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Summary

This paper deals with the detection of multiple changepoints for independent
but non identically distributed observations, which are assumed to be modeled
by a linear regression with normal errors. The problem has a natural formu-
lation as a model selection problem and the main difficulty for computing
model posterior probabilities is that neither the reference priors nor any form
of empirical Bayes factors based on real training samples can be employed.

We propose an analysis based on the intrinsic priors, which do not require real
training samples and provide a feasible and sensible solution. For the case of
changes in the regression coefficients very simple formulas for the prospective
and the retrospective detection of changepoints are found.

On the other hand, when the sample size grows the number of possible
changepoints also does and consequently the number of models involved. A
stochastic search for finding only those models having large posterior proba-
bility is provided. Illustrative examples based on simulated and real data are
given.

Keywords and Phrases: Bayes factors; changepoints; intrinsic priors;
model selection; posterior model probabilities; stochastic search.

1. INTRODUCTION

There is an extensive literature on the changepoint problem from both the prospec-
tive and retrospective viewpoint, for single and multiple changepoints, with para-
metric and nonparametric sampling models, mainly from a frequentist point of view.
For a review see the paper by Lai (1995).

This paper has been supported by MCyT grant SEJ2004–2447 (E. Moreno and F. J.
Girón) and NSF grant DMS04–05543 (G. Casella).
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The prospective, or on line, changepoint problem consists in the “sequential”
detection of a change in the distribution of a set of time-ordered data. In the
retrospective changepoint problem the inference of the change in the distribution of
the set of time-ordered data is based on the whole data set. These are two related but
different problems. Each of them can be formulated as a model selection problem,
and while the latter assumes that multiple changes might occur, the former looks
for the first time a change is detected.

Under the Bayesian viewpoint, the retrospective analysis have been considered
by many authors, for instance Chernoff and Zack (1964), Bacon and Watts (1971),
Ferreira (1975), Smith (1975), Choy and Broemeling (1980), Smith and Cook (1980),
Menzefrique (1981), Raftery and Ackman (1986), Carlin et al. (1992), Stephens
(1994), Kiuchi et al. (1995), Moreno, Casella and Garćıa-Ferrer (2005), among oth-
ers. Except for the last one, these papers have in common that the prior distribution
of the position of a single changepoint is assumed to be uniformly distributed, and
for the parameters of the models before and after the change, conjugate distribu-
tions are considered. The hyperparameters are determined either subjectively or
using empirical Bayes estimators. Sometimes the values of the hyperparameters
are chosen to obtain flat priors. An exception is Raftery and Ackman (1986) and
Stephens (1994) where objective improper priors were considered. In the former
paper the arbitrary constant involved in the Bayes factor for the improper priors
was determined by assigning the value one to the Bayes factor at a given sample
point, which is subjectively chosen, as in Spiegelhalter and Smith (1982). In the
latter paper the value one was assigned to the constant.

An alternative to these conventional methods is to use intrinsic priors (Berger
and Pericchi, 1996; Moreno et al., 1998) which are automatically derived from the
structure of the model involved, do not depend on any tuning parameters, and have
been proved to behave extremely well in a wide variety of problems, in particular
for multiple testing problems involving normal linear models (Casella and Moreno,
2006; Girón et al., 2006b; Moreno and Girón, 2006). We will argue in Section 3 that
among the existing objective Bayesian procedures the one based on intrinsic priors
seems to be the only one that can be employed for the changepoint problem.

This paper generalizes the paper by Moreno, Casella and Garćıa-Ferrer (2005) in
two directions. First, multiple changepoints are deemed possible. Second, the obser-
vations between two consecutive changepoints are independent but not identically
distributed. Here, a normal linear model with deterministic explanatory variables
is assumed for the sample observations.

The remainder of the paper is organized as follows. Section 2 formulates the
prospective and retrospective changepoint problems. For the normal linear regres-
sion model, in Section 3 we discuss the difficulties in assessing prior distributions
for all the model parameters involved, propose uniform priors for the number of
changepoints, and a conditional uniform prior for the position of these changes, and
intrinsic priors for the model parameters. Section 4 focuses on several issues related
to the objective analysis of the homoscedastic normal linear model, and its relation
with maximum likelihood approach to the problem. Section 5 is devoted to com-
putational issues, Section 6 illustrates the findings on real and simulated data, and
Section 7 contains some extensions and concluding remarks.

2. FORMULATION OF THE CHANGEPOINT PROBLEM

Let Y be an observable random variable with sampling distribution f(y|θ), θ ∈ Θ,
and yt = (y1, . . . , yn) a vector of sequential observations. A single changepoint in
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the sample means that there is a position r in the sample, 1 ≤ r ≤ n − 1, such
that the first r observations come from f(x|θ1) and the rest of the observations
from f(x|θ2), where θ1 6= θ2. The extension of this definition to more than a single
changepoint, i.e., multiple changepoints, is straightforward.

Later on this sampling distribution will be taken as a multivariate normal dis-
tribution whose mean may depend on some deterministic covariates, one of which
might be a time variable.

2.1. Retrospective formulation

We approach the retrospective multiple changepoints problem as one of model se-
lection in which for a fixed sample size n we admit, in the first instance, that all
possible changepoints configurations might occur and want to order the associated
models with respect to a given criterion. In section 3 we will discuss the case of
ruling out some models a priori, for instance, those containing two or more succes-
sive changepoints. In our approach, the Bayesian criterion will be dictated by 0− 1
loss functions meaning that the models be compared according to their posterior
probabilities.

It is convenient to think of the models involved as a hierarchy: first conditionally
on a given number of changepoints, and then to allow the number of changepoints
to vary.

Let p, 1 ≤ p ≤ n − 1, denote the number of changepoints in the sample, rp =
(r1, . . . , rp) the positions at which the changes occur, and Srp = (yt

1, . . .y
t
p+1) the

partition of the vector of observations y such that the order of appearance of the
observations in the vector is preserved. Thus, this generic partition is given by

Srp
= (yt

1, . . .y
t
p+1) = {(y1, . . . , yr1), (yr1+1, . . . , yr2), . . . , (yrp+1, . . . , yn)}.

The sampling distribution for the partition Srp is

f(y|θp+1, rp, p) =
Yr1

i=1
f(yi|θ1)

Yr2

i=r1+1
f(yi|θ2)× · · · ×

Yn

i=rp+1
f(yi|θp+1),

where the number of changepoints p, their position rp = (r1, . . . , rp), and the asso-
ciated parameters θp+1 = (θ1, . . . θp+1) are unknown quantities. The integer vector
variable rp belongs to the set Np= {(r1, . . . , rp) : 1 ≤ r1 < r2 < . . . < rp ≤ n − 1}.
and the parameter θp+1 belongs to the set θp+1 = Θ1 × . . . × Θp+1. The singular
case of p = 0 corresponds to the case of no change; in this case we set r0 = n, and
the corresponding partition is S0 = {y}. The sampling distribution in this case is
given by

f(y|θ, n, 0) =
Yn

i=1
f(yi|θ0).

In the changepoint problem, we are primarily interested in making inferences on
p and rp but inferences on θp+1, or some functions of θp+1, may also be of interest.

In what follows we suppress the subscripts of the θ’s and r’s when there is no
possibility of confusion due to their dependence on p.

All the possible sampling models can be classified into boxes {B0, . . . , Bn−1},
where box B0 contains the model with no change, B1 contains the models with one
changepoint, and so on.

