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Summary. Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It
incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping,
thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no
obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function
estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and
then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as
a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general
maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by
examples.
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1. Introduction
The past two decades, since Lander and Botstein’s (1989) pio-
neering work, have witnessed the considerable development of
statistical methodologies for mapping quantitative trait loci
(QTL) with genetic linkage maps (Jansen and Stam, 1994;
Zeng, 1994; Sen and Churchill, 2001; Kao and Zeng, 2002; Wu,
Ma, and Casella, 2007). These methods have been instrumen-
tal for the identification of significant QTL that contribute
to phenotypic variation in a variety of quantitative traits in
plants (Paterson, 2006), animals (Anholt and Mackay, 2004),
and humans (Weiss et al., 2005, 2006).

Ma, Casella, and Wu (2002) proposed a statistical frame-
work, called functional mapping, for mapping QTL that reg-
ulate developmental trajectories of a trait, allowing, for ex-
ample, to test the timing of a QTL to turn on or turn off, and
the duration of QTL expression (Wu et al., 2004). Because the
parametric functions chosen are usually derived from a univer-
sal biological law, functional mapping facilitates the testing of
numerous biologically meaningful hypotheses by testing sepa-
rately or jointly the parameters that define the curves. Func-
tional mapping uses fewer parameters to model biological pro-
cesses, and can increase the power of QTL mapping. While
the parametric nature of functional mapping offers tremen-
dous biological and statistical advantages, a reliance on the
availability of mathematical functions limits its applicability.
In some cases there are many different functions that describe
the same phenotypic trajectory. For example, there are func-
tions in three different categories to describe a growth tra-
jectory: exponential, saturating, and sigmoidal (Von Berta-
lanffy, 1957; Niklas, 1994). Thus, it may not be clear which

one should be used, especially when there are not enough ob-
servations for each subject to show obvious characteristics.
Moreover, in many situations, there are no obvious functional
forms.

These issues have started to draw the attention of sev-
eral statistical geneticists. For example, Yang, Tian, and Xu
(2006) and Yang and Xu (2007) attempted to use Legendre
orthogonal polynomials to fit various shapes of curves and
further test the dynamic genetic effects of QTL in a time
course. The motivation of Yang et al.’s model stemmed from
the strong application of the normalized Legendre polynomial
to the prediction of breeding values and time-dependent co-
variance in dairy milk production (Meyer, 2005a, 2005b). Lin
and Wu (2006) incorporated Legendre orthogonal polynomi-
als in joint modeling of longitudinal and time-to-event traits
to test whether a pleiotropic QTL exists affecting vegetative
growth and reproductive behavior in plants.

In all aforementioned models multiple tests have to be per-
formed on many putative QTL positions across the whole
genome. Then some form of adjustment of the critical thresh-
old value of the likelihood ratio test (LRT) statistic is neces-
sary to control the genome-wise type I error rate. Permutation
test procedures advocated by Churchill and Doerge (1994)
and Doerge and Churchill (1996) are a popular approach
to find critical values because of their conceptual simplicity,
distribution-free nature, and generality in different popula-
tion structures. But this method has a serious drawback in
its computational intensity. For a genome-wise type I error at
0.01, at least 10,000 permutations are required (Doerge and
Rebäı, 1996). An alternative is to use approximate threshold
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values for maps of different intensity and different population
structures. Lander and Botstein (1989, 1994) derived an ap-
proximation formula for an infinitely dense map and backcross
population. Rebäı, Goffinet, and Mangin (1994) and Piepho
(2001) also gave formulas to approximate critical values in the
intermediate density case. These methods only considered a
univariate phenotypic trait.

In this article, we introduce a nonparametric functional
mapping framework for genetic mapping of QTL control-
ling for a dynamic trait based on a more general and flex-
ible nonparametric smoothing approach, implemented with
B-splines. In our setting an exact p-value calculation formula
for genome-wise inference is provided for a dense map. For a
map with intermediate or sparse density we propose a com-
putationally less intensive method to find critical values that
control the genome-wise type I error rate for the LRT statistic.

We incorporate B-splines (He and Shi, 1998; Pittman,
2002) into the procedure for modeling biological processes
and formulate a nonparametric test for the existence of a
QTL and its effects on various biological events and processes
within the the maximum likelihood context. (An excellent in-
troduction to B-splines is given by Eilers and Marx, 1996.)
In Section 2, we develop the model and derive the test statis-
tics; the subject-specific model we propose can incorporate
both within- and among-subject variation due to individual
environmental adjustments. Section 3 contains applications
to real data, as well as simulation studies, and we show that
nonparametric functional mapping works well in a variety of
situations. Section 4 contains some conclusions.

