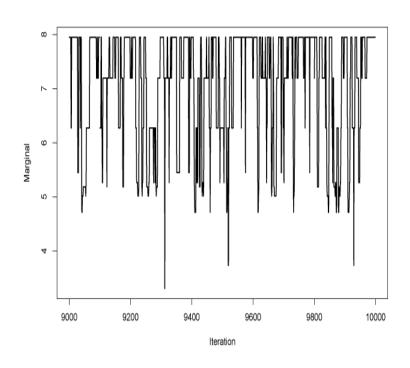
Random Walk Metropolis–Hastings Random Walk on Model Space

► To go from $\gamma^{(t)} \to \gamma^{(t+1)}$ ► First get a candidate γ^* $\gamma^{(t)} = \begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix} \to \gamma^* = \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}$ ► Choose a component of $\gamma^{(t)}$ at random, and flip $1 \to 0$ or $0 \to 1$ ► Accept the proposed model γ^* with probability $\begin{pmatrix} m(\mathbf{x}|X,\gamma^*) \\ \gamma^* \end{pmatrix}$

$$\min\left\{\frac{m(\mathbf{y}|X,\gamma^{\star})}{m(\mathbf{y}|X,\gamma^{(t)})},1\right\}$$

- ► The candidate is symmetric
- ▶ Note: This is not the Metropolis–Hastings algorithm in the book it is simpler

Random Walk Metropolis–Hastings Results from the Random Walk on Model Space



- \blacktriangleright Last iterations of the MH search
- \blacktriangleright The chain goes down often

► Top Five Models

Marg.			γ		
7.95	1	0	1	1	1
7.19	0	0	1	1	1
6.27	1	1	1	1	1
5.44	1	0	1	1	0
5.45	1	0	1	1	0

 Best model excludes the variable Examination

 $\rhd \gamma = (1,0,1,1,1)$

▶ Inclusion rates:
Agri Exam Educ Cath Inf.Mort
0.661 0.194 1.000 0.904 0.949

Metropolis–Hastings Algorithms Acceptance Rates

- \blacktriangleright Infinite number of choices for the candidate q in a Metropolis–Hastings algorithm
- ► Is there and "optimal" choice?
 - \triangleright The choice of q = f, the target distribution? Not practical.
- ► A criterion for comparison is the acceptance rate
 - \triangleright It can be easily computed with the empirical frequency of acceptance
- ▶ In contrast to the Accept-Reject algorithm
 - \triangleright Maximizing the acceptance rate will is not necessarily best
 - \triangleright Especially for random walks
- ► Also look at autocovariance

Acceptance Rates Normals from Double Exponentials

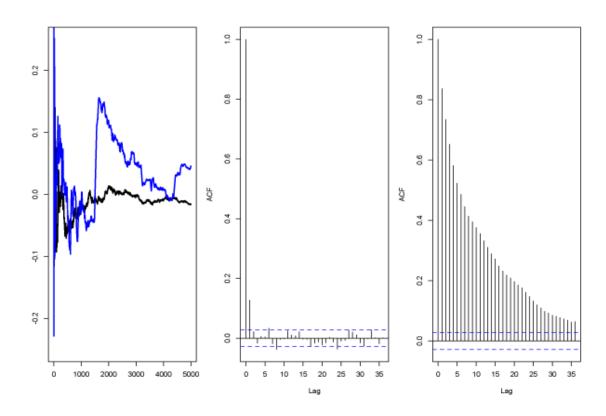
\blacktriangleright In the Accept–Reject algorithm

▷ To generate a $\mathcal{N}(0, 1)$ from a double-exponential $\mathcal{L}(\alpha)$ ▷ The choice $\alpha = 1$ optimizes the acceptance rate

 \blacktriangleright In an independent Metropolis–Hastings algorithm \triangleright We can use the double-exponential as an independent candidate q

► Compare the behavior of Metropolis–Hastings algorithm ▷ When using the $\mathcal{L}(1)$ candidate or the $\mathcal{L}(3)$ candidate

Acceptance Rates Normals from Double Exponentials Comparison



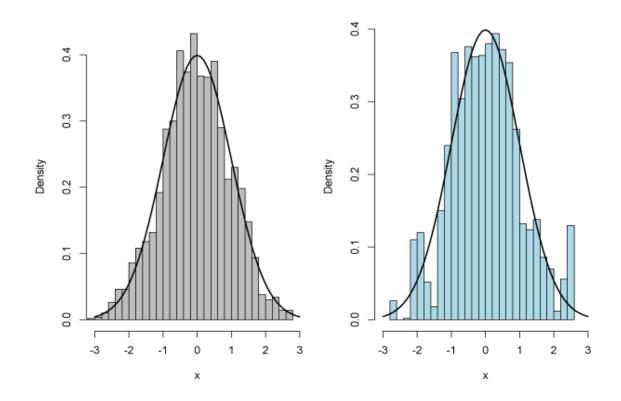
 $\blacktriangleright \mathcal{L}(1)$ (black)

 \triangleright Acceptance Rate = 0.83

 $\blacktriangleright \mathcal{L}(3)$ (blue)

 \triangleright Acceptance Rate = 0.47

- ► $\mathcal{L}(3)$ has terrible acf (right)
- ▶ $\mathcal{L}(3)$ has not converged



- ▶ $\mathcal{L}(1)$ has converged (gray)
- ▶ $\mathcal{L}(3)$ not yet there (blue)
- ► R code

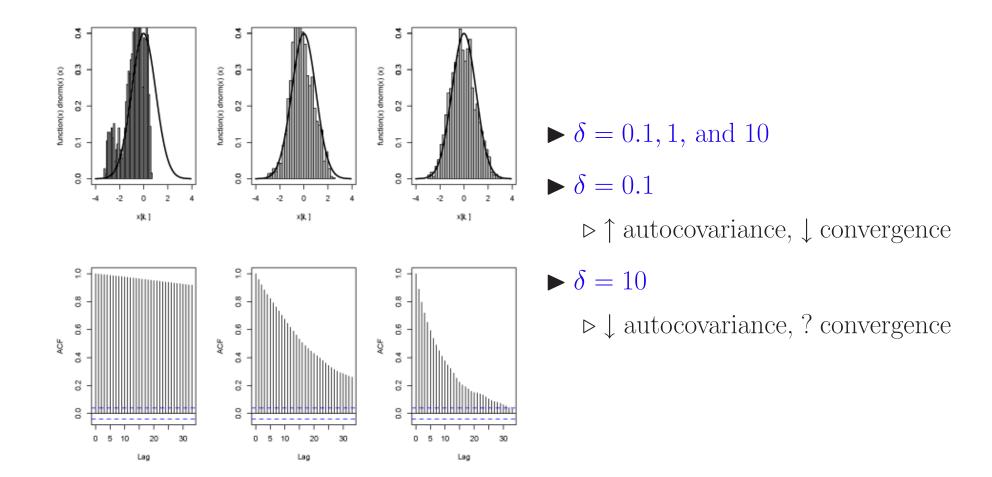
Acceptance Rates Random Walk Metropolis–Hastings

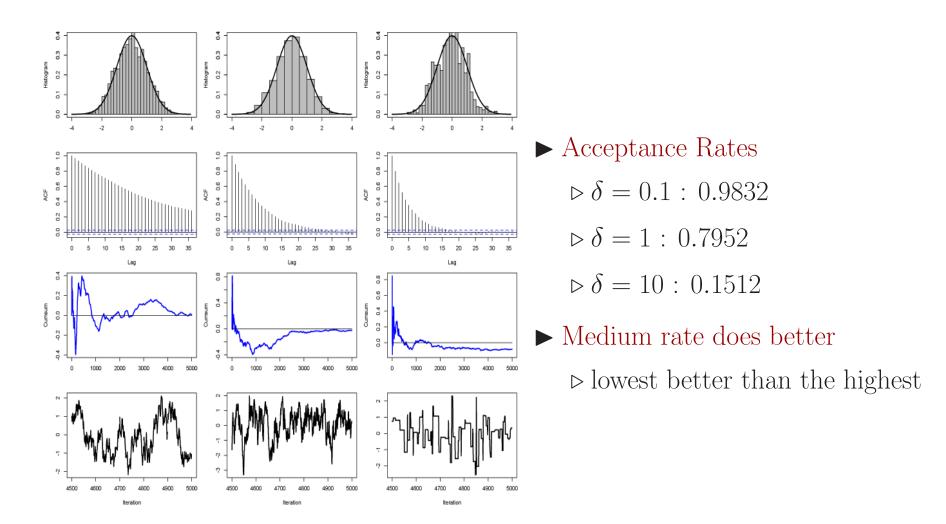
- ► Independent Metropolis–Hastings algorithms
 - Can be optimized or compared through their acceptance rate
 This reduces the number of replicas in the chain
 And reduces the correlation level in the chain
- Not true for other types of Metropolis–Hastings algorithms
 In a random walk, higher acceptance is not always better.
- ► The historical example of Hastings generates a $\mathcal{N}(0, 1)$ from $\triangleright Y_t = X_{t-1} + \varepsilon_t$

$$\triangleright \rho(x^{(t)}, y_t) = \min\{\exp\{(x^{(t)2} - y_t^2)/2\}, 1\}, \quad \varepsilon_t \sim \mathcal{U}[-\delta, \delta]$$

 $\triangleright~\delta$ controls the acceptance rate

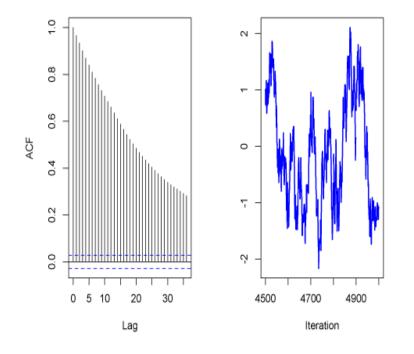
Acceptance Rates Random Walk Metropolis–Hastings Example





Random Walk Acceptance Rates Comments

► Random walk Metropolis–Hastings needs careful calibration of acceptance rates



► High acceptance rate

 \triangleright May not have satisfactory behavior

 \triangleright The chain may be moving too slowly on the surface of f

 \blacktriangleright This is not always the case.