Assuming a prior distribution for the parameters (θ, r, p) such that (θ, r, p) ∈
Θp+1 ×Np × {0, 1, . . . , n− 1}, say π(θ, r, p) generally given by the hierarchical de-
composition π(θ|r)π(r|p)π(p), we have a general Bayesian model for the changepoint
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problem. Note that referring to the parameter p is equivalent to referring to the
generic box Bp which contains all sampling models with exactly p changepoints, so
that the prior probability π(p) assigned to the occurrence of p changepoints in the
sample, is equivalently the prior probability assigned to the box Bp.

The main interest in our setting is making inferences on three quantities, first
on the number of changepoints p, second on the configuration r conditionally on p
and, in the third place, on the configuration r on the whole set of models comprising
the set of all boxes B = B0 ∪ B1 ∪ . . . ∪ Bn−1. Thus, all we need is to compute
π(p|y), π(r|y, p) and π(r|y).

To single out the model with changepoints at vector r it may be convenient to
refer to it as model Mr. Note that every changepoint model Mr is contained in one
and only one box Bp; therefore, π(r|p) = 0 if r /∈ Np.

Let m(y|Mr) denote the marginal of the data y given model Mr, that is

m(y|Mr) = m(y|r) =
R

f(y|θ, r, p)π(θ|r) dθ,

and m(y|M0) the marginal under the no change model M0, that is

m(y|M0) =
R

f(y|θ0)π(θ0, n, 0) dθ0.

If Brn = m(y|Mr)/m(y|M0) denotes the Bayes factor for comparing model Mr

against M0, straightforward probability calculations render the required posterior
probabilities in terms of the Bayes factor —as will prove more convenient in the
sequel, instead of the marginal m(y|Mr)—, as follows

π(p|y) =
π(p)

P
s∈Np π(s|p)Bsn(y)Pn−1

q=0 π(q)
P

s∈Nq π(s|q)Bsn(y)
, for p ∈ {0, 1, . . . , n− 1}, (1)

P (Mr|y, p) =
π(r|p)Brn(y)P

s∈Nq π(s|q)Bsn(y)
, for Mr ∈ Bp, (2)

P (Mr|y) =
π(p)π(r|p)Brn(y)Pn−1

q=0 π(q)
P

s∈Nq π(s|q)Bsn(y)
, for Mr ∈ B, (3)

where, by convention, the Bayes factor for comparing the no chage model M0 with
itself is B0n = 1.

As said above, when using 0–1 loss functions, the optimal decision on the discrete
parameters p and r is to choose the model having the highest posterior probability
of their corresponding distributions.

If inferences on the parameters θ or functions of them are required —in this
case neccessarilly conditional on p—, they are made from the following posterior
distribution

π(θp+1|y, p) =
X
s∈Np

π(θp+1|y, s, p)π(s|y, p). (4)

2.2. Prospective formulation

The prospective formulation consists in detecting the first time n in which we choose
the box B1 against the box B0, thus indicating that an unexpected change or
anomaly might occur in a neighborhood of n. In quality control, it is understood
that in that case we must stop the experiment and make a decision.
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2.2.1. Stopping rules

For a fixed sample size n, the Bayesian models in box B1 are given by

Mr1 : {f(y|θ1, θ2, r1, 1), π(θ1, θ2|r1)π(r1)}, for r1 = 1, . . . , n− 1,

and the Bayesian model for the no change model in box B0 is given by

M0 : {f(y|θ0, n, 0), π(θ0)}.

From expression (1) for p = 0 and p = 1, conditional on p ≤ 1, and assuming that
π(p = 0) = π(p = 1) = 1/2, we have

π(p = 0|y) =
1

1 +
Pn−1

r1=1 π(r1)Br1n(y)
, π(p = 1|y) =

Pn−1
r1

π(r1)Br1n(y)

1 +
Pn−1

r1=1 π(r1)Br1n(y)
,

so that box B1 is to be chosen if π(p = 1|y) > π(p = 0|y) for the corresponding
sample size n. Therefore, the Bayesian stopping rule is to stop at time N given by

N = inf
n

n :
Xn−1

r1=1
π(r1)Br1n(y) > 1

o
. (5)

Note that the general stopping rule (5) depends on a simple statistic which is a
weighted sum of Bayes factors, where the weights are the prior probabilities of
the models in box B1. Hence, there remains the problem of eliciting these prior
probabilities. If we choose a uniform distribution for r1, that is π(r1) = 1/(n− 1),
the stopping rule becomes

NU = inf
n

n :
1

n− 1

Xn−1

r1=1
Br1n(y) > 1

o
.

Other choices for π(r1) are deemed possible; for example, for one-step ahead on
line detection, if we set π(r1) = 0 for r1 = 1, . . . , n − 2 and π(n − 1) = 1, then the
stopping rule is

Nosa = inf
˘
n : B(n−1)n(y) > 1

¯
.

This rule might be of interest for anticipating the first instance whether either
an outlying observation or a possible changepoint, though it can not discriminate
between both possibilities; therefore the need to develop a more comprehensive
strategy to on-line detection, which we now describe.

2.2.2. Monitoring

For on line detection of the first true changepoint —one which lasts more than
one or a small number of observation, usually larger than the dimension, say k, of
the parameters θj— a Bayesian monitoring procedure would be required which is
not only more informative than a stopping rule but it is capable of discerning on
line between transient changepoints, usually outlying observation, and a permanent
changepoint.

From our perspective, monitoring can be accomplished by applying the retro-
spective procedure sequentially to the available data at every time instant n. This
produces an array of sequences of either Bayes factors Br1n for all possible values
of r1 = 0, . . . , n or, what is equivalent but much more convenient due to the use
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of a common probability scale, the posterior probabilities P (Mr1 |y) given by (2)
conditional on p ≤ 1. Therefore, the array we compute is

P (M0|y1)
P (M0|y1, y2) P (M1|y1, y2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P (M0|y1, . . . , yn) P (M1|y1, . . . , yn) . . . P (Mn−1|y1, . . . , yn),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This monitoring procedure, when applied to real and simulated data, provides a
very satisfactory solution to the problem of detecting the first changepoint because it
is able to discriminate between isolated changepoints —single or patches of outlying
observations— and the first true permanent changepoint. Note that for starting the
monitoring process, the minimum sample size required n has to be larger than the
dimension of the parameter space.

3. OBJECTIVE BAYESIAN METHODS

Once a sampling model is established, the main difficulty for both the prospective
and retrospective detection of a changepoint is to assess the prior distributions for
all the parameters in the models. Ideally, we would like that our subjective degree
of belief on the parameters were sufficient to define the prior distributions for the
problem. However, in real applications there are many parameters, as in the linear
case, and to subjectively elicit the prior distributions is a very hard and demanding
task. Thus, we have to rely on automatic or objective methods for deriving priors
for the analysis.

3.1. Objective priors for the discrete parameters

On the discrete parameters p and r uniform priors are the common choice. We
have, in principle, two ways of assessing a uniform prior on these parameters: first,
a uniform prior on the set of all possible model B, meaning that π(r, p) = 1/2n−1

for r ∈ ∪pNp; and, second, using the hierarchical nature of the prior π(r, p) =
π(r|p)π(p), assigning first a uniform prior on the set {0, 1, . . . , n − 1}, and then a
uniform prior on each box Bp, that is

π(r, p) =
1

n

1`
n−1

p

´ =
p!(n− p− 1)!

n!
, if r ∈ Np. (6)

This second choice automatically takes into account the fact that boxes Bp

contains different number of models —note that the number of models in box Bp is`
n−1

p

´
which also depends on the sample size n—.