2. Statistical Modeling
2.1 Genetic Design
For simplicity, we illustrate our method using a backcross
population. Consider a backcross with N individuals, each
genotyped with polymorphic markers to construct a genetic
linkage map. This map is used to identify the genome-wide
distribution of QTL that control a dynamic trait of inter-
est. All the backcross individuals are measured repeatedly for
the trait at a multitude of time points. Let yij be the ob-
served value of individual i for the trait at observation point
tj (i = 1, . . . , N and j = 1, . . . , T ).

Now suppose there is a putative QTL segregating with two
different genotypes Qq (coded by 1) and qq (coded by 2) in
the assumed backcross that affects the shape of the dynamic
trait. For dense maps, we can assume that the QTL is one
of the markers and the genotypes of each putative QTL are
known. For general maps, the unknown QTL can be detected
by the linkage map. In this case, assume that the QTL re-
sides between a pair of flanking markers M1 (with two alleles
M1 and m1) and M2 (with two alleles M2 and m2). For each
backcross individual, it may carry one (and only one) QTL
genotype, 1 or 2. The probability of a particular individual (i)
to carry QTL genotype 1 or 2 depends on the marker genotype
of this individual at the two flanking markers (M1 and M2)
that bracket the QTL. Let r1, r2, and r be the recombination
fractions between M1 and QTL, between QTL and M2, and
between the two markers, respectively. Under the assumption
of no double crossovers, we approximate the conditional prob-
ability (piq ) of a QTL genotype (q) given the marker geno-

type of individual i as a function of θ = r1/r (Web Table 1),
q = 1, 2.

2.2 Subject-Specific Model
As pointed out above, each backcross individual should carry
one and only one of the two possible QTL genotypes. The
phenotypic value of individual i can be described by a general
linear model,

yi (�t) = δiq μq (�t) + αi1T + εi (�t), (1)

where �t = (t1, t2, . . . , tT )′, μ1(�t) and μ2(�t) are the genotypic
mean vectors of Qq and qq, respectively, δiq is an indicator
variable for individual i, defined as 1 if a particular QTL is
indicated and 0 otherwise (for a backcross population, q =
1, 2), αi1T models the covariance structure of observations
among individuals, and εi is a parameter that accounts for
the within-individual covariance structure of the observations
on individual i. The variables αi and εi are independently dis-
tributed with normal distribution N (0, σ2) and multivariate
normal distribution MVN (0, V T ), respectively. The proba-
bility that δiq = 1 depends on the genotype of the flanking
markers and the position of the QTL on the marker interval.

Let B = {β	 (ti )}T ×L be a smoothing matrix composed of
L (L ≤ T ) B-spline basis functions at T time points. Then,
we have μq (�t) = Bξq , where ξq is the coefficient vector for the
matrix B. The comparison of these coefficient vectors between
two different QTL genotypes can determine whether this pu-
tative QTL affects phenotypic trajectories.

2.3 Estimation and Tests
Depending on the density of the map we have different models
and testing strategies.

2.3.1 Dense map. If the markers on the linkage map are
dense enough so that we can assume that the QTL are located
on the marker locus or very close to it, then we know the value
of δiq without requiring Web Table 1. In this situation, the
genome-wise search for existing QTL amounts to testing the
null hypothesis H 0 : μ1 = μ2 at every marker versus H 1 :
μ1 �= μ2 at some marker. This is a multiple testing problem
with each test deciding whether two underlying functions are
different at a particular marker location.

We start by deriving LRTs at each particular marker, H ′
0 :

μ1 = μ2 at a particular marker k, and then extend our result
to the entire genome.

Let nk ,1 and nk ,2 be the total number of subjects in each
group, with nk ,1 + nk ,2 = N . Then,yi (�t) ∼ I(i ≤ nk ,1) ×
MVN (Bξ1, Σ) + I(nk ,1 < i ≤ N ) MVN (Bξ2, Σ). The likeli-
hood function for{ξ1, ξ2} given a fixed Σ is

L ∝ exp

⎧⎨
⎩−1

2

n k , 1∑
i=1

‖yi − Bξ1‖Σ − 1
2

N∑
i=n k , 1+1

‖yi − Bξ2‖Σ

⎫⎬
⎭ .

From such likelihood function it is straightforward to calculate
the likelihood test statistic λk = maxH ′

0
L/max L, which can

be written as (Web Appendix A)

Gk =
nk ,1nk ,2

N
‖ȳk ,1 − ȳk ,2‖A 0

∼ χ2
L

(1
2
(μ1 − μ2)′A0(μ1 − μ2)

)
,

(2)
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where A0 = Σ−1B(B ′Σ−1B)−1B ′Σ−1. Under H ′
0, each LRT

statistic G has a central chi-squared distribution with degrees
of freedom L, the number of B-spline basis functions used in
the estimation of the phenotypic curves. H ′

0 is rejected when
G is large. For the genome-wise hypothesis test, the test statis-
tic is the maximum of all test statistics at each putative QTL
position, which, in this case, is each marker. When this statis-
tic is large enough we can conclude that there is significant
evidence of existing QTL and the positions where the test
statistics exceed the critical value indicate the possible QTL
locations.