 $\triangleright f$ nearly flat \Rightarrow high acceptance OK

 \blacktriangleright But, unless f is completely flat, parts of the domain may be missed

Random Walk Acceptance Rates More Comments

 \blacktriangleright In contrast, if the average acceptance rate is low

 \triangleright Successive values of $f(y_t)$ are often are small compared to $f(x^{(t)})$

► Low acceptance \Rightarrow

 \triangleright The chain may not see all of f

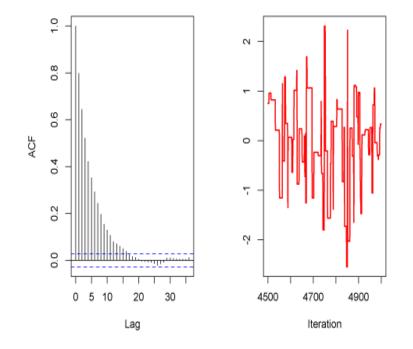
 $\triangleright \text{May miss an important but} \\ \text{isolated mode of } f$

 Nonetheless, low acceptance is less of an issue

► Golden acceptance rate:

 $\triangleright 1/2$ for the models of dimension 1 or 2

 $\triangleright 1/4$ in higher dimensions



Chapter 7: Gibbs Samplers

"Come, Watson, come!" he cried. "The game is afoot." Arthur Conan Doyle The Adventure of the Abbey Grange

This Chapter

- ► We cover both the two-stage and the multistage Gibbs samplers
- ► The two-stage sampler has superior convergence properties
- ► The multistage Gibbs sampler is the workhorse of the MCMC world
- ► We deal with missing data and models with latent variables
- ► And, of course, hierarchical models

Gibbs Samplers Introduction

- ▶ Gibbs samplers gather most of their calibration from the target density
- They break complex problems (high dimensional) into a series of easier problems
 May be impossible to build random walk Metropolis–Hastings algorithm
- ► The sequence of simple problems may take a long time to converge
- ▶ But Gibbs sampling is an interesting and useful algorithm.
- Gibbs sampling is from the landmark paper by Geman and Geman (1984)
 The Gibbs sampler is a special case of Metropolis–Hastings
- \blacktriangleright Gelfand and Smith (1990) sparked new interest
 - \triangleright In Bayesian methods and statistical computing
 - \triangleright They solved problems that were previously unsolvable

The Two-Stage Gibbs Sampler Introduction

- ▶ Creates a Markov chain from a joint distribution
- ▶ If two random variables X and Y have joint density f(x, y)
- ▶ With corresponding conditional densities $f_{Y|X}$ and $f_{X|Y}$
- ► Generates a Markov chain (X_t, Y_t) according to the following steps

Two-stage Gibbs sampler Take $X_0 = x_0$ For t = 1, 2, ..., generate 1. $Y_t \sim f_{Y|X}(\cdot|x_{t-1});$ 2. $X_t \sim f_{X|Y}(\cdot|y_t)$.

The Two-Stage Gibbs Sampler Convergence

- ► The algorithm straightforward if simulating from both conditionals is feasible
- ▶ The stationary distribution is f(x, y)
- Convergence of the Markov chain insured
 Unless the supports of the conditionals are not connected

Example: Normal bivariate Gibbs

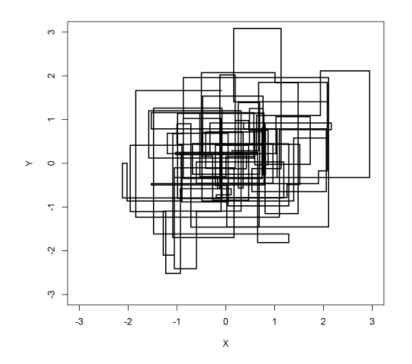
► Start with simple illustration, the bivariate normal model:

$$(X,Y) \sim \mathcal{N}_2\left(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right),$$

▶ The the Gibbs sampler is Given x_t , generate

$$Y_{t+1} \mid x_t \sim \mathcal{N}(\rho x_t, \ 1 - \rho^2), \\ X_{t+1} \mid y_{t+1} \sim \mathcal{N}(\rho y_{t+1}, \ 1 - \rho^2).$$

The Two-Stage Gibbs Sampler Bivariate Normal Path



► Iterations $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$

- ▶ Parallel to the axes
- ► Correlation affects mixing
- \triangleright R code

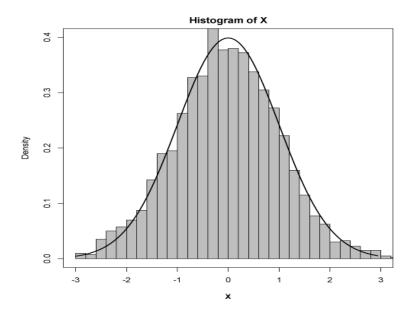
The Two-Stage Gibbs Sampler Bivariate Normal Convergence

► The subchain $(X_t)_t$ satisfies $X_{t+1}|X_t = x_t \sim \mathcal{N}(\rho^2 x_t, 1 - \rho^4),$

 \blacktriangleright A recursion shows that

$$X_t | X_0 = x_0 \sim \mathcal{N}(\rho^{2t} x_0, \ 1 - \rho^{4t}) \to \mathcal{N}(0, 1),$$

▶ We have converged to the *joint* distribution and both *marginal distributions*.



- ► Histogram of Marginal
- \blacktriangleright 2000 Iterations

The Two-Stage Gibbs Sampler A First Hierarchical Model

► Gibbs sampling became popular

▷ Since it was the perfect computational complement to hierarchical models

► A hierarchical model specifies a joint distribution

 \triangleright As successive layers of conditional distributions

Example: Generating beta-binomial random variables

► Consider the hierarchy

$$\begin{aligned} X|\theta \ \sim \ \mathcal{B}in(n,\theta) \\ \theta \ \sim \ \mathcal{B}e(a,b), \end{aligned}$$

▶ Which leads to the joint distribution

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}$$

The Two-Stage Gibbs Sampler Beta-Binomial Conditionals

► The joint distribution

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}$$

► Has full conditionals

 $\triangleright X | \theta \sim \mathcal{B}in(n, \theta)$ $\triangleright \theta | X \sim \mathcal{B}e(X + a, n - X + b)$

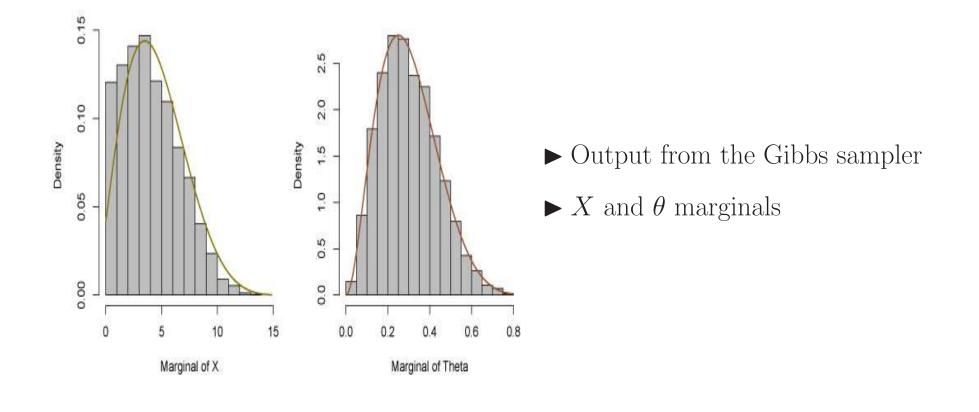
► This can be seen from

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}$$

The Two-Stage Gibbs Sampler Beta-Binomial Marginals

▶ The marginal distribution of X is the Beta-Binomial

$$m(x) = \int_0^1 \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1} d\theta$$



The Two-Stage Gibbs Sampler A First Normal Hierarchy

► A study on metabolism in 15-year-old females yielded the following data

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043, + 1089,1195,1384,1713)

▷ Their energy intake, measured in megajoules, over a 24 hour period.

► We model

$$\log(X) \sim \mathcal{N}(\theta, \sigma^2), \quad i = 1, \dots, n$$

 \triangleright And complete the hierarchy with

$$\begin{aligned} \theta &\sim \mathcal{N}(\theta_0, \tau^2), \\ \sigma^2 &\sim \mathcal{IG}(a, b), \end{aligned}$$

where $\mathcal{IG}(a, b)$ is the inverted gamma distribution.