On the other hand, if a uniform prior on the set of all models were used as
in the first choice, the marginal of p is a Binomial distribution with parameters
n − 1 and 1/2 instead of a discrete uniform. This means that, a priori, models
with either a small or a large number of changepoints have a very small probability
when compared with models with a number of changepoints of about n/2; and, this
situation worsens when the sample size n increases. As expected, the use of this
prior in simulated and real data produces paradoxical results, while the second prior
produces very sensible results. Consequently, the first prior is ruled out from both
theoretical and practical reasons.
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Using the prior given by (6), formulas (1), (2) and (3), respectively simplify to

π(p|y) =
p!(n− 1− p)!

P
s∈Np Bsn(y)Pn−1

q=0 q!(n− 1− q)!
P

r∈Nq Brn(y)
, for p = 0, 1, . . . , n− 1, (7)

P (Mr|y, p) =
Brn(y)P

r∈Np Brn(y)
, for r ∈ Np, (8)

P (Mr|y) =
p!(n− 1− p)!Brn(y)Pn−1

q=0 q!(n− 1− q)!
P

r∈Nq Brn(y)
, for r ∈ ∪pNp. (9)

So far, all possible configurations r have been given a priori a positive prob-
ability. However, in practice, a consecutive pair of changepoints, which implies a
partition of the data containing a single observation, should not be accepted as a
true changepoint for this would correspond to an abrupt change caused by a single
outlier between two adjacent observations.

Further, for estimating the k-dimensional parameter θj of the corresponding
partition yj we need at least a sample size larger than or equal to the dimension
of θj . Hence, reducing the number of configurations by taking into account the
preceding restrictions seems realistic in most problems. Therefore, the prior on r
and p should now depend on a certain set of restrictions, say Rk, on the space of all
models ∪pNp. Instead of working with the expression of the prior conditional on Rk

which, in some circumstances, may be difficult to specify, a much better strategy
(see Box and Tiao 1992, pp. 67–69) is to restrict the posterior in the space of all
models P (Mr|y) conditioning to the set (∪pNp) ∩Rk, i.e., , to consider

P (Mr|y, Rk) ∝ p!(n− 1− p)!Brn(y) for r ∈ (∪pNp) ∩Rk.

Note that, for example, if we only consider those configurations r that satisfy
the restriction rj − rj−1 > k for all j, then it is easy to show, using a simple
combinatorial calculation, that for all p > (n + k − 1)/(k + 1) the sets Np ∩Rk are
empty, and the remaining ones have fewer models, except boxes B0 and B1.

3.2. Objective priors for the continuous parameters

For the conditional distribution of θ|r either conjugate priors or vague priors, usually
a limit of conjugate priors with respect to some of the hyperparameters, are typically
used. A difficulty is that conjugate prior distributions depend on many hyperparam-
eters which need be assessed, and vague priors hide the fact that they are generally
improper and consequently model posterior probabilities are not well-defined. Thus,
it seems to us that, for the parameters θ of the conditional distribution θ|r, objective
Bayesian priors might be appropriate here. Unfortunately, the objective reference
priors for normal linear models are also improper.

We also note that to replace Brn(y) with an empirical Bayes factor based on
real training samples —for instance some sort of intrinsic Bayes factors—, is ruled
out since a changepoint may occur before we have a training sample of minimal size.

To compute the Bayes factor Brn(y) we propose to use as priors for θ0 and
θ|r the intrinsic priors (πN (θ0), πI(θ|r)) derived from the improper reference priors
πN (θ0) and πN (θ|r). Intrinsic priors do not use real training samples but theoretical
ones and hence the difficulty due to the absence of real training samples disappear.
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Further, they are completely automatic and hence there is no need to adjust any
hyperparameter. Moreover, the no changepoint model M0 is nested into any other
Mr, so that intrinsic priors for comparing a model with changepoints at position
r with the no changepoint model do exist. The formal expression of the intrinsic
prior for the parameters of the distribution θ|r conditional on an arbitrary but fixed
point of the parameter of the no changepoint model θ0, say πI(θ|θ0, r), is given by

πI(θ|θ0, r) = πN (θ|r) EY(`)|θ,r
f(Y(`)|θ0, n)R

f(Y(`)|θ, r)πN (θ|r)dθ
,

where the expectation is taken with respect to f(Y(`)|θ, r), ` being the minimal
training sample size such 0 <

R
f(Y(`)|θ, r)πN (θ|r)d θ < ∞, (Berger and Pericchi

1996).
This conditional intrinsic prior is a probability density, and the unconditional

intrinsic prior for θ|r is given by

πI(θ|r) =
R

πI(θ|θ0, r)π
N (θ0) dθ0,

which is an improper prior if the mixing distribution πN (θ0) is also improper. How-
ever, the Bayes factor for intrinsic priors is a well-defined Bayes factor (Moreno
et al., 1998).

4. THE HOMOSCEDASTIC NORMAL LINEAR MODEL

Suppose that (y1, . . . , yn) follows the normal linear model

y = Xβ + ε, ε ∼ Nn(ε|0,τ2In),

where X is a n×k design matrix of full rank, β a k×1 vector of regression coefficients,
and τ2 is the common variance of the error terms. This model corresponds to the
situation of no changepoint in the sample.

We assume that the variance error does not change across the sample so that
the changes only affect to the regression coefficients.

4.1. The case of one changepoint

For clarity of exposition we consider first the case where there is only one changepoint
at some unknown position r1. Let S1 = (yt

1,y
t
2) be a partition of y where the

dimension of y1 is n1 = r1, the dimension of y2 is n2 = n − n1. We also split the
design matrix X as

X =

„
X1

X2

«
,

where X1 has dimensions n1×k and X2 has n2×k. In the notation of the preceding
sections we now have

f(y|θ0, n, 0) = Nn(y|Xβ, τ2In),

and
f(y|θ,r1, 1) = Nn1(y1|X1β1, σ

2
1In1)Nn2(y2|X2β2, σ

2
1In2).

The objective intrinsic Bayesian model for the no changepoint is

M0 : {Nn(y|Xβ, τ2In), πN (β, τ) =
c

τ
},
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and, conditional on one changepoint at position r1, the objective intrinsic Bayesian
model is

Mr1 : {Nn1(y1|X1β1, σ
2
1In1)Nn2(y2|X2β2, σ

2
1In2), π

I(β1, β2, σ)},

where πN represents the improper reference prior for β, τ (Berger and Bernardo
1992), and πI(β1, β2, σ1) the intrinsic prior for the parameters β1, β2, σ1. Next
theorem, stated without proof, provides the form of the intrinsic priors.

Theorem 1 Conditional on a fix but arbitrary point β, τ , the conditional intrinsic
prior distribution πI(β1, β2, σ1|β, τ) can be shown to be

πI(β1, β2, σ1|θ, τ) =
2

πτ(1 + σ2
1/τ2)

× Nk(β1|β, (τ2 + σ2
1)W−1

1 )×Nk(β2|β, (τ2 + σ2
1)W−1

2 ),

where
W−1

i =
n

2k + 1
(Xt

iXi)
−1, i = 1, 2.

Using this theorem, we get the following expression for the Bayes factor.

Theorem 2 The Bayes factor for the model with a changepoint at position r1

against the no changepoint model is

Br1n(y) =
2

π
(2k + 1)k/2

Z π/2

0

sink ϕ (n + (2k + 1) sin2 ϕ)(n−2k)/2

(nBr1 + (2k + 1) sin2 ϕ)(n−k)/2
dϕ

where, if denote by RSS1 = yt
1(I−H1)y1, RSS2 = yt

2(I−H2)y2 and RSS0 =
yt(I−H)y the residual sum of squares of the linear submodels induced by the par-
tition S1 and the no change model, then the statistic Br1 is

Br1 =
RSS1 + RSS2

RSS0
.