Under this dense map assumption we can derive a formula
to calculate threshold values for genome-wise testing directly.
If we write Yk = (y11, . . . , y1T , y21, . . . , yNT )′, where the first
n1 ∗ Tyij s are from the group with genotype Qq, then the test
statistic could be written as a quadratic form Gk =Y′

k Ak Yk ,
where

Ak =
nk ,1nk ,2

N

⎛
⎜⎜⎝

1
n2

k ,1
Jn k , 1 − 1

nk ,1nk ,2
1n k , 1 ⊗ 1′

n k , 2

− 1
nk ,1nk ,2

1n 2 ⊗ 1′
n k , 1

1
n2

k ,2
Jn k , 2

⎞
⎟⎟⎠

⊗A0 ≡ U ⊗ A0,
(3)

and var(Y) = IN ⊗ Σ ≡ Σ̃. (When there are three or more
possible genotypes at each marker [e.g., an F2 population
or single-nucleotide polymorphism (SNP); genotypes] the ex-
pression for Gk can be found in Web Appendix B.) Using a
permutation matrix P, we can write the LRT statistic Gk cor-
responding to each marker k, k = 1, . . . , m, as Gk =Y′

1P
′
k×

AkPkY1, where Y 1 represents the Y vector corresponding to
the first marker. Under H0, these test statistics Gk s have the
same chi-squared distribution with degrees of freedom L but
are correlated with each other.

Rewrite Gk = Z′
k Zk , where Zk = W ′

k Σ̃− 1
2 Pk Y1 ∼ MVN ×

(W ′
k Σ̃− 1

2 Pk μ̃, W ′
k Wk ) and WkW ′

k are the spectral decom-
positions of Σ̃

1
2 Ak Σ̃

1
2 . The entire vector Z = (Z′

1, Z′
2, . . . ,

Z′
m )′ has distribution Z ∼ MVN (μZ , Δ) where μZ =

(μZ 1 , . . . , μZ m ), μZ i
= W′

i Σ̃
− 1

2 μ̃ and Δ = W̃′Σ̃W̃ with W̃ =
(Σ̃− 1

2 W1, P
′
2Σ̃

− 1
2 W2, . . . , P

′
m Σ̃− 1

2 Wm ). It is straightforward to
show that under H 0, μZ = 0.

If we let Bx denote the L-dimensional ball with radius equal
to x, then

PH 0

(
max

1≤k≤m
Y′

k Ak Yk ≤ x
)

= PH 0

(
max

1≤k≤m
Z′

k Zk ≤ x
)

= PH 0 (Z
′
1Z1 ≤ x, . . . ,Z′

m Zm ≤ x)

=
∫

. . .

∫
{Zi ∈B x }

exp
{
−1

2
Z′Δ−1Z

}
√

2π
m L |Δ| 1

2

dZ1 · · · dZm .

(4)

This probability, which is one minus the p-value for H0 when
x = maxkGk , can be directly calculated by simulating Z ∼
MVN (0, Δ), or with importance sampling. In the other di-
rection, once setting this probability equal to 1 − α, it is easy
to numerically search for the threshold value that controls the
genome-wise type I error α.

2.3.2 General map. When the assumption that possible
QTL are located on or very near to marker positions cannot
be satisfied, if the above testing procedure for a dense map
is still used, obviously the power of detecting existing QTL
decreases. In this case, we can use a mixture model following
the idea of interval mapping first proposed by Lander and
Botstein (1989). The probability that δiq = 1 is listed in Web
Table 1. The ratio θ is unknown and needs to be estimated,
but in practical computations, the QTL position parameter θ
can be viewed as a fixed parameter because we put a putative
QTL at every 1 or 2 cM on a map interval bracketed by two
markers throughout the entire genome (Lander and Botstein,
1989).

The likelihood function of these backcross progenies with
a general marker map can be represented as a multivariate
mixture model

L(Ω) =
N∏
i=1

[
2∑

q=1

piq fq (yi )

]
, (5)

where fq (yi ) = 1
(2π )T / 2|Σ|1/ 2 exp[−‖yi − Bξq ‖Σ/2] with ‖a‖Σ =

a′Σa and Σ = σ2J T + V containing the matrix of all ones in
J T , and Ω contains unknown parameters that model the QTL
effect (ξ 1 and ξ 2) and residual (co)variances. The maximum
likelihood estimates (MLEs) of the unknown parameters for a
pleiotropic QTL (Ωq ) can be computed by implementing the
expectation–maximization (EM) algorithm (Dempster, Laird,
and Rubin, 1977).