The Two-Stage Gibbs Sampler θ Conditional

 \blacktriangleright The posterior distribution \propto joint distribution is

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \theta)^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\theta - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$

Here $x = \log(x)$)

 \triangleright And now we can get the full conditionals

$$\bullet \theta \text{ conditional}$$

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \theta)^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\theta - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$

$$\Rightarrow$$

$$\theta | \mathbf{x}, \sigma^2 \sim \mathcal{N}\left(\frac{\sigma^2}{\sigma^2 + n\tau^2} \theta_0 + \frac{n\tau^2}{\sigma^2 + n\tau^2} \bar{x}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}\right)$$

The Two-Stage Gibbs Sampler σ^2 Conditional

► Again from the joint distribution

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \theta)^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\theta - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$

$$\Rightarrow \qquad \sigma^2 | \mathbf{x}, \theta \sim \mathcal{IG} \left(\frac{n}{2} + a, \frac{1}{2} \sum_i (x_i - \theta)^2 + b \right),$$

$$\theta | \sigma^2 \sim \texttt{rnorm} \text{ and } (1/\sigma^2) | \theta \sim \texttt{rgamma}$$

The Multistage Gibbs Sampler Introduction

▶ There is a natural extension from the two-stage to the multistage Gibbs sampler

► For
$$p > 1$$
, write $\mathcal{X} = \mathbf{X} = (X_1, \ldots, X_p)$

 \triangleright suppose that we can simulate from the full conditional densities

$$X_i | x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p \sim f_i(x_i | x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p)$$

▶ The multistage Gibbs sampler has the following transition from $X^{(t)}$ to $X^{(t+1)}$:

The Multi-stage Gibbs Sampler
At iteration
$$t = 1, 2, ..., piven \mathbf{x}^{(t)} = (x_1^{(t)}, ..., x_p^{(t)})$$
, generate
1. $X_1^{(t+1)} \sim f_1(x_1 | x_2^{(t)}, ..., x_p^{(t)})$;
2. $X_2^{(t+1)} \sim f_2(x_2 | x_1^{(t+1)}, x_3^{(t)}, ..., x_p^{(t)})$;
:
p. $X_p^{(t+1)} \sim f_p(x_p | x_1^{(t+1)}, ..., x_{p-1}^{(t+1)})$.

The Multistage Gibbs Sampler A Multivariate Normal Example

Example: Normal multivariate Gibbs

- ▶ We previously saw a simple bivariate normal example
- ► Consider the multivariate normal density

$$(X_1, X_2, \ldots, X_p) \sim \mathcal{N}_p \left(0, (1-\rho)I + \rho J \right),$$

- $\triangleright I$ is the $p \times p$ identity matrix
- $\triangleright J$ is a $p \times p$ matrix of ones
- $\triangleright \operatorname{corr}(X_i, X_j) = \rho$ for every *i* and *j*
- ► The full conditionals are

$$X_i | x_{(-i)} \sim \mathcal{N}\left(\frac{(p-1)\rho}{1+(p-2)\rho}\bar{x}_{(-i)}, \frac{1+(p-2)\rho-(p-1)\rho^2}{1+(p-2)\rho}\right),$$

The Multistage Gibbs Sampler Use of the Multivariate Normal Gibbs sampler

▶ The Gibbs sampler that generates from these univariate normals

 \triangleright Can then be easily derived

 \triangleright But it is not needed for this problem

 \blacktriangleright It is, however, a short step to consider

▷ The setup where the components are restricted to a subset of \mathbb{R}^p . ▷ If this subset is a hypercube,

$$\mathfrak{H} = \prod_{i=1} (a_i, b_i), \quad i = 1, \dots, p$$

the corresponding conditionals are the normals above restricted to (a_i, b_i)

► These are easily simulated

The Multistage Gibbs Sampler A Hierarchical Model for the Energy Data

▶ The oneway model can be a hierarchical model.

► Let X_{ij} be the energy intake, i = 1, 2 (girl or boy), j = 1, n. $\log(X_{ij}) = \theta_i + \varepsilon_{ij}, \quad , N(0, \sigma^2)$

▶ We can complete this model with a hierarchical specification.

▶ There are different ways to parameterize this model. Here is one:

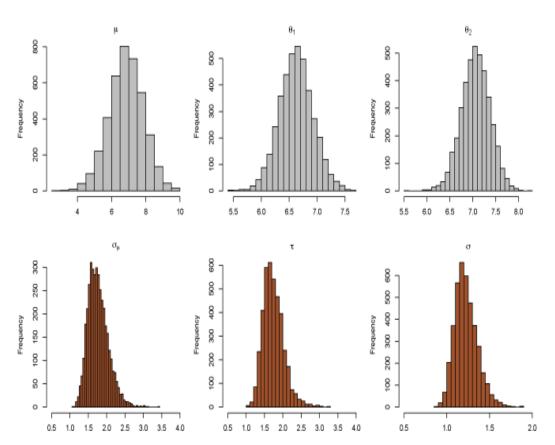
 $\log(X_{ij}) \sim \mathcal{N}(\theta_i, \sigma^2), \quad i = 1, \dots, k, \quad j = 1, \dots, n_i,$ $\theta_i \sim \mathcal{N}(\mu, \tau^2), \quad i = 1, \dots, k,$ $\mu \sim \mathcal{N}(\mu_0, \sigma_\mu^2),$ $\sigma^2 \sim \mathcal{IG}(a_1, b_1), \quad \tau^2 \sim \mathcal{IG}(a_2, b_2), \quad \sigma_\mu^2 \sim \mathcal{IG}(a_3, b_3).$

The Multistage Gibbs Sampler Full Conditionals for a Oneway Model

▶ Now, if we proceed as before we can derive the set of full conditionals

$$\begin{aligned} \theta_{i} &\sim \mathcal{N}\left(\frac{\sigma^{2}}{\sigma^{2}+n_{i}\tau^{2}}\mu + \frac{n_{i}\tau^{2}}{\sigma^{2}+n_{i}\tau^{2}}\bar{X}_{i}, \frac{\sigma^{2}\tau^{2}}{\sigma^{2}+n_{i}\tau^{2}}\right), \quad i = 1, \dots, k, \\ \mu &\sim \mathcal{N}\left(\frac{\tau^{2}}{\tau^{2}+k\sigma_{\mu}^{2}}\mu_{0} + \frac{k\sigma_{\mu}^{2}}{\tau^{2}+k\sigma_{\mu}^{2}}\bar{\theta}, \frac{\sigma_{\mu}^{2}\tau^{2}}{\tau^{2}+k\sigma_{\mu}^{2}}\right), \\ \sigma^{2} &\sim \mathcal{I}\mathcal{G}\left(n/2 + a_{1}, (1/2)\sum_{ij}(X_{ij} - \theta_{i})^{2} + b_{1}\right), \\ \tau^{2} &\sim \mathcal{I}\mathcal{G}\left(k/2 + a_{2}, (1/2)\sum_{i}(\theta_{i} - \mu)^{2} + b_{2}\right), \\ \sigma_{\mu}^{2} &\sim \mathcal{I}\mathcal{G}\left(1/2 + a_{3}, (1/2)(\mu - \mu_{0})^{2} + b_{3}\right), \end{aligned}$$

where $n = \sum_{i} n_i$ and $\bar{\theta} = \sum_{i} n_i \theta_i / n$.



The Multistage Gibbs Sampler Output From the Energy Data Analysis

► The top row:

 \triangleright Mean μ and θ_1 and θ_2 ,

For the girl's and boy's energy

► Bottom row:

 \triangleright Standard deviations.

► A variation is to give μ a flat prior, which is equivalent to setting $\sigma_{\mu}^2 = \infty$

► R code

Missing Data and Latent Variables Introduction

▶ Missing Data Models start with the relation

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \,\mathrm{d}z$$

▷ $g(x|\theta)$ is typically the sample density or likelihood ▷ f is arbitrary and can be chosen for convenience

 \blacktriangleright We implement a Gibbs sampler on f

► Set $y = (x, z) = (y_1, \ldots, y_p)$ and run the Gibbs sampler

$$Y_1|y_2, \dots, y_p \sim f(y_1|y_2, \dots, y_p),$$

$$Y_2|y_1, y_3, \dots, y_p \sim f(y_2|y_1, y_3, \dots, y_p),$$

$$\vdots$$

$$Y_p|y_1, \dots, y_{p-1} \sim f(y_p|y_1, \dots, y_{p-1}).$$

Missing Data and Latent Variables Completion Gibbs Sampler

► For $g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$ ► And $y = (x, z) = (y_1, \dots, y_p)$ with $Y_1|y_2, \dots, y_p \sim f(y_1|y_2, \dots, y_p),$ $Y_2|y_1, y_3, \dots, y_p \sim f(y_2|y_1, y_3, \dots, y_p),$: $Y_p|y_1, \dots, y_{p-1} \sim f(y_p|y_1, \dots, y_{p-1}).$

$$\begin{split} &\triangleright Y^{(t)} = (X^{(t)}, Z^{(t)}) \to Y \sim f(x, z) \\ &\triangleright X^{(t)} \to Y \sim f(x) \\ &\triangleright Z^{(t)} \to Y \sim f(z) \end{split}$$