Proof. Denoting the marginal of the data under the models M0 and Mr1 by m(y|M0) and
m(y|Mr1 ), respectively, it can be shown that

m(y|Mr1 ) =
Γ(n−k

2
)

π(n−k+2)/2

Z π/2

0

dϕ

|D0(ϕ)|1/2D1(ϕ)D2(ϕ)[H1(ϕ)−H2(ϕ))](n−k)/2
,

where

D0(ϕ) =

2X
i=1

2k + 1

n + (2k + 1) sin2(ϕ)
Xt

iXi

Di(ϕ) = sinni (ϕ)

„
1 +

n

(2k + 1) sin2(ϕ)

«k/2

, i = 1, 2,

H1(ϕ) =

2X
i=1

1

sin2 ϕ

„
yt

iyi−
n

n + (2k + 1) sin2 ϕ
yt

iXi(X
t
iXi)

−1Xt
iyi

«
,
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H2(ϕ) = (2k + 1)

 
2X

i=1

yt
iXi

n + (2k + 1) sin2 ϕ

!
 

2X
i=1

Xt
iXi

n + (2k + 1) sin2 ϕ

!−1 2X
i=1

Xt
iyi

n + (2k + 1) sin2 ϕ

!

and

m(y|M0) =
Γ(n−k

2
)

π(n−k)/2(yt(In −H)y)(n−k)/2|XtX|1/2
,

with H = X(XtX)−1Xt the hat matrix of the no change model. After some cumbersome
algebraic manipulations we finally get the simplified expression of the Bayes factor. �

From this expression we note that the Bayes factor depends on the data through
the sum of square of the residuals associated to the partition of the vector of obser-
vations at the position of the changepoint. Furthermore, the partition S1 for which
the sum RSS1 + RSS2 is minimum is the partition with the highest Bayes factor.
Therefore, inside the box B1 the ordering provided by ranking the models according
to their values of RSS1 +RSS2, and according to their model posterior probabilities

P (Mr1 |y, p = 1) =
Br1n(y)Pn−1

r1=1 Br1n(y)
, r1 = 1, . . . , n− 1,

is the same.
However, in the class B = B0 ∪B1 the ordering of the models is given by the

values of their models posterior probabilities conditional on p ≤ 1, that is

P (Mr1 |y, p ≤ 1) =
Br1n(y)

n− 1 +
Pn−1

r1=1 Br1n(y)
,

and

P (M0|y, p ≤ 1) =
n− 1

n− 1 +
Pn−1

r1=1 Br1n(y)
.

From these formulas, it is clear that the new ordering of the models in the box
B1 is the same as before.

4.2. The case of multiple changepoints

For the analysis of the general case when there are p changepoints located at
positions r = (r1, . . . , rp), let the corresponding partition of the data be Srp =

(yt
1, . . .y

t
p+1) and for i = 1, . . . , p + 1, where r0 = 0 and rp+1 = n, let the dimension

of each yi be ni = ri− ri−1. Extending the analysis of the previous subsection, it is
easy to see that the Bayes factor for the corresponding intrinsic priors for comparing
the model with p changepoints at r and the model with no changepoint, Brn(y),
turns out to be

Brn(y) =
2

π
((p+1)k+1)pk/2

Z π/2

0

sinpk ϕ (n + ((p + 1)k + 1) sin2 ϕ)(n−(p+1)k)/2

(nBr + ((p + 1)k + 1) sin2 ϕ)(n−k)/2
dϕ

(10)
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where

Br =
Tr

RSS0
=

RSS1 + · · ·+ RSSp+1

RSS0

,

RSSi is the residual sum of squares associated to the linear submodel corresponding
to the data yi, i.e, yi = Xiβi +εi, and Tr is the total of the residual sum of squares.

We observe again that the Bayes factor (10), for fixed values of p, is a decreasing
function of the total of the residual sum of squares of the partition at the positions of
the changepoints. This result, together with expression (8), imply that, conditional
on the occurrence of p changepoints, i.e., within box Bp, the model Mr with the
highest posterior probability P (Mr|y, p) is the one that minimizes the total

Tr = RSS1 + · · ·+ RSSp+1,

and both criteria render the same ordering.
On the other hand, the ordering of the models in the whole class of models

∪n−1
p=0 Bp is obtained from the values of

P (Mr|y) =
p!(n− p− 1)!Brn(y)Pn−1

q=0 q!(n− q − 1)!
P

s∈Nq Bsn(y)
, if r ∈ ∪pNp, (11)

or, equivalently, from the values of p!(n− p− 1)!Brn(y).
Note that in the class of all models B the ordering given by equation (11)

restricted to any of the boxes Bp is the same as the one given by minimizing Tr.

One nice property of the Bayes factor for the intrinsic priors is the following.
For p ≥ n/k − 1, the minimum of Trp is clearly 0. It can then be shown that the
Bayes factor for the intrinsic priors is a decreasing function of p, for fixed n and k,
such that its value at p = n/k − 1 is equal to 1. Thus, for any integer p such that
p ≥ n/k− 1 the Bayes factor of any model in box Bp is smaller than 1, which is the
default Bayes factor of the no change model.

This property automatically penalizes models with too many changepoints p;
namely, no model in any box Bp such that p ≥ n/k − 1 will ever be preferred to
the no change model, and the posterior probability of p changepoints will always be
smaller than that of the no change model.

On the other hand, this restriction on p is often included in the formulation of
the multiple changepoint problem to avoid the problem of estimating the regres-
sion coefficients when the number of data is smaller than the number of regressor
variables (see Subsection 4.4).

4.3. Relationship with the likelihood approach

It is straightforward to see that, conditional on p, the maximum of the profile
likelihood function L(r) is attained at the configuration r which minimizes the value
of the statistic Tr = RSS1 + . . . + RSSp+1. Consequently, inside the box Bp the
optimal Bayesian model for the intrinsic priors and the one corresponding to the
profile MLE of r are the same and further, from expression (10), the ordering of the
models produced by the values of the profile likelihood is the same as the one given
by the posterior probabilities.

The profile likelihood function, whose maximum as a function of r increases
as p increases, goes to infinity when Trp = 0. This happens for all p ≥ n/k − 1,
thus making impossible the task of estimating the number of changepoints or even
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of comparing different configurations of multiple changepoints unless some penalty
function is included in the profile likelihood function or some additional criterion is
used for comparing among the different boxes.

When none of the contemplated models is the true model —a realistic assump-
tion when analysing real data— and the sample size is large, the values of the profile
likelihood function for models in a given box, say Bp rank the models as follows: the
largest likelihood corresponds to the model in Bp closest to the true model, the sec-
ond largest corresponds to the second closest, and so on, where close is understood
here in terms of the Kullback-Leibler pseudo-distance. Intrinsic model posterior
probabilities also share this nice property. But, as soon as we have to rank models
from different boxes, the likelihood approach fails, as also does the AIC correction;
however, model posterior probabilities derived from the intrinsic Bayes procedure
—which also includes the objective prior distribution for r and p—automatically
take care of the differences in size among the boxes as seen from expressions (10)
and (11).

Once that we have established the relationship between the Bayesian and the
likelihood approaches to the changepoint problem, the following natural question
arises: Is the use of the intrinsic model posterior probabilities a really objective
Bayesian procedure for changepoint problems?