Let Φ(y;Bξ, Σ) ≡ exp{−‖y−Bξ ‖Σ
2 } and

P (y; t) =
(1 − t)Φ(y;Bξ1, Σ)

(1 − t)Φ(y;Bξ1, Σ) + tΦ(y;Bξ2, Σ)
. (6)

Suppose the kth marker interval is considered and yi has been
sorted with respect to the four possible combination of the two
bracketing markers. The corresponding EM algorithm for a
backcross population design is as follows (the subscript k is
omitted):

EM Algorithm: For fixed θ and known Σ, iterate until con-
vergence:
Step t: Calculate P (yi ; 1 − θ)(t) and P (yi ; θ)(t) using ξ̂

(t)
1 and

ξ̂
(t)
2 .

Step t + 1: Calculate

ξ̂
(t+1)
1 = (B′Σ−1B)−1B′Σ−1

×

⎛
⎜⎜⎜⎜⎝

n 1∑
i=1

yi +
n 2∑

i=n 1+1

P (yi ; θ)(t)yi +
n 3∑

i=n 2+1

P (yi ; 1 − θ)(t)yi

n1 +
n 2∑

i=n 1+1

P (yi ; θ)(t) +
n 3∑

i=n 2+1

P (yi ; 1 − θ)(t)

⎞
⎟⎟⎟⎟⎠

and

ξ̂
(t +1)
2 = (B′Σ−1B)−1B′Σ−1

×

⎛
⎜⎜⎜⎜⎝

N∑
i =n 3+1

yi +

n 2∑
i =n 1+1

(1 − P (yi ; θ)(t ))yi +

n 3∑
i =n 2+1

(
1 − P (yi ; 1 − θ)(t )

)
yi

N − n3 +

n 2∑
i =n 1+1

(
1 − P (yi ; θ)(t )

)
+

n 3∑
i =n 2+1

(
1 − P (yi ; 1 − θ)(t )

)

⎞
⎟⎟⎟⎟⎠.
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The details of deriving this EM algorithm are given in the
Web Appendix C.

In classical interval mapping, a profile of LRT statistics
across the entire linkage map is constructed through calcu-
lating the likelihood ratio at each putative Q along the map,
where the position can be characterized by the outside mark-
ers M1,M2 and the position θ. Unlike the dense map case,
we do not have an explicit formula for the p-value. However,
under our nonparametric setting we can simulate the critical
threshold value to control genome-wise type I error in a less
computationally intense way than permutation.

Note that when there is no QTL, that is, ξ 1 = ξ2, equa-
tion (6) is actually free of the phenotypic value y. So we can
directly calculate ξ̂1 and ξ̂2 for each fixed θ without using
the EM algorithm. Then the LRT statistic at each putative
QTL position can be easily determined using ξ̂0, ξ̂1, ξ̂2, and
the likelihood map follows. The (1 − α) ∗ 100 percentile of
the highest peaks of the likelihood maps from 1000 sets of
simulated phenotypic values y under H0 is taken as the cut-
off point for significance level α. Simulation studies confirm
that our simulation procedure gives threshold values similar
to those of the permutation test (Yang, 2006).

All of the above derivations are made under the assumption
that we know the (co)variance matrix Σ, which is typically
untrue in practice. We suggest substituting a restricted maxi-
mum likelihood estimation (REML) estimate of the variance–
covariance matrix Σ̂ from a saturating model with some de-
pendence structure selected using a model selector such as
Bayesian information criterion. For example, for a backcross
population with a general map we can get a REML esti-
mate of the (co)variance matrix based on the four possi-
ble marker genotype combinations of two adjacent markers.
Such REML estimates are used when a putative QTL posi-
tion is placed in this marker interval. The simulation stud-
ies in Section 3.2.2 demonstrate that the REML estimate
performs similar to the true variance matrix even for mod-
erate sample sizes. For the dense map case, if the chosen
structure is correct, then the calculated p-value is correct
asymptotically.

3. Examples
We illustrate our procedure on two data sets, one with a dense
map, and one with a general map. We also give the results of
simulations to compare our procedure with a parametric ap-
proach, and evaluate the performance of the REML variance
estimate.