► $X^{(t)}$ and $Z^{(t)}$ are not Markov chains

 \triangleright But the subchains converge to the correct distributions

Missing Data and Latent Variables Censored Data Models

Example: Censored Data Gibbs

▶ Recall the censored data likelihood function

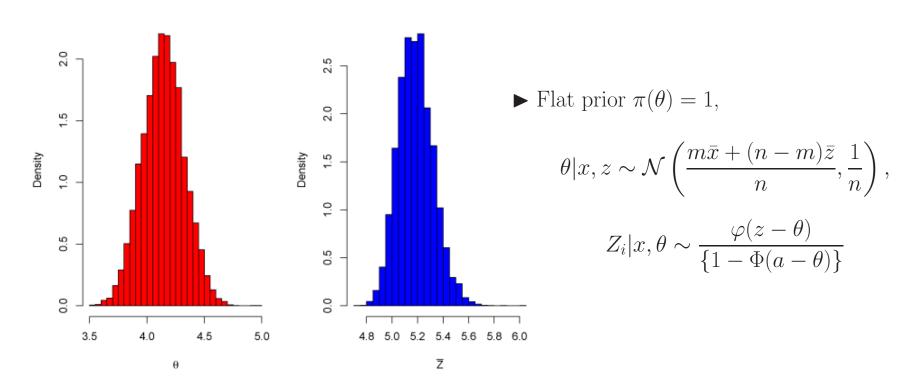
$$g(x|\theta) = L(\theta|x) \propto \prod_{i=1}^{m} e^{-(x_i - \theta)^2/2},$$

► And the complete-data likelihood

$$f(x, z|\theta) = L(\theta|x, z) \propto \prod_{i=1}^{m} e^{-(x_i - \theta)^2/2} \prod_{i=m+1}^{n} e^{-(z_i - \theta)^2/2}$$

 $\triangleright \text{With } \theta \sim \pi(\theta) \text{ we have the Gibbs sampler}$ $\pi(\theta|x,z) \text{ and } f(z|x,\theta)$

 \triangleright With stationary distribution $\pi(\theta, z|x)$, the posterior of θ and z.



Missing Data and Latent Variables Censored Normal

▶ Each Z_i must be greater than the truncation point a

▶ Many ways to generate Z (AR, rtrun from the package bayesm, PIT)

► R code

Missing Data and Latent Variables Genetic Linkage

- \blacktriangleright We previously saw the classic genetic linkage data
- \blacktriangleright Such models abound
- \blacktriangleright Here is another, more complex, model

Observed genotype frequencies on blood type data

Genotype	Probability	Observed	Probability	Frequency	
AA	p_A^2	А	$p_A^2 + 2p_A p_O$	$n_A = 186$	\blacktriangleright Dominant allele \rightarrow missing data
AO	$2p_A p_O$				
BB	p_B^2	В	$p_B^2 + 2p_B p_O$	$n_B = 38$	\blacktriangleright Cannot observe AO or BO
BO	$2p_Bp_O$				
AB	$2p_A p_B$	AB	$2p_A p_B$	$n_{AB} = 13$	
00	p_O^2	О	p_O^2	$n_{O} = 284$	

► Observe $X \sim \mathcal{M}_4 \left(n; p_A^2 + 2p_A p_O, p_B^2 + 2p_B p_O, p_A p_B, p_O^2 \right)$ $\triangleright p_A + p_B + p_O = 1$ Missing Data and Latent Variables Latent Variable Multinomial

▶ The observed data likelihood is

 $L(p_A, p_B, p_O|X) \propto (p_A^2 + 2p_A p_O)^{n_A} (p_B^2 + 2p_B p_O)^{n_B} (p_A p_B)^{n_{AB}} (p_O^2)^{n_O}$

▶ With missing data (latent variables) Z_A and Z_B , the complete-data likelihood is

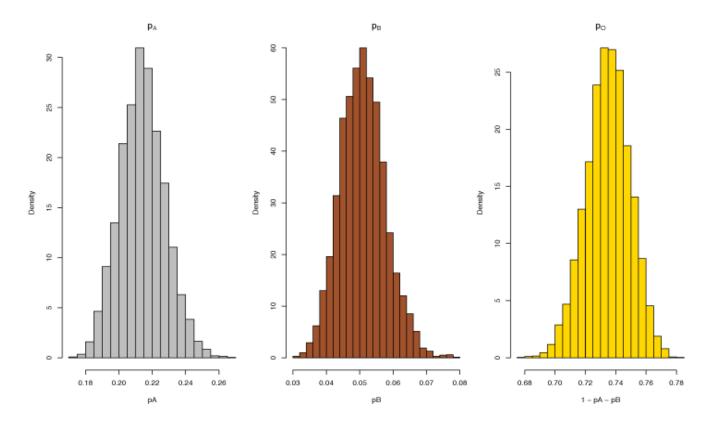
 $L(p_A, p_B, p_O|X, Z_A, Z_B) \propto (p_A^2)^{Z_A} (2p_A p_O)^{n_A - Z_A} (p_B^2)^{Z_B} (2p_B p_O)^{n_B - Z_B} (p_A p_B)^{n_{AB}} (p_O^2)^{n_O}.$

► Giving the missing data density

$$\left(\frac{p_A^2}{p_A^2 + 2p_A p_O}\right)^{Z_A} \left(\frac{2p_A p_O}{p_A^2 + 2p_A p_O}\right)^{n_A - Z_A} \left(\frac{p_B^2}{p_B^2 + 2p_B p_O}\right)^{Z_B} \left(\frac{2p_B p_O}{p_B^2 + 2p_B p_O}\right)^{n_B - Z_B}$$

► And the Gibbs sampler

 $p_A, p_B, p_O|X, Z_A, Z_B \sim \text{Dirichlet}, \quad Z_A, Z_B|p_A, p_B, p_O \sim \text{Independent Binomial}$



Missing Data and Latent Variables Analysis of Blood Types

- ► Estimated genotype frequencies
- Fisher had first developed these models
 But he could not do the estimation: No EM, No Gibbs in 1930

Multi-Stage Gibbs Samplers Hierarchical Structures

- We have seen the multistage Gibbs sampler applied to a number of examples
 Many arising from missing-data structures.
- ▶ But the Gibbs sampler can sample from any hierarchical model
- A hierarchical model is defined by a sequence of conditional distributions
 For instance, in the two-level generic hierarchy

$$X_i \sim f_i(x|\theta), \quad i = 1, \dots, n, \quad \theta = (\theta_1, \dots, \theta_p), \\ \theta_j \sim \pi_j(\theta|\gamma), \quad j = 1, \dots, p, \quad \gamma = (\gamma_1, \dots, \gamma_s), \\ \gamma_k \sim g(\gamma), \quad k = 1, \dots, s.$$

► The joint distribution from this hierarchy is

$$\prod_{i=1}^{n} f_i(x_i|\theta) \prod_{j=1}^{p} \pi_j(\theta_j|\gamma) \prod_{k=1}^{s} g(\gamma_k)$$

Multi-Stage Gibbs Samplers Simulating from the Hierarchy

 \blacktriangleright With observations x_i the full posterior conditionals are

$$\theta_j \propto \pi_j(\theta_j|\gamma) \prod_{i=1}^n f_i(x_i|\theta), \quad j = 1, \dots, p,$$

 $\gamma_k \propto g(\gamma_k) \prod_{j=1}^p \pi_j(\theta_j|\gamma), \quad k = 1, \dots, s.$

▷ In standard hierarchies, these densities are straightforward to simulate from
▷ In complex hierarchies, we might need to use a Metropolis–Hastings step
▷ Main message: full conditionals are easy to write down given the hierarchy
▲ Note:

When a full conditional in a Gibbs sampler cannot be simulated directly
 One Metropolis–Hastings step is enough

Multi-Stage Gibbs Samplers The Pump Failure Data

Example: Nuclear Pump Failures

- \blacktriangleright A benchmark hierarchical example in the Gibbs sampling literature
- ▶ Describes multiple failures of pumps in a nuclear plant
- ► Data:

Pump	1	2	3	4	5	6	7	8	9	10
Failures										
Time	94.32	15.72	62.88	125.76	5.24	31.44	1.05	1.05	2.10	10.48

- ▶ Model: Failure of i^{th} pump follows a Poisson process
- ► For time t_i , the number of failures $X_i \sim \mathcal{P}(\lambda_i t_i)$