The answer —we believe— is yes. Our argument runs as follows: Condi-
tional on the number of changepoints p the total of the residual sum of squares
Trp =

Pp+1
i=1 RSSri is the minimal sufficient statistic for estimating the changepoint

configuration r. Therefore, the vector statistic (Tr0 , . . . , Trn−1) is the minimal suf-
ficient statistic for making inferences on the set of all sampling models B. But, as
the Bayesian procedure based on intrinsic model posterior probabilities depends on
the Bayes factor for the intrinsic priors given by expression (10), and this, in turn,
depends on (Tr0 , . . . , Trn−1), and, further, does not either depend on any hyperpa-
rameters nor statistic but the ancillary n and k, we conclude that it is an objective
procedure.

4.4. Estimating the magnitude of the changes

Sometimes, conditional on the ocurrence of p changepoints, the interest might
be on estimating the variations produced by the changepoints in the parameters
β1, . . . βp+1, which can inform us on the magnitude of these changes. The use of
the intrinsic priors for estimating the parameters does not provide simple analytical
expressions and even the numerical computation of the estimates are cumbersome.
Instead, and recalling that the intrinsic priors are also improper priors based on the
reference priors, the use of these priors for estimation produces a simple and sensible
posterior for the whole parameter set β1, . . . βp+1.

Conditional on the occurrence of p changepoints in the sample, the reference
prior for β1, . . . , βp+1, σp, where we want to remind that σp also depends on p, is

πN (β1, . . . βp+1, σp) = c/σp

Multiplying this prior by the likelihood function

fn(y|β, σp, s) =
Yp+1

i=1
Nni(yi|Xiβi, σ

2
pIni)

conditional on p changepoints at position vector r = (r1, r2 . . . , rp) and normalizing,
after some algebra, it renders the posterior of β1, . . . , βp+1, σp conditional on y, r
and p, which is a multivariate normal-sqrt-inverted-gamma distribution.
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Integrating out σp in this posterior, the resulting posterior distribution of the
p + 1 regression parameters, conditional on the data y, and the occurrence of p
changepoints at position vector r, is the following multivariate Student t distribution

0B@ β1

...
βp+1

1CA ∼ t(p+1)k

264
0B@ β̃1

..

.
β̃p+1

1CA , s2

0B@ (X1
tX1)−1 . . . O

O
. . . O

O . . . (Xp+1
tXp+1)−1

1CA ; ν

375 (12)

where β̃1, . . . , β̃p+1 denote the least squares estimates of the corresponding regres-
sion coefficients, conditional on the partition induced by r, s2 = Trp/ν is the usual

estimate of the variance σ2
p, and ν = n− (p + 1)k are the degrees of freedom. Inci-

dentally, note that for this posterior distribution to be proper and neither singular
nor degenerate, the conditions ν > 0, s2 > 0 and |Xi

tXi| > 0 must hold, and for this
it is neccessary that the number p of changepoints be strictly smaller than n/k − 1
and that the partitions yi of y should have a minimum size ni ≥ k.

This is the —small— price to be paid in order to estimate the regression parame-
ters using the reference prior instead of the intrinsic one. Note that these constraints
imply a reduction in the number of boxes Bp and in the models within each box,
except when k = 1.

Finally, the conditional posterior of the regression parameters on p is the follow-
ing mixture of multivariate Student t distributions

π(β1, . . . , βp+1|y, p) ∼
X

s
π(β1, . . . , βp+1|y, s, p)P (Ms|y, p), (13)

where π(β1, . . . , βp+1|y, s, p) are given by equation (12) for configuration s, the
weights of the mixture are P (Mr|y,p) =Brn(y)/

P
s Bsn(y), and the number of

mixture terms and the sum are restricted to those configurations s satisfying the
constraints ni > 0 for i = 1, . . . , p + 1.

The most useful parameters of interest in changepoint problems are the suc-
cessive differences δi = βi+1 − βi for i = 1, . . . , p, the corresponding distributions
of which can be easily obtained from equations (12) and (13), using well known
properties of the multivariate Student t distribution. In fact,

δi|y, r, p ∼ tk(β̃i+1 − β̃i, s
2((Xi

tXi)
−1 + (Xi+1

tXi+1)−1); ν)

and

δi|y, p ∼
X

s
tk(β̃i+1 − β̃i, s

2((Xi
tXi)

−1 + (Xi+1
tXi+1)−1); ν)P (Ms|y, p).

Thus, as a conclusion, for parameter estimation using the reference priors, the
simplicity of working with well known distributions, from which it is also easy to
sample if Montecarlo estimates are needed for more complex functions of the param-
eters, compensates the very small numerical differences between the intrinsic and
the reference Bayesian approaches. However, when model comparison is involved,
as in making inferences on r or p, reference priors on the papameters can not be
used: they simply do not work. Intrisic priors for changepoint problems involving
normal linear models, on the other hand, have nice theoretical properties, behave
as true objective priors, and, as we will see, they work very well in both simulated
and real data sets.
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5. COMPUTATIONAL ISSUES

By far, the main difficulty in the analysis of changepoint problems is the large
number of possible models, which is 2n−1. Computing Bayes factors for the intrinsic
priors for all models is thus unfeasible. Unless the number of changepoints p be
known and small, the computation of Bayes factors for all models can be very time
consuming. Therefore, we need to devise estrategies to detect the most probable
models in each box Bp and also estimating the total or the mean of the Bayes factors
within each box.

5.1. Forward Search

A simple procedure to tackle the first problem, which can be named or described
as sequential forward search, is to visit sequentialy all boxes starting from box B0,
which contains a single model —the no change model, whose Bayes factor is always
equal to 1— then box B1 which contains n−1 models and selecting the changepoint
with highest Bayes factor and so on, retaining at each step the preceding model
and adding the new changepoint with highest Bayes factor within the correspoding
box. In this way, and in the case of examining all boxes, we only have to compute
1 + (n− 1) + (n− 2) + . . . + 1 = n(n− 1)/2 + 1 Bayes factors at most.

The proposed forward changepoint search is a fast algorithm for finding a rela-
tively good changepoint configuration within each box, as will be shown in the ex-
amples, without the need to resort to an exhaustive all models search, which turns
out to be unfeasible even for small sample sizes. On the other hand, it provides no
answer to the problem of estimating the number p of changepoints. In addition, this
algorithm may have the same similar drawbacks as the classical stepwise algorithms
(forward selection and backward elimination) used for variable selection in regres-
sion, in its Bayesian counterpart, see Girón, Moreno and Mart́ınez (2006a), as it is
just a conditional sequential search estrategy. Notwithstanding these weaknesses,
this algorithm usually locates within each box models with high Bayes factors.

By adapting the Gibbs sampling procedure proposed by Stephens (1994) in
subsection 3.1, pp. 166–167, sampling from the discrete distribution of Mr|y, p
seems very easy as the model posterior probabilities are proportional to the Bayes
factor for intrinsic priors Brn. On the other hand, sampling from the posterior Mr|y
seems a much more demanding task.

All this prompted us to devise an efficient stochastic search algorithm for the
multiple changepoint problem.

5.2. Retrospective search

For the retrospective search, we find that a random walk Metropolis-Hastings algo-
rithm works very well. We choose a symmetric random walk, and use the posterior
probability (11) as the objective function. This insures that, at convergence, the
resulting Markov chain is a sample from the posterior probability surface. Hence,
states of high posterior probability will be visited more often.

To now choose the “best” model, or to examine a range of good models, we would
like to rank the models by their posterior probabilities, but, as mentioned above, this
is not possible, as the number of models can be prohibitively large. Moreover, it is
also the case that calculation of the denominator in (11) is prohibitive. The solution
is to construct an MCMC algorithm with (11) as the stationary distribution. Such
an algorithm, if properly constructed, would not only visit every model, but would
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visit the better models more often. Thus, a frequency count of visits to the models
is directly proportional to the posterior probabilities.