3.1 SNPs Influencing 5-Fluorouracil Cytotoxicity
In this example, we illustrate how our method for the dense
map case can be used to discover SNPs influencing the sen-
sitivity of lymphoblastoid cells to death caused by incuba-
tion with 5-fluorouracil, a uracil analog widely used to treat
colorectal and breast tumors. The cellular viability data of
lymphoblastoid cell lines from 38 Center d’Etude du Poly-
morphisme Humain (CEPH) families were collected by Dr
McLeod’s group (Watters et al., 2004) and downloaded from
PharmGKB (www.pharmgkb.org). Two drugs were consid-
ered in their paper: docetaxel and 5-fluorouracil. Here we
used 5-fluorouracil as our example. Studied dosages of 5-
fluorouracil drug were set at 0 (vehicle only), 0.76, 1.92,

3.84, 5.77, 7.68, 19.2, 38.4, 76.8 μM. Watters et al. (2004)
performed genome-wide linkage analysis for QTL influencing
5-fluorouracil cytotoxicity at each dose separately based on
microsatellite markers and found a region on chromosome
9q13-q22 with supportive evidence of linkage for 5-fluorouracil
response (Figure 1 in Watters et al., 2004).

Because high-resolution SNP genotype data for a subset of
CEPH individuals is available (produced by the International
Haplotype Map Project, www.hapmap.org), we applied our
proposed model for the dense map case to perform a fine map-
ping using SNPs in a 1 log of odds (LoD) interval (about 70–
122 cM) that they found on chromosome 9. There were 57
cell lines in Watters et al. (2004) with both SNP data and
complete cytotoxicity profiles. Web Figure 1 plots the cell vi-
abilities of 57 cell lines at each dose.

Five order 3 B-splines were used to estimate the cell vi-
ability curves with inner knots at 4 μM and 7 μM and
an autoregressive(AR)(1) structure was chosen to model the
(co)variance matrix. The sex-average genetic length of chro-
mosome 9 is about 164 cM with 176,336 nonredundant SNPs
(HapMap project release 22). The selected 6634 SNPs with
three genotypes are located within the 1 LOD confidence in-
terval of linkage region, and have minor allele frequency at
least 10%. Figure 1a illustrates the LRT results from using
nonparametric functional mapping. Based on equation (4),
the cut-off value of LRT statistic with family-wise type I er-
ror at 0.05 is 39.23 with standard error 0.04, which leads to
SNP rs7039978 (LRT value = 39.58) being significantly asso-
ciated different drug-response dynamic curves. If a Bonferroni
multiplicity adjustment or a controlling false discovery rate
FDR at 0.05 were used, there were no significant SNPs dis-
covered. Figure 1b shows the observed and estimated mean
drug-response curve for each genotype group corresponding
to SNP rs7039978, where the largest LRT value occurred.

3.2 Genome-Wide Mapping for Poplar Growth Curves
Here we illustrate our proposed model for a general map
through genome-wise mapping for genes controlling stem
growth of poplar. This data set comes from an experiment of
the triple hybridization of Populus (poplar). The study mate-
rials used were described in Ma et al. (2002). Autoregressive
regression with AR(1) measurement errors were assumed to
model the within-subject correlation and a log transformation
was applied to the raw data of stem diameters to stabilize the
age-dependent variance heteroscedasticity (Wu et al., 2004).
The REML estimate of Σ was calculated from Proc Mixed

(Littell, Pendergast, and Natarajan, 2000). The empirical es-
timate of the critical value is obtained from 1000 simulations
and we find the threshold value for declaring the genome-wise
existence of a QTL is 32.01 at the significance level p = 0.01.
The QTL candidate positions are the positions corresponding
to the peaks of curves higher than the critical value. There
is significant evidence showing that several QTL candidates
exist in linkage group 1, 2, 4, 7, 10, 14, and 18 to control the
growth trajectory of stem diameter in the interspecific hybrids
of poplar (Figure 2).

The poplar data were also used by Ma et al. (2002) to illus-
trate their functional mapping method, where they found a
QTL controlling for diameter growth trajectory across linkage
group 10 in the Populus deltoides parent map, which was not
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Figure 1. (a) The LRT statistics for all 6635 SNPs using nonparametric functional mapping. The dashed line shows the
cut-off point corresponding to significance level 0.05 calculated from equation (4). (b) Mean drug response curves (solid lines)
with their nonparametric estimates (dashed lines) of three genotype groups classified by SNP rs7039978.

detected by other traditional models/tools. Using our method
we can also find the same QTL, but we do not need to spec-
ify the functional form and needed much less computation
time. We also applied our proposed model for the dense map
case to linkage group 10, where the smallest genetic distance
between two neighbor markers is about 10 cM. The small p-
value (p = 0.037 with standard error of 4.6e − 4) suggests
that a QTL exists. The biggest LRT statistic G appears at
the first marker, Marker CA/CCC-640R, which is also consis-
tent with Ma et al. (2002), where they found a QTL located
about 13 cM away from the first marker and 20 cM away from
the second marker.