Multi-Stage Gibbs Samplers The Pump Failure Hierarchy

▶ The standard priors are gammas, leading to the hierarchical model

$$X_i \sim \mathcal{P}(\lambda_i t_i), \quad i = 1, \dots 10,$$

$$\lambda_i \sim \mathcal{G}(\alpha, \beta), \quad i = 1, \dots 10,$$

$$\beta \sim \mathcal{G}(\gamma, \delta).$$

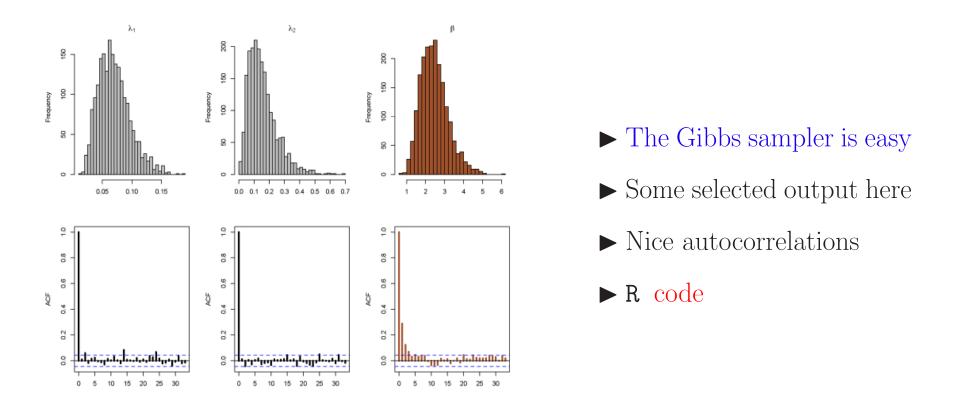
► With joint distribution

$$\prod_{i=1}^{10} \left\{ (\lambda_i t_i)^{x_i} e^{-\lambda_i t_i} \lambda_i^{\alpha-1} e^{-\beta\lambda_i} \right\} \beta^{10\alpha} \beta^{\gamma-1} e^{-\delta\beta}$$

► And full conditionals

$$\lambda_i | \beta, t_i, x_i \sim \mathcal{G}(x_i + \alpha, t_i + \beta), \quad i = 1, \dots 10,$$

$$\beta | \lambda_1, \dots, \lambda_{10} \sim \mathcal{G}\left(\gamma + 10\alpha, \delta + \sum_{i=1}^{10} \lambda_i\right).$$



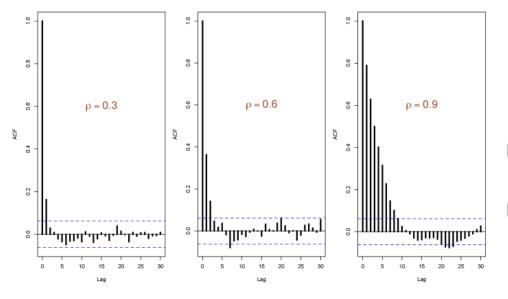
Multi-Stage Gibbs Samplers The Pump Failure Gibbs Sampler

▶ Goal of the pump failure data is to identify which pumps are more reliable.
 ▷ Get 95% posterior credible intervals for each λ_i to assess this

Other Considerations Reparameterization

- ► Many factors contribute to the convergence properties of a Gibbs sampler
- ► Convergence performance may be greatly affected by the parameterization
- ▶ High covariance may result in slow exploration.

Simple Example



$$\bullet (X,Y) \sim \mathcal{N}_2\left(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right)$$

► X + Y and X - Y are independent

► Autocorrelation for $\rho = .3, .6, .9$

Reparameterization Oneway Models

▶ Poor parameterization can affect both Gibbs sampling and Metropolis–Hastings

 \blacktriangleright No general consensus on a solution

 \triangleright Overall advice \Rightarrow make the components as independent as possible

► Example: Oneway model for the energy data

► Then

$$Y_{ij} \sim \mathcal{N}(\theta_i, \sigma^2), \\ \theta_i \sim \mathcal{N}(\mu, \tau^2), \\ \mu \sim \mathcal{N}(\mu_0, \sigma_\mu^2), \end{cases}$$

► Now

$$Y_{ij} \sim \mathcal{N}(\mu + \theta_i, \sigma^2),$$

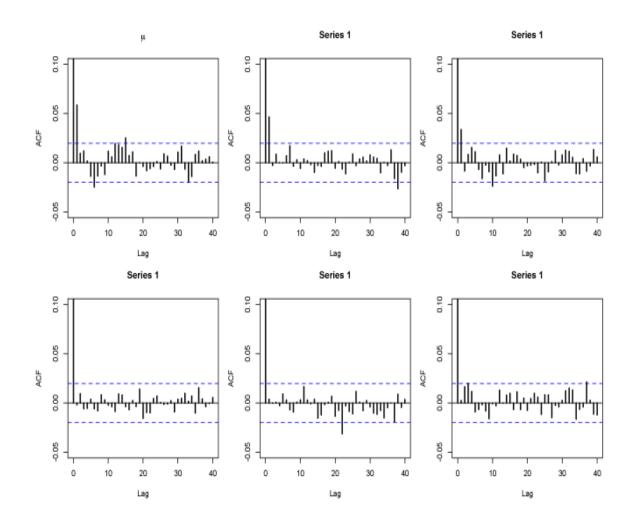
$$\theta_i \sim \mathcal{N}(0, \tau^2),$$

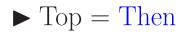
$$\mu \sim \mathcal{N}(\mu_0, \sigma_{\mu}^2).$$

 $\blacktriangleright \mu$ at first level

 $\blacktriangleright \mu$ at second level

Reparameterization Oneway Models for the Energy Data





- \blacktriangleright Bottom = Now
- ► Very similar
- ► Then slightly better?

Reparameterization Covariances of the Oneway Models

▶ But look at the covariance matrix of the subchain $(\mu^{(t)}, \theta_1^{(t)}, \theta_2^{(t)})$

Then: $Y_{ij} \sim \mathcal{N}(\theta_i, \sigma^2)$ Now: $Y_{ij} \sim \mathcal{N}(\mu + \theta_i, \sigma^2)$

1.056	-0.175	-0.166	
-0.175	1.029	0.018	
-0.166	0.018	1.026	

$$\left(\begin{array}{cccc} 1.604 & 0.681 & 0.698 \\ 0.681 & 1.289 & 0.278 \\ 0.698 & 0.278 & 1.304 \end{array}\right),\,$$

 \blacktriangleright So the new model is not as good as the old

► The covariances are all bigger

 \triangleright It will not mix as fast

► A pity: I like the new model better

Rao–Blackwellization Introduction

- ▶ We have already seen Rao–Blackwellization in Chapter 4
 - \triangleright Produced improved variance over standard empirical average
- ► For $(X, Y) \sim f(x, y)$, parametric Rao–Blackwellization is based on ▷ $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[\delta(Y)]$ ▷ $\operatorname{var}[\delta(Y)] \leq \operatorname{var}(X)$
- Example: Poisson Count Data
- ► For 360 consecutive time units
- ▶ Record the number of passages of individuals per unit time past some sensor.

Number of passages	0	1	2	3	4 or more
Number of observations	139	128	55	25	13

Rao–Blackwellization Poisson Count Data

- ▶ The data involves a grouping of the observations with four passages or more.
- ▶ This can be addressed as a missing-data model

 \triangleright Assume that the ungrouped observations are $X_i \sim \mathcal{P}(\lambda)$

 \triangleright The likelihood of the model is

$$\ell(\lambda|x_1,...,x_5) \propto e^{-347\lambda} \lambda^{128+55\times 2+25\times 3} \left(1 - e^{-\lambda} \sum_{i=0}^{3} \lambda^i/i!\right)^{13}$$

for $x_1 = 139, \ldots, x_5 = 13$.

For π(λ) = 1/λ and missing data z = (z₁,..., z₁₃)
 ▷ We have a completion Gibbs sampler from the full conditionals

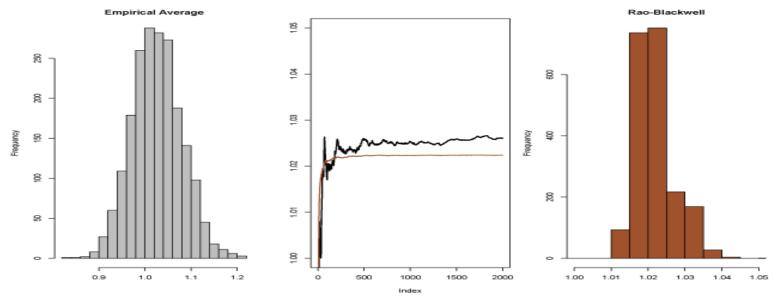
$$Z_{i}^{(t)} \sim \mathcal{P}(\lambda^{(t-1)}) \mathbb{I}_{y \ge 4}, \quad i = 1, \dots, 13,$$
$$\lambda^{(t)} \sim \mathcal{G}\left(313 + \sum_{i=1}^{13} Z_{i}^{(t)}, 360\right).$$

Rao–Blackwellization Comparing Estimators

- ► The empirical average is $\frac{1}{T} \sum_{t=1}^{T} \lambda^{(t)}$
- \blacktriangleright The Rao–Blackwellized estimate of λ is then given by

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\lambda^{(t)}\big|, z_1^{(t)}, \dots, z_{13}^{(t)}\right] = \frac{1}{360T}\sum_{t=1}^{T}\left(313 + \sum_{i=1}^{13}z_i^{(t)}\right),$$

▶ Note the massive variance reduction.