For the regression model, we keep track of changepoints with a n× 1 vector

c = (0, 0, 1, 0, 1, 0, . . . , 0, 1, 0, 0, 0)t

where “1”indicates a changepoint. At each step of the stochastic search we select
an observation at random (actually an index 1, 2, . . . , n). If it is a 1 we evaluate
whether to change it to a 0, and if it is a 0 we evaluate whether to change it to a 1.
This is done with a Metropolis step as follows:

Corresponding to a vector c there is a vector r of changepoints and a model Mr.

(i) Generate a new c′ and r′, and U ∼ Uniform(0, 1).

(ii) Calculate

ρ = min


1,

P (Mr′ |y)

P (Mr|y)

ff
.

(iii) Move to c′ if U < ρ, otherwise remain at c.

(iv) Return to 1.

6. ILLUSTRATIVE EXAMPLES: REAL AND SIMULATED DATA

The exact procedure described above, and the Metropolis algorithm of Section 5.2
were tested and compared on a number of examples, both real and simulated.

6.1. Simulated data

Example 1. We first tested the search algorithm on the data given in Figure 1,
which were simulated with the following model

yi =

8><>:
1
4
x + ε if x = 1, . . . , 6;

4 + ε if x = 7, . . . , 12;

12− 1
2
x + ε if x = 13, . . . , 18,

(14)

where ε ∼ N(0, 1). We ran the simulations for σ = 0.25, 0.5, 0.75, and typical data
are shown in Figure 1.

Note that it is very difficult to see the three different models for σ = 0.75. In
fact, it is sometimes the case that, for large σ, the true model does not have the
highest intrinsic posterior probability. In such cases, there are many competing
models that are candidates for the “best”, as we will now describe.

For each of σ = 0.25, 0.5, 0.75, the algorithm was run on 100 datasets, with
20,000 iterations of the Metropolis algorithm. The performance is summarized in
Table 1, where we measured the number of times that the true model was in the
top 5, top 10, or top 25, ranked on posterior probabilities.

Comparing the performance to the typical data sets, we see that the procedure
always finds the true model when the error is reasonable, and does worse as the error
term increases. But it is quite surprising that for σ = 0.5, where our eye cannot see
the changepoint at 6, the true model is in the top 5 34% of the time, and in the top
10 almost 60% of the time.
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Figure 1: Typical datasets and true model for data from Model (14). Note
that the changepoint at x = 6 is barely discernible for σ ≥ 0.5.

Table 1: Results of the simulations of model (14). Proportion of times
that the true model is in the corresponding top category. The models are
ranked by their intrinsic posterior probabilities.

σ Top 5 Top 10 Top 25
0.25 94 99 99
0.50 34 59 88
0.75 14 28 69

Example 2. Quandt’s Data. A second simulated data set that we look at is
from Quandt (1958), which consists of two simulated linear regressions with a slight
change at time 12. That data are given in Figure 2, and it is clear by looking at
this Figure that the changepoint is barely discernible.

The simulated data come from the two regression models

yi =


2.5 + 0.7xi + εi i = 1, 2, . . . , 12;

5 + 0.5xi + εi i = 13 . . . , 20.

The results from the exact analysis conditional on there being up to five change-
points, i.e., , p ≤ 5 can be summarized as follows: As seen from Table 2, the posterior
mode of π(p|y) is p̃ = 1, pointing out to the existence of a single changepoint. This
agrees with the true origin of the simulated data. Notice that this posterior proba-
bility does not have a very pronounced mode and that posterior probabilites to the
right of the mode decrease very slowly. This behavior is typical of small data sets
where, in addition, the models before and after the changepoint do not differ much
in the range where the covariates lay as seen from Figure 2.

On the other hand, in the space of all models, the six most probable models, are
displayed in Table 3 in decreasing order.
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The analysis of these data reveals that there is a —not clearcut— single change-
point at position 12 but, on the other hand, the no change model has higher posterior
probability than that model. The rest of models have smaller posterior probability,
but most of them are single changepoint models in the neiborhood of M12 as seen
from Table 4. It is worthwhile remarking that, for these data, the forward selection
procedure computes the best models within each box Bp as the exact method for
all p = 0, 1, 2 . . . , 5. These results are also confirmed by the monitoring procedure,
showing that the first permanent changepoint occurs at position 12.

Table 2: Posterior probabilities of the number of changepoints p.

p 0 1 2 3 4 5
π(p|y) 0.162 0.229 0.180 0.154 0.142 0.132
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14

16

Quandt’s data

Figure 2: Quandt’s simulated data from two regression lines.

Table 3: Posterior probabilities of the most probable models Mr.

Models r 0 12 10 11 9,12 9
P (Mr|y) 0.162 0.116 0.017 0.017 0.013 0.013

6.2. Real data

The following example refers to a famous real data set, which is also a favorite in
the changepoint literature.

Example 3. The Nile River Data. The data appearing in Figure 4 are mea-
surements of the annual volume of discharge from the Nile River at Aswan for the
years 1871 to 1970.

This series was examined by Cobb (1978), Carlstein (1988), Dümbgen (1991),
Balke (1993), and Moreno et al. (2005) among others, and the plot of the data re-
veals a marked and long-recognized steady decrease in annual volume after 1898.
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Figure 3: Nile’s discharge data for the years 1871 to 1970.

Some authors have associated the drop to the presence of a dam that began op-
eration in 1902, but Cobb (1978) cited independent evidence on tropical rainfall
records to support the decline in volume. A Bayesian analysis using the jump dif-
fusions, is found in Phillips and Smith (1996), though their results are not very
accurate probably due to the small number of iterations of the algorithm. Denison
et al. (2002) also consider the Bayesian analysis of these data. Both analysis use
broadly uninformative conjugate priors. Another Bayesian analysis utilizing frac-
tional Bayes factors and allowing for correlation in the error terms, is that of Garish
and Groenewald (1999), which produces results closer to ours, and provides further
references on other analysis of these data.

The results from the exact analysis conditional on there being up to three change-
points, i.e., , p ≤ 3 can be summarized as follows: As seen from Table 4, the posterior
mode of π(p|y) is p̃ = 1, clearly pointing out to the existence of a single changepoint.

On the other hand, in the space of all models, the eight most probable models
are displayed in Table 5, in decreasing order.

Table 4: Posterior probabilities of the number of changepoints p.

p 0 1 2 3
π(p|y) 0.000 0.615 0.258 0.127

Table 5: Posterior probabilities of the most probable models Mr.

Models r 28 27 26 29 19, 28 21, 28 20, 28 28, 97
P (Mr|y) 0.466 0.076 0.036 0.029 0.006 0.006 0.006 0.005

The forward search produces the same results as the exact procedure for p =
0, 1, 2. For p = 3, the forward search finds model M10,19,28 with posterior probability
0.00052 which is the fifth in position within box B3, the first being model M28,83,95

with posterior probability 0.00082, which is slightly more probable than the former.
The stochastic search mostly confirms the above results as the most visited model
occurs at position 28.
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Summarizing our findings in analyzing these data: there is a single clearcut
changepoint at position 28. The four most favored models are single changepoint
models in the neighborhood of 28, and the probability of models with two or three
changepoints are very small. The analysis of the remaining data, once the first 28
data points are deleted, clearly confirms that the point detected by the monitoring
procedure at position 28 is the only one changepoint.