3.3 Simulation Studies
We present simulation studies to compare our method to the
parametric procedure of Ma et al. (2002), and to evaluate the
performance of the REML variance estimators.

3.3.1 Comparison of parametric and nonparametric func-
tional mapping. We assume a backcross in which 10 equidis-
tant markers are simulated to generate a genome with length
180. A QTL was located between markers 5 and 6, 88 cM from
marker 1. The dependence structure for log-transformed ob-
servations on the same individual was set to be autoregressive
with order 1. The phenotypic values, yi (�t), at different time
points were simulated by assuming yi (�t) to be distributed as
MVN (δi1μ1(�t) + (1 − δi1)μ2(�t), σ2JT + V ). Two different sim-
ulation scenarios were performed, each assuming different

sample sizes (N = 100 in study S1 and 400 in study S2),
and different heritabilities for longitudinal traits in a middle
of time course (H2 = 0.1 and 0.4).

In the first simulation scenario, we assumed that the geno-
typic means are logistic growth curves 20

1+20e−0. 6t for QTL
genotype Qq and 30

1+27e−0. 9t for QTL genotype qq (t = 1, . . . ,
11). These two curves were chosen to mimic the estimated
curves from the Poplar stem growth example in the previous
section. The true logistic function is used in the paramet-
ric functional mapping procedure. In the second simulation
scenario, we used the following biexponential functions with
time-varying coefficient equations to model two genotypic
mean vectors: e13.5−0.35t + e9.0−α 1(t)t and e12.0−0.35t + e8.0−α 2(t)t ,
with t = 0, 2, 7, 10, 14, 21, 28, 56, 84, 115, 145, 175, 205,
235, 265, 295, 336, where α1(t) and α2(t) were assumed
to change over time according to α1(tk ) = 0.05 − 0.06k

17 and
α2(tk ) = 0.05 − 0.055k

17 (k = 1, . . . , 17). These two mean vectors
mimic the estimated long-term HIV dynamics in the AIDS
Clinical Trial Group Protocol 315 data from Wu and Zhang
(2002). Parametric functional mapping uses the existing regu-
lar biexponential form to estimate the underlying phenotypic
curves.

The simulation data sets in each scenario were analyzed
by parametric and nonparametric functional mapping. The
cut-off values were determined by the proposed simulation
procedure (1000 times) for nonparametric functional mapping
and permutation tests (500 times) for parametric functional
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Figure 2. The profile of the LRT statistics between the full and reduced (no QTL) subject-specific model for the diameter
growth trajectories across the whole Populus deltoides parent map. The genomic positions corresponding to the peak of the
curve are the MLEs of the QTL localization.

mapping. The simulation and estimation procedure was re-
peated 100 times to estimate the power of QTL detection
and the means of estimated genotypic curves for each ap-
proach. Both approaches obtained a similar power of QTL
detection and similar estimates of QTL location under two
different simulation scenarios (Table 1). As expected, more
power and more precise estimates can be obtained for bigger
sample sizes and heritabilities. The estimates of the geno-
typic mean curves were similar between the two approaches

Table 1
Comparison between nonparametric functional mapping and parametric functional mapping. The first line in
each cell is the p-value for existence of QTL while the second line is the location of the highest peak in the

likelihood map, which is the QTL candidate position when there is evidence that a QTL exists. The true QTL
was set at 88 cM. The number of subjects is 100 for S1 and 400 for S2. “NPFM” stands for nonparametric

functional mapping and “PFM” is parametric functional mapping. The symbol “-” means that all the p-values
are the same, hence there is no variation.

S1 S2Mapping
method H2 = 0.1 H2 = 0.4 H2 = 0.1 H2 = 0.4

NPFM 0.0644 (0.0136) <0.001 (-) <0.001 (-) <0.002 (-)
88.02 (2.044) 86.28 (0.3000) 83.22 (0.2467) 86.02 (0.0200)

PFM 0.0423 (0.0044) <0.002 (-) <0.001 (-) <0.002 (-)
88.06 (1.6000) 86.28 (0.2594) 84.68 (0.4322) 86.02 (0.0200)

under the first simulation scenario, but were very different
in the second. The nonparametric approach provided bet-
ter estimates of genotypic curves than the parametric ap-
proach under the second scenario, even though the heritabil-
ity and sample size were rather high. Figure 3 illustrates that
the estimated genotypic mean curves deviate from the true
mean curves dramatically with the parametric approach but
they are well estimated by the nonparametric approach for
sample size N = 400 and heritability H2 = 0.4. Also, the
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Figure 3. The estimated underlying phenotypic mean curves (left panel) and genetic effect along time (right panel) from
true model (True), parametric functional mapping (PFM) and nonparametric functional mapping (NPFM), respectively. In
this study, the number of subjects was 400 and the heritability value at the middle time point was set at 0.4.

nonparametric functional mapping, on average, took only
about 5% of the computation time used by parametric func-
tional mapping.