Generating Truncated Poisson Variables Using While

► The truncated Poisson variable can be generated using the **while** statement

> for (i in 1:13){while(y[i]<4) y[i]=rpois(1,lam[j-1])}</pre>

or directly with

- > prob=dpois(c(4:top),lam[j-1])
- > for (i in 1:13) z[i]=4+sum(prob<runif(1)*sum(prob))</pre>

▶ Lets look at a comparison

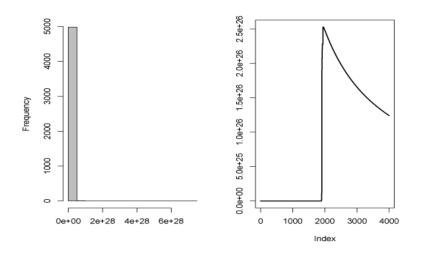
\triangleright R code

Gibbs Sampling with Improper Priors Introduction

- ▶ There is a particular danger resulting from careless use of the Gibbs sampler.
- ► The Gibbs sampler is based on conditional distributions
- ▶ It is particularly insidious is that
 - (1) These conditional distributions may be well-defined
 - (2) They may be simulated from
 - (3) But may not correspond to any joint distribution!
- \blacktriangleright This problem is not a defect of the Gibbs sampler
- ▶ It reflects use of the Gibbs sampler when assumptions are violated.
- \blacktriangleright Corresponds to using Bayesian models with improper priors

Gibbs Sampling with Improper Priors A Very Simple Example

- The Gibbs sampler can be constructed directly from conditional distributions
 Leads to carelessness about checking the propriety of the posterior
- ► The pair of conditional densities $X|y \sim \mathcal{E}xp(y)$, $Y|x \sim \mathcal{E}xp(x)$, ▷ Well-defined conditionals with no joint probability distribution.



▶ Histogram and cumulative average

- ▶ The pictures are absolute rubbish!
- ▶ Not a recurrent Markov chain
- Stationary measure = $\exp(-xy)$
- ► No finite integral

Gibbs Sampling with Improper Priors A Very Scary Example

- Oneway model $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$,
 - $\triangleright \alpha_i \sim \mathcal{N}(0, \sigma^2) \text{ and } \varepsilon_{ij} \sim \mathcal{N}(0, \tau^2)$

▷ The Jeffreys (improper) prior for μ , σ , and τ is $\pi(\beta, \sigma^2, \tau^2) = \frac{1}{\sigma^2 \tau^2}$.

► Conditional distributions

$$\begin{split} \alpha_{i}|y,\mu,\sigma^{2},\tau^{2} &\sim \mathcal{N}\left(\frac{J(\bar{y}_{i}-\mu)}{J+\tau^{2}\sigma^{-2}},(J\tau^{-2}+\sigma^{-2})^{-1}\right),\\ \mu|\alpha,y,\sigma^{2},\tau^{2} &\sim \mathcal{N}(\bar{y}-\bar{\alpha},\tau^{2}/IJ),\\ \sigma^{2}|\alpha,\mu,y,\tau^{2} &\sim \mathcal{IG}(I/2,(1/2)\sum_{i}\alpha_{i}^{2}),\\ \tau^{2}|\alpha,\mu,y,\sigma^{2} &\sim \mathcal{IG}(IJ/2,(1/2)\sum_{i,j}(y_{ij}-\alpha_{i}-\mu)^{2}), \end{split}$$

 \blacktriangleright Are well-defined
 \blacktriangleright Can run a Gibbs sampler

- ▶ But there is no proper joint distribution
- ▶ Often this is impossible to detect by monitoring the output

Gibbs Sampling with Improper Priors A Final Warning

- 4
 - ► Graphical monitoring cannot exhibit deviant behavior of the Gibbs sampler.
 - There are many examples, some published, of null recurrent Gibbs samplers
 Undetected by the user
 - ► The Gibbs sampler is valid only if the joint distribution has a finite integral.

- ► With improper priors in a Gibbs sampler
 - ▷ The posterior must always be checked for propriety.
- ▶ Improper priors on variances cause more trouble than those on means

Chapter 8: Monitoring Convergence of MCMC Algorithms

"Why does he insist that we must have a diagnosis? Some things are not meant to be known by man."

> Susanna Gregory An Unholy Alliance

This Chapter

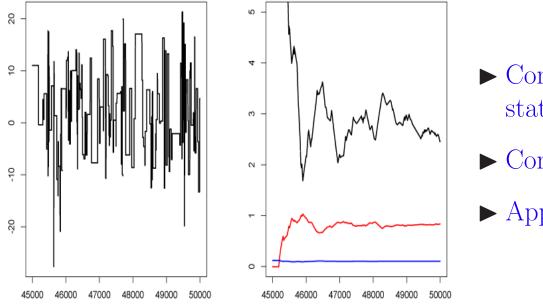
- ► We look at different diagnostics to check the convergence of an MCMC algorithm
- ► To answer to question: "When do we stop our MCMC algorithm?"
- ► We distinguish between two separate notions of convergence:
 - Convergence to stationarity
 - Convergence of ergodic averages
- ► We also discuss some convergence diagnostics contained in the coda package

Monitoring Convergence Introduction

- ► The MCMC algorithms that we have seen
 - \triangleright Are convergent because the chains they produce are ergodic.
- Although this is a necessary theoretical validation of the MCMC algorithms
 It is insufficient from the implementation viewpoint
- ► Theoretical guarantees do not tell us
 - \triangleright When to stop these algorithms and produce our estimates with confidence.
- ▶ In practice, this is nearly impossible
- ► Several runs of your program are usually required until
 - \triangleright You are satisfied with the outcome
 - \triangleright You run out of time and/or patience

Monitoring Convergence Monitoring What and Why

▶ There are three types of convergence for which assessment may be necessary.



- Convergence to the stationary distribution
- ► Convergence of Averages
- ► Approximating iid Sampling

Monitoring Convergence Convergence to the Stationary Distribution

- ▶ First requirement for convergence of an MCMC algorithm
 - $\triangleright(x^{(t)}) \sim f$, the stationary distribution
 - \triangleright This sounds like a minimal requirement
- ► Assessing that $x^{(t)} \sim f$ is difficult with only a *single realization*
- ▶ A slightly less ambitious goal: Assess the independence from the starting point $x^{(0)}$ based on several realizations of the chain using the same transition kernel.

When running an MCMC algorithm, the important issues are
 The speed of exploration of the support of f
 The degree of correlation between the x^(t)'s

Monitoring Convergence Tools for AssessingConvergence to the Stationary Distribution

- ► A major tool for assessing convergence: Compare performance of several chains
- ► This means that the slower chain in the group governs the convergence diagnostic
- Multiprocessor machines is an incentive for running replicate parallel chains
 Can check for the convergence by using several chains at once
 May not be much more costly than using a single chain
- ► Looking at a single path of the Markov chain produced by an MCMC algorithm makes it difficult to assess convergence
- MCMC algorithms suffer from the major defect that
 "you've only seen where you've been"
- ▶ The support of f that has not yet been visited is almost impossible to detect.

Monitoring Convergence Convergence of Averages

► A more important convergence issue is convergence of the empirical average

$$\frac{1}{T} \sum_{t=1}^{T} h(x^{(t)}) \to BE_f[h(X)]$$

► Two features that distinguish stationary MCMC outcomes from iid ones

 \triangleright The probabilistic dependence in the sample

 \triangleright The mixing behavior of the transition,

 \triangleright That is, how fast the chain explores the support of f

- "Stuck in a mode" might appear to be stationarity
 The missing mass problem again
- ► Also: The CLT might not be available

Monitoring Convergence Approximating iid sampling

- Ideally, the approximation to f provided by MCMC algorithms should
 Extend to the (approximate) production of iid samples from f.
- A practical solution to this issue is to use *subsampling* (or *batch sampling*)
 Reduces correlation between the successive points of the Markov chain.
- ▶ Subsampling illustrates this general feature but it loses in efficiency
- ► Compare two estimators
 - $\triangleright \delta_1$: Uses all of the Markov chain
 - $\triangleright \delta_2$: Uses subsamples
- \blacktriangleright It can be shown that

 $\operatorname{var}(\delta_1) \leq \operatorname{var}(\delta_2)$

Monitoring Convergence The coda package

- ▶ Plummer *et al.* have written an **R** package called coda
- ► Contains many of the tools we will be discussing in this chapter
- ► Download and install with library(coda)
- ► Transform an MCMC output made of a vector or a matrix into an MCMC object that can be processed by coda, as in

> summary(mcmc(X))

or

> plot(mcmc(X))

Monitoring Convergence to Stationarity Graphical Diagnoses

► A first approach to convergence control

- \triangleright Draw pictures of the output of simulated chains
- Componentwise as well as jointly
 In order to detect deviant or nonstationary behaviors
- ► coda provides this crude analysis via the plot command
- \blacktriangleright When applied to an mcmc object
 - \triangleright Produces a trace of the chain across iterations
 - ▷ And a non-parametric estimate of its density, parameter by parameter

Monitoring Convergence to Stationarity Graphical Diagnoses for a Logistic Random Effect Model

Example: Random effect logit model

 \blacktriangleright Observations y_{ij} are modeled conditionally on one covariate x_{ij} as

$$P(y_{ij} = 1 | x_{ij}, u_i, \beta) = \frac{\exp\{\beta x_{ij} + u_i\}}{1 + \exp\{\beta x_{ij} + u_i\}}, i = 1, \dots, n, j = 1, \dots, m$$

 $\triangleright u_i \sim \mathcal{N}(0, \sigma^2)$ is an unobserved random effect \triangleright This is missing data

▶ We fit this with a Random Walk Metropolis–Hastings algorithm.