7. FURTHER DISCUSSION

In this paper we regard the detection of changepoints in the distribution of a se-
quential sample of observations as a model selection problem or, equivalently, as a
multiple testing problem; consequently, we feel that a Bayesian formulation is the
simplest and accuratest way to deal with it. Changepoint problems can be anal-
ysed from two different but otherwise complementary perspectives: sequential and
retrospective. The former focuses on the first time a changepoint occurs and the
second investigates the number and position of the changes in the sample based on
the knowledge of the whole sample. However, by treating the first problem as a
retrospective analysis at each step, we get a monitoring procedure which seems to
be an excellent tool for constructing a sensible stopping rule.

We feel that monitoring should be preferred to the two stopping rules described
in subsection 2.2.1 based on Bayes factors, which generalize the classical ones based
on the likelihood estimators (Moreno et al., 2005). Nevertheless, we want to stress
the main difference between the sequential analysis —-monitoring— in which the
class of sampling models consists of the no change model and the set of models with
exactly one changepoint, and the retrospective analysis where we consider the class
of all possible models.

The main difficulties to carry out a retrospective analysis come from two sources:
i) the fact that for the continuous parameters involved in the problem —the regres-
sion coefficients and the variance errors—, the usual objective priors are unsuitable
for computing model posterior probabilities as they are improper, and ii) the huge
number of models involved for large, or even moderate, sample size makes unfeasible
the computation of all model posterior probabilities.

These difficulties are solved by using intrinsic priors for the continuous model
parameters, and a Metropolis-like stochastic search algorithm for selecting those
models with highest posterior probabilities. For the integer parameters, we have
assumed a uniform prior for the number of changepoints and, conditional on them,
a uniform prior for their models, justified by both theoretical and practical argu-
ments. When some locations are subjectively excluded, for instance we do not allow
consecutive changepoints, the posterior distribution on the models or configurations
is truncated accordingly; this is the simplest computational strategy.

The above priors provide an automatic and quite simple Bayesian analysis in
which there are no hyperparameters to be adjusted. Numerical examples indi-
cate that this objective Bayesian formulation behaves extremely well for detecting
changepoints and finding the distribution of their locations. We have also realized
that when the number of possible models is very large the Metropolis algorithm is
able to find those models with highest posterior probability in a reasonable comput-
ing time.

An additional property of the intrinsic priors is that —as they are proper distri-
butions conditionally on the parameters of the no change model and, further, have a
close form in terms of multivariate normal and half-Cauchy distributions— they are
also amenable to the implementation of a simple Gibbs algorithm involving sampling
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from standard distributions plus a simple additional Metropolis step. Although this
property has not been exploited in the paper, it will be of the utmost importance
for the extension of our model to the heteroscedastic case.
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DISCUSSION

RAÚL RUEDA (IIMAS, UNAM, Mexico)

This paper is one more of a series of papers by the authors and their collaborators
about model selection using intrinsic Bayes factors and related concepts. It is well
written and easy to follow. It was a pleasure to read it.

The paper deals with the following situation:
Sampling from a normal linear model,

y1, . . . , yn ∼ N(y|β, τ2In),

the problem is to infer the number p of potential changepoints and their correspond-
ing positions in the sample, rp = {r1, . . . , rp}, as well as to make inferences on the
regression parameters β or transformations thereof.

There are three main tasks in this model selection problem:

i). Prior assignation. Intrinsic Bayes factors cannot be used here, since a change-
point can occur in the training sample; besides, the order is relevant.

ii). Implementation. The number of models, and therefore, the number of
comparisons in retrospective analysis increases with the sample size.

iii). Monitoring. In prospective analysis, where the search for a changepoint is
carried out sequentially, the proposed strategy for on-line detection has advantages
over a stopping rule.

Concerning the implementation and monitoring issues, the authors propose a
forward searching and a Metropolis-Hasting algorithm for the retrospective search
which at the same time, provide a monitoring plan for the prospective case without
any additional effort.

The need for automatic procedures for model selection, including hypotheses
testing, has produced a variety of “objective Bayes factors”, which in some cases
behave like real Bayes factors, at least asymptotically. Almost everybody agrees
that the use of improper priors must be avoided when computing a Bayes factor.
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This is because improper priors do not, in general, define unambiguously the Bayes
factor. Unfortunately, “automatic” priors are typically improper.

In almost all the proposals, the basic idea is “to pay” with some sample infor-
mation in order to obtain proper posterior distribution from the improper prior and
use this posterior as a prior to define a real Bayes factor. Thus, we have training
samples, minimum training samples, partial samples and so on. But the intrinsic
priors, introduced by Berger and Pericchi (1996), use imaginary samples, so in the
end we do not have to pay for anything! An advantage of the automatic Bayes factor
resulting from using intrinsic priors is that “it is close to an ‘actual’ Bayes factor as
desired”.

However, it seems that the need for automatic or objective procedures has pro-
duced precisly what we criticise about frequentist statisitcs: a collection of ad hoc
methods out of Bayesian principles. As an example of this, the authors use in-
trinsic priors for model selection and reference priors to estimate the magnitude of
the changes. Morever, Bayes factors, including actual Bayes factors, can produce
incoherent results, as Lindley’s examples in the discussion of Aitkin’s paper show
(Aitkin, 1991).

A question for the authors: what about robustness? It is known that Bayes
factors, as a device for model selection, arise from theM-closed perspective, so what
happens if, for example, the errors are Student-t instead of normal?. On a related
note, I understand that the intrinsic prior depends on a “standard” noninformative
prior. How sensitive is it to this choice?

I congratulate the authors for a very interesting paper. I thank the authors
because they have forced me to take an intensive course on Bayes factors and all
their automatic extensions. When I first read his paper, a thought appeared almost
immediately in my mind. . . I hope that The Beatles will forgive me:

When I was younger, so much younger than today,
I only needed random samples to use factors of Bayes
But now these days are gone and I feel so insecure
Now I am also confused with all this new stuff

Help me if you can, with the training samples
And before they become imaginary
Help me get my feet back on the ground
Won’t you please, please help me.

NICOLAS CHOPIN and PAUL FEARNHEAD
(University of Bristol, UK and Lancaster University, UK )

Change point modelling is a ‘treat’ for Bayesians, as frequentist methods are
particularly unsatisfactory in such settings: asymptotics do no make sense if a given
model is assumed to be true only for a finite interval of time. Moreover, practition-
ers are increasingly turning their attention to simple models, which are allowed to
change over time, as an alternative to overly complicated time series models (e.g.
long memory processes) that are difficult to interpret. Any contribution to this
interesting field is therefore most welcome.

Our first comments relate to the choice of prior. The objective prior chosen
for the number of changepoints appears slightly inconsistent in the following sense.
Imagine analysing a data set with 2n observations, but where you are first given
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the first n observations to analyse, then the second half later. The uniform prior
on the number of changepoints within the first n observations, together with the
same prior on the number of changepoints in second n observation implies a prior
on the number of changepoints within the full data set that is not uniform. In
more practical terms, the choice of a uniform prior appears unrealistic: we cannot
think of any application where length of segments (distance between consecutive
changepoints) should be as small as 2. A more coherent approach is to model
directly the length of each segment (resulting in a product-partition prior structure,
see Barry and Hartigan, 1993). This produces both consistent priors (in the sense
described above), and is modelling directly an important feature of the data.

In that respect, trying to be non-informative may not always be relevant or useful
for change point models. As for any parameter with a physical dimension, there is
almost always prior information on these durations which can easily extracted: for
daily data for instance, common sense is enough to rule out durations larger than a
few years. This kind of consideration is essential in on line applications, where the
sample size n of the complete data is not known in advance.