3.3.2 Evaluating the REML variance estimate. A second set
of simulation studies was done to check the statistical be-
havior of using REML to estimate the unknown (co)variance
matrix and then substituting the fixed (co)variance matrix
in the EM algorithm for the MLE of the unknown coefficient
vectors for the smoother matrix. We used the REML estimate
of the (co)variance matrix from a saturating model, which is
a consistent estimate of Σ only when the covariance structure
is correctly specified. We also include the consistent empirical
Bayes’ (EB) estimate of Daniels and Kass (2001).

The first simulation study used the 61 subjects’ marker in-
formation from linkage group 10 in the poplar data set. The
underlying functions were two logistic growth curves: 20

1+20e−0. 6t

and 30
1+27e−0. 9t , where t = 1, . . . , 11. Autoregressive correlation

was assumed for any two observations. The covariance matrix
was determined by letting the heritability on year 4 (the year
with the largest genetic variance) equal (0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6), respectively. The heritability
curves across all 11 years are shown in the left part of Figure 4.
One hundred data sets for each heritability value were gener-
ated to perform the nonparametric functional mapping pro-
cedure for the general map. The average p-values are shown
in the right part of Figure 4 corresponding to each heritabil-
ity value. This figure tells us that EB performs better when
heritability is bigger.

The second simulation study also used the 61 subjects’
marker information from linkage group 10 in the poplar data
set as genotypic data. The two underlying biological trajec-
tories were from the HIV dynamics mechanism, which have
double exponential forms e12−0.7t + e7.5−0.05t and e11−0.4t +
e5−0.03t and the growth curves with logistic forms 20

1+20e−0. 6t

and 30
1+27e−0. 9t . Assume there were 20 observation points for

the HIV curves and the covariance matrix was randomly gen-
erated without a known structure. There were 11 time points
for the growth curves and the covariance matrix was set to be
Σ3 = 0.3J 11 + Autoregressive (τ 2 = 0.1, ρ = 0.8), where J11

is a dimension 11 square matrix of all ones, and
Autoregressive(τ 2, ρ) is the autoregressive covariance matrix
of order one. One hundred data sets with 200 subjects were an-
alyzed using nonparametric functional mapping for a general
map. This analysis was also conducted for a sub data set con-
taining 61 subjects randomly selected from each data set. The
best structure picked by SAS Proc Mixed for the HIV data set
was an autoregressive moving average structure, ARMA(1,
1) while for the growth data set the true dependence struc-
ture was selected. The results are in Table 2. From this ta-
ble we can conclude that when the sample size increases, the
p-value gets smaller and so does the standard deviation re-
gardless of the covariance matrix estimate. If the true co-
variance matrix has some structure such as autoregressive,
the REML estimate usually outperforms the EB estimate,
as suggested by the results from the growth data set. If
the true covariance matrix is actually unstructured, the EB
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Figure 4. The left plot shows the 10 heritability curves of the simulated growth data sets. The right plot shows the trend of
p-values when heritability on year 4 increases. “EB” and “REML” denote the empirical Bayes’ estimate and REML estimate
of covariance matrix, respectively. “True” represents the covariance matrix used to generate data.

Table 2
P-values and standard deviations of nonparametric functional interval mapping (NPFIM)

from the HIV dynamics data and the growth data for different combinations of
variance–covariance estimators and sample size. “EB” means the shrinkage estimator,

which is guaranteed to be a consistent estimator. The “REML” estimator is obtained from
SAS Proc Mixed, assuming each subject has a different underlying mean curve. The

“True” estimator is, of course, the matrix we actually used to generate the data.

HIV dynamics data Growth dataVariance
estimate N = 61 N = 200 N = 61 N = 200

EB 0.4018 (0.0300) 0.00126 (<0.0001) 0.384 (0.0279) 0.0239 (0.00787)
REML 0.1644 (0.0169) 0.03346 (0.0042) 0.209 (0.0238) 0.00105 (0.00064)
True 0.0376 (0.0167) <0.0001(<0.0001) 0.197 (0.0240) 0.00095 (0.00058)

The numbers in parentheses are the sampling errors of the p-values.

estimate is better than the REML estimate. However, when
analyzing a real data set, there is typically some pattern in
the correlations among repeated measurements/longitudinal
data. So the REML estimate is still recommended even though
the EB estimate performs well when the sample size is large.