Monitoring Convergence to Stationarity Fitting a Logistic Random Effect Model

▶ The complete data likelihood is

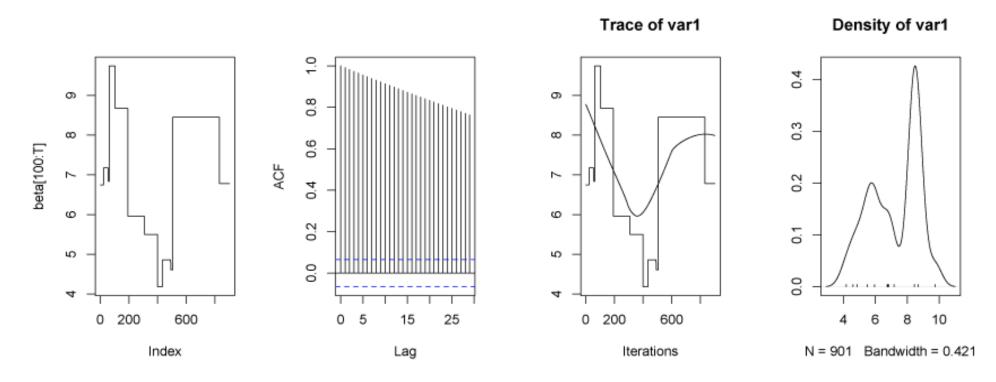
$$\prod_{ij} \left(\frac{\exp\left\{\beta x_{ij} + u_i\right\}}{1 + \exp\left\{\beta x_{ij} + u_i\right\}} \right)^{y_{ij}} \left(\frac{1}{1 + \exp\left\{\beta x_{ij} + u_i\right\}} \right)^{1 - y_{ij}}$$

► This is the target in our Metropolis–Hastings algorithm ▷ Simulate random effects $u_i^{(t)} \sim N(u_i^{(t-1)}, \sigma^2)$ ▷ Simulate the logit coefficient $\beta^{(t)} \sim N(\beta^{(t-1)}, \tau^2)$ ▷ Specify σ^2 and τ^2

 $\triangleright \sigma^2$ and τ^2 affect mixing

Monitoring Convergence to Stationarity ACF and Coda

► Trace and acf:



 \blacktriangleright R code

► We use

Tests of Stationarity Nonparametric Tests: Kolmogorov-Smirnov

- \blacktriangleright Other than a graphical check, we can try to test for independence
- Standard non-parametric tests of fit, such as Kolmogorov–Smirnov
 Apply to a single chain to compare the distributions of the two halves
 Also can apply to parallel chains
- There needs to be a correction for the Markov correlation
 The correction can be achieved by introducing a batch size

$$K = \frac{1}{M} \sup_{\eta} \left| \sum_{g=1}^{M} \mathbb{I}_{(0,\eta)}(x_1^{(gG)}) - \sum_{g=1}^{M} \mathbb{I}_{(0,\eta)}(x_2^{(gG)}) \right|$$

 \triangleright With G = batch size, M = sample size

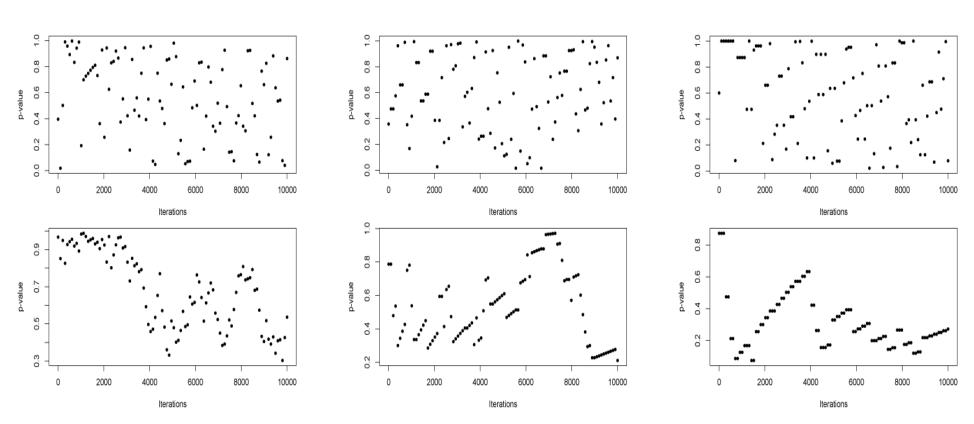
Tests of Stationarity Kolmogorov-Smirnov for the Pump Failure Data

Example: Poisson Hierarchical Model

▶ Consider again the nuclear pump failures

▶ We monitor the subchain (β^(t)) produced by the algorithm
 ▷ We monitor one chain split into two halves
 ▷ We also monitor two parallel chains

- \blacktriangleright Use R command ks.test
- ▶ We will see (next slide) that the results are not clear



▶ Upper=split chain; Lower = Parallel chains; $L \rightarrow R$: Batch size 10, 100, 200.

- ▶ Seems too variable to be of little use
- ► This is a good chain! (fast mixing, low autocorrelation)

Monitoring Convergence Tests Based on Spectral Analysis

- ▶ There are convergence assessments spectral or Fourier analysis
- ▶ One is due to Geweke

 \triangleright Constructs the equivalent of a t test

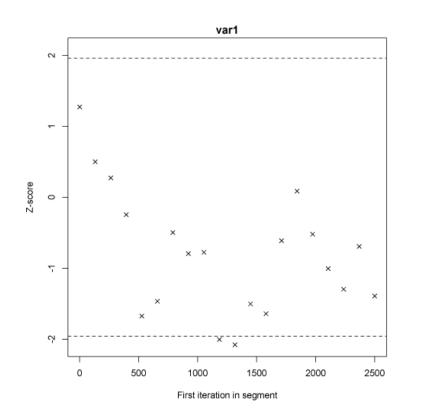
 \triangleright Assess equality of means of the first and last parts of the Markov chain.

 \blacktriangleright The test statistic is

$$\sqrt{T}(\delta_A - \delta_B) \bigg/ \sqrt{\frac{\sigma_A^2}{\tau_A} + \frac{\sigma_B^2}{\tau_B}},$$

 $\triangleright \delta_A$ and δ_B are the means from the first and last parts $\triangleright \sigma_A^2$ and σ_B^2 are the spectral variance estimates

▶ Implement with geweke.diag and geweke.plot



► For λ_1

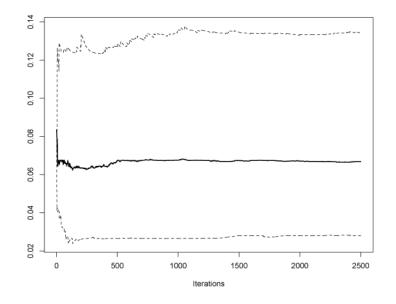
- $\triangleright t$ -statistic = 1.273
- Plot discards successive beginning segments
- \triangleright Last z-score only uses last half of chain

► Heidelberger and Welch have a similar test: heidel.diag

Monitoring Convergence of Averages Plotting the Estimator

- ▶ The initial and most natural diagnostic is to plot the evolution of the estimator
- ▶ If the curve of the cumulated averages has not stabilized after T iterations
 ▷ The length of the Markov chain must be increased.
- ▶ The principle can be applied to multiple chains as well.

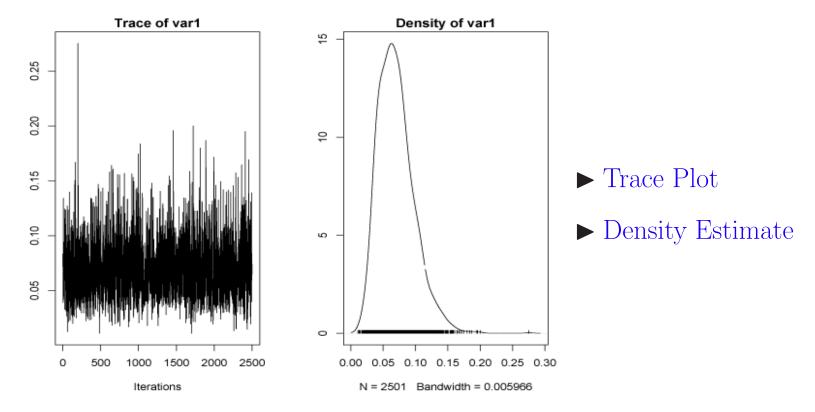
 \triangleright Can use cumsum, plot(mcmc(coda)), and cumuplot(coda)



- ► For λ_1 from Pump failures
- ► cumuplot of second half

Monitoring Convergence of Averages Trace Plots and Density Estimates

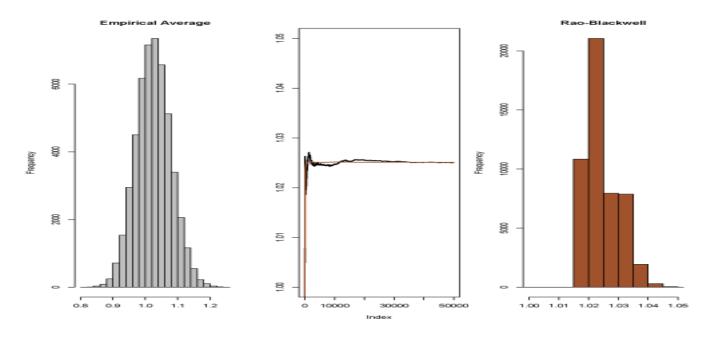
▶ plot(mcmc(lambda)) produces two graphs



▶ Note: To get second half of chain temp=lambda[2500:5000], plot(mcmc(temp))

Monitoring Convergence of Averages Multiple Estimates

- ► Can use several convergent estimators of $\mathbb{E}_f[h(\theta)]$ based on the same chain ▷ Monitor until all estimators coincide
- ▶ Recall Poisson Count Data
 - \triangleright Two Estimators of Lambda: Empirical Average and RB
 - \triangleright Convergence Diagnostic \rightarrow Both estimators converge 50,000 Iterations



Monitoring Convergence of Averages Computing Multiple Estimates

- ► Start with a Gibbs sampler $\theta | \eta$ and $\eta | \theta$
- ► Typical estimates of $h(\theta)$

 \triangleright The empirical average $S_T = \frac{1}{T} \sum_{t=1}^T h(\theta^{(t)})$

- \triangleright The Rao-Blackwellized version $S_T^C = \frac{1}{T} \sum_{t=1}^T \mathbb{E}[h(\theta)|\eta^{(t)}]$,
- \triangleright Importance sampling: $S_T^P = \sum_{t=1}^T w_t h(\theta^{(t)}),$
 - $\triangleright w_t \propto f(\theta^{(t)}) / g_t(\theta^{(t)})$ $\triangleright f = \text{target}, \ g = \text{candidate}$

Monitoring Convergence of Multiple Estimates Cauchy Posterior Simulation

► The hierarchical model

$$X_i \sim \text{Cauchy}(\theta), \quad i = 1, \dots, 3$$

 $\theta \sim N(0, \sigma^2)$

► Has posterior distribution

$$\pi(\theta|x_1, x_2, x_3) \propto e^{-\theta^2/2\sigma^2} \prod_{i=1}^3 \frac{1}{(1 + (\theta - x_i)^2)}$$

 \blacktriangleright We can use a Completion Gibbs sampler

$$\begin{split} &\eta_i | \theta, x_i \sim \mathcal{E}xp\left(\frac{1 + (\theta - x_i)^2}{2}\right), \\ &\theta | x_1, x_2, x_3, \eta_1, \eta_2, \eta_3 \sim \mathcal{N}\left(\frac{\eta_1 x_1 + \eta_2 x_2 + \eta_3 x_3}{\eta_1 + \eta_2 + \eta_3 + \sigma^{-2}}, \frac{1}{\eta_1 + \eta_2 + \eta_3 + \sigma^{-2}}\right), \end{split}$$

Monitoring Convergence of Multiple Estimates Completion Gibbs Sampler

▶ The Gibbs sampler is based on the latent variables η_i , where

$$\int e^{-\frac{1}{2}\eta_i(1+(x_i-\theta)^2)} d\eta_i = \frac{2}{1+(x_i-\theta)^2}$$

► With

$$\eta_i \sim \text{Exponential}\left(\frac{1}{2}(1+(x_i-\theta)^2)\right)$$

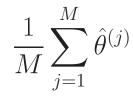
 \blacktriangleright Monitor with three estimates of θ

 \triangleright Empirical Average

 \triangleright Rao-Blackwellized

 \triangleright Importance sample

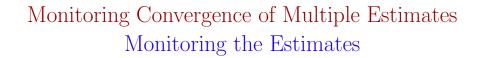
Monitoring Convergence of Multiple Estimates Calculating the Estimates

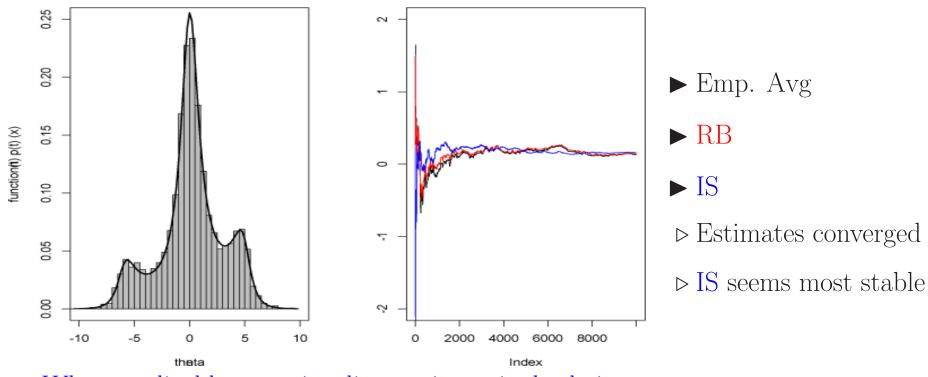


► Rao-Blackwellized

$$\theta | \eta_1, \eta_2, \eta_3 \sim N\left(\frac{\sum_i \eta_i x_i}{\frac{1}{\sigma^2} + \sum_i \eta_i}, \left[\frac{1}{\sigma^2} + \sum_i \eta_i\right]^{-1}\right)$$

► Importance sampling with Cauchy candidate





▶ When applicable, superior diagnostic to single chain

► Intrinsically conservative

 \triangleright Speed of convergence determined by slowest estimate

Monitoring Convergence of Averages Between and Within Variances

- ▶ The Gelman-Rubin diagnostic uses multiple chains
- Based on a between-within variance comparison (anova-like)
 Implemented in coda as gelman.diag(coda) and gelman.plot(coda).

► For *m* chains
$$\{\theta_1^{(t)}\}, \ldots, \{\theta_m^{(t)}\}$$

▷ The between-chain variance is $B_T = \frac{1}{M-1} \sum_{m=1}^M (\overline{\theta}_m - \overline{\theta})^2$,
▷ The within-chain variance is $W_T = \frac{1}{M-1} \sum_{m=1}^M \frac{1}{T-1} \sum_{t=1}^T (\theta_m^{(t)} - \overline{\theta}_m)^2$

▶ If the chains have converged, these variances are the same (anova null hypothesis)

Monitoring Convergence of Averages Gelman-Rubin Statistic

- ▶ B_T and W_T are combined into an *F*-like statistic
- \blacktriangleright The shrink factor, defined by

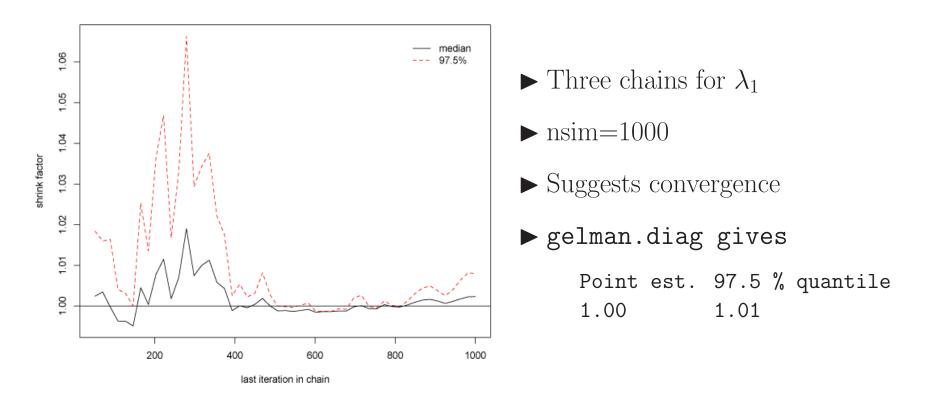
$$R_T^2 = \frac{\hat{\sigma}_T^2 + \frac{B_T}{M}}{W_T} \frac{\nu_T + 1}{\nu_T + 3},$$

$$\triangleright \hat{\sigma}_T^2 = \frac{T-1}{T} W_T + B_T.$$

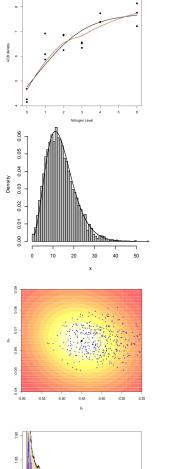
 $\triangleright \mathit{F}\text{-distribution approximation}$

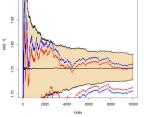
- ► Enjoyed wide use because of simplicity and intuitive connections with anova
- \triangleright R_T does converge to 1 under stationarity,
- ▶ However, its distributional approximation relies on normality
- ▶ These approximations are at best difficult to satisfy and at worst not valid.

Monitoring Convergence of Averages Gelman Plot for Pump Failures



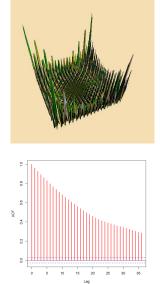
 \blacktriangleright R code



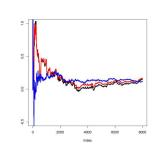


2. Generating

4. Acceleration



We Did All This!!!



5. Optimization

6. Metropolis

7. Gibbs

8. Convergence

Thank You for Your Attention

George Casella

casella@ufl.edu