Secondly, an alternative approach to using intrinsic priors is to have a hierar-
chical model structure where you introduce hyperpriors on the hyperparameters of
the priors for the parameters of each segment. This enables the data to inform the
choice of prior for the segment parameters. It is possible to choose the hyperpriors
to be improper in many situations (see Punskaya et al., 2002 and Fearnhead, 2006).
One advantage of this is that the priors on the parameters of each segment can be in-
terpreted in terms of describing the variation in features of the model (e.g. means)
across the different segments. It also seems mathematically and computationally
simpler than using intrinsic priors.

Finally we would like to point out some other work on Bayesian analysis of
multiple changepoint models. Perfect (iid) sampling from the posterior is possible for
certain classes of changepoint models (Barry and Hartigan, 1993; Liu and Lawrence,
1998; Fearnhead , 2005, 2006). Otherwise, standard and trans-dimensional MCMC
algorithms can be derived (Green, 1995; Gerlach et al., 2000), as well as particle
filters (Fearnhead and Clifford, 2003; Fearnhead and Liu, 2006; Chopin, 2006) for
on-line inference. These particle filters can also be used for off-line inference, and
at a smaller cost than MCMC, i.e., O(n) instead of O(n2). The MCMC algorithm
proposed in the discussed paper is also implicitly O(n2): each iteration is O(n), but
proposing at random a new change means that O(n) iterations are required to visit
a given location. In fact, since the considered linear model allows for conjugacy, it
would be interesting to see if one of the exact method mentioned above could be
used as an importance sampling proposal.

REPLY TO THE DISCUSSION

Rueda. We thank Raúl Rueda for his comments on the paper and answer the
questions he raises in his discussion.

We note that the conditional intrinsic prior is proper, and the unconditional
intrinsic prior is improper. Therefore, this impropriety is inherited from the impro-
priety of the objective reference prior that we start with. However, the Bayes factor
for intrinsic priors is a well defined limit of Bayes factors for proper priors.

The use of intrinsic priors for testing and reference priors for estimation is not at
all ad hoc. We know that reference priors are perfectly reasonable objective priors
for estimation, but they are not well-calibrated so cannot be used for testing. The
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intrinsic approach calibrates the reference prior for testing so, in fact, these two
priors are connected in this way, with each being suited for its particular task.

We have taken another look at the Lindley/Aitkin discussion, and find that we
neither agree with Lindley nor with Rueda. As Aitkin points out in his rejoinder,
it is not Bayes factors, but Lindley’s criterion, “that is ridiculous”. To illustrate,
Lindley asserts that if we prefer model M1 to M2 and M3 to M4, then we should
prefer M1 ∪M3 to M2 ∪M4. But this does not always follow. Suppose that in
a four-variable regression problem, the best model with two regressors is {x2, x4},
and the univariate models are ordered, from best to worst, {x1}, {x2}, {x3}, {x4}.
Then we prefer {x1} to {x2} and {x3} to {x4}, but {x2, x4} beats any other model
with two regressors. So Lindley’s preference ordering is not self-evident.

In our approach to changepoint problems we have assumed that the under-
lying regression models are normal. This assumption allows —in the monitoring
procedure— for distinguishing between outliers and permanent changepoints. If,
instead, we would consider Student errors —apart from the problem of deriving the
corresponding intrinsic priors and Bayes factors, as there is no sufficient statistic
of fixed dimension— it is not at all clear that outliers and changepoints could be
distinguised.

The question about how sensitive the Bayes factor is to the choice of the non-
informative prior when intrinsic priors are used is discussed at length in subsection
3.5 of Girón et al. (2006b) where, in the normal regression setting, we compare the
influence of using priors of the form

πN (θ, τ) ∝ 1

τ q
for q = 1 . . . , k,

in the posterior probability of the null.
Note that this class of priors includes the reference, when q = 1, and the Jeffreys’

prior when q = k. The conclusion was that the choice of the usual reference prior
results in a a much more stable procedure for comparing models. Box and Tiao
(subsection 2.4.6, pp. 101-102, 1992) also discuss the sensitivity of the posterior
with respect to the choice of the prior within this class in the standard normal
setting.

Finally, we thank Raúl Rueda for his thoughtful comments, and add, in a spirit
similar to his:

Hey Raúl, don’t make it bad
We take a sad prior, and make it better
Remember to let it into your heart
Then you can start to make it better.

Chopin and Fearnhead . We thank Chopin and Fearnhead for their thoughtful com-
ments. We will reply to each separately.

Choice of Prior. You are right in saying that the prior on the set of models should
not be uniform. A uniform prior penalizes the model with small number of changes
and this is not reasonable. However, we have not used a uniform prior on the
set of models, but rather have used a uniform prior on the set of boxes, and then
spread mass uniformly among the models within each box. Moreover, This prior
only depend on the ancillary sample size statistic n, so that we do not believe it
suffers from the slight inconsistency that you mention.

An objective analysis of a statistical problem is appropriate when you do not
have subjective prior information. If you have such information, by all means use it!
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For example, in analyzing the famous Coal-Mining Disaster Data, Fearnhead (2006)
chooses a Gamma prior (with specific values for the hyperparameters) for the mean
of the Poisson sampling distribution, and a Poisson distribution with mean 3 for
the number of possible change points. We suspect that there are good reasons for
choosing such specific priors.

Consecutive Changepoints. Although there may be cases when there is reason to
model changepoints through segmental length, recall that we are considering objec-
tive methods that do not take into account special features of the data.

However, if there is reason to impose the constraints on the length of the seg-
ments between two changepoints, this can be accomplished through restrictions on
some configurations. For example, if Rk is a set of restrictions requiring segments
to have length greater than k, a simple combinatorial calculation shows that, once
those configurations have been deleted, the objective prior π(p|Rk) is

π(p|Rk) ∝

`n− 1− k(p− 1)
p

´
`n− 1

p
´ for p = 0, 1, . . . , n− 1.

It then follows that π(p|Rk) = 0 for p ≥ (n−1)/k and all such boxes Bp are empty.
Furthermore, π(p|Rk) is a decreasing function of p with π(0|Rk) = π(1|Rk) for all
k. This last property implies that for monitoring, where we only consider boxes B0

and B1, each box has probability 1/2.
Lastly, we have also commented in Section 3.1 about the possibility of incorpo-

rating additional information which results in constraints on the posterior instead
of on the prior, which may be technically easier in some cases.

Hierarchical Models. Models based on intrinsic priors are inherently hierarchical,
and we believe that, in general, hierarchical models are very useful. However, using
improper priors in the last stage of a hierarchy results in improper marginals and
can result in improper p osterior distributions (Hobert and Casella, 1996). This
means that the Bayes factors are not well defined. However, intrinsic priors always
provide well defined Bayes Factors.

We are convinced that the natural formulation of the change point problem is as
a model selection problem, that is, it is a testing problem rather than an estimation
problem. As such, improper priors cannot be used in this context. However, intrinsic
priors can be used for both testing and estimation. From the details in Section 4.4,
and using the hierarchical structure of the intrinsic priors, it is easy to set up a
Gibbs Sampler to estimate all of the posterior parameters.

Computational Issues. You are right to point out that the algorithm used in the
paper is O(n2), however, it should also be pointed out that the calculations are very
fast in R, and large scale searches are feasible. Also, we have also developed another
algorithm, b ased on an independent Metropolis-Hastings scheme that exploits the
box structure, (see Casella and Moreno 2006) that is uniformly ergodic.

The exact methods that you discuss are indeed faster, but we have decided to
use methods