4. Discussion
As a direct extension of functional mapping (Ma et al., 2002),
nonparametric functional mapping inherits significant advan-
tages over other traditional mapping tools and models. For
example, the results are closer to biological reality because
of the simultaneous analysis of repeated measurements for a

quantitative trait. By treating the process as a smooth curve,
a small sample size could also achieve adequate power for QTL
mapping because multiple measurements for each subject are
analyzed simultaneously. Moreover, because of its nonpara-
metric regression nature, this approach for general maps also
has favorable computational advantages in model fitting over
parametric functional mapping, especially when the paramet-
ric form is rather complicated and therefore a numerical op-
timization algorithm has to be used to search for MLEs of
unknown parameters.

Our proposed nonparametric functional mapping with a
dense map is essentially an association analysis with an exact
multiple testing adjustment. It is a widely applicable strategy
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as shown in our example of pharmacogenomic discovery using
linkage-directed association studies with dense SNP markers.
The multiple testing adjustment part for backcross popula-
tions involves computation of a matrix with dimension mL
(2mL for F2 or SNPs), the product of marker numbers m
and the number of B-splines L, which may require comput-
ers with enough memory to generate Z from MVN (0, Δ) di-
rectly when the number of dense markers considered is huge.
The key to avoid this problem is that the structure of the
covariance matrix of Z allows one to simulate random vari-
ables with MVN (0, Σ) and then get random variables with
MVN (0, Δ) through multiplying by the matrix W̃.

Instead of using B-splines, as in this article, many other
basis functions can be used (e.g., penalized splines, regression
splines, or wavelets). One advantage of using B-splines here
is that we can use a simulation procedure to determine the
critical value for nonparametric functional interval mapping
because the smoother matrix is independent of observed
phenotypic values. For smoothing with B-splines, the number
of knots one should use and where to put them is an open
question. In the poplar stem growth example, we used evenly
distributed inner knots because the observation time points
were all equidistant. We used about �T/2� inner knots to
estimate the mean curves in those examples, and estimation
of the underlying mean curves seems acceptable, as seen
in the simulation. Because in reality the dynamic traits
through time or other observation units are usually smooth,
a small number of splines with order three may be enough
for estimation purposes. From our experience, the results are
not sensitive to different sets of basis functions or different
numbers of knots used, given that the underlying curves are
reasonably estimated.

Fundamental assumptions for our proposed method are
normality of the errors and homoscedasticity of the analyzed
phenotypes, and the question of robustness is natural. As in
Coppieters et al. (1998), because the significance levels are
deduced from a simulation procedure or phenotype permu-
tation, our proposed method for a general map is relatively
insensitive to the nonnormality of the residual variation. For
the dense map case we calculate a family-wise error rate di-
rectly from the theoretical joint distribution of the LRT statis-
tics. Based on simulation studies, we found that again our
method is relatively insensitive to model misspecification be-
cause the distribution of p-values obtained from data with
nonnormal residuals is not significantly different from those
obtained from data with normal residuals. Simulation study
details can be found in Web Appendix D.

Functional mapping can address a number of biologically
meaningful questions (see Wu et al., 2004). Nonparametric
functional mapping can also generate hypotheses to shed light
on biological questions. For example, whether the detected
QTL affects the rate of the change of longitudinal trajectories
at a particular time point t0 can be tested by formulating the
hypotheses

H0 :
∂μ1(t)

∂t
=

∂μ2(t)
∂t

∣∣∣∣
t=t0

versus H1 :
∂μ1(t)

∂t
�= ∂μ2(t)

∂t

∣∣∣∣
t=t0

.

(7)

The time at which the rate of the change of the longitudinal
trait is maximum can be estimated by restricting the deriva-
tives of m1(t) and m2(t) to equal zero and solving for t0.
Therefore, our model can be used to test how the QTL de-
tected controls the timing of maximum change rate in a time
course.

When we illustrated our proposed method for a general
map, we used a backcross design in both the simulation stud-
ies and a real data example for clarity of description. How-
ever, our method for a general map can easily be extended for
application in more complex designs, such as an F2 or full-
sib family. For example, for an F2 population with a general
map, the likelihood function is a mixture of three multivariate
normal density functions instead of a mixture of two (as in
a backcross population). We used SNPs to demonstrate our
method for a dense map, and this can be easily extended to
multiallelic dense marker cases (details are in Web Appendix
B). Also, an extension to model the association or interaction
of two or more QTL can make this nonparametric functional
mapping methodology more powerful.

5. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections
2.1, 2.3.1, 2.3.2, 3.1, and 4 are available under the Pa-
per Information link at the Biometrics website http://www.

biometrics.tibs.org.
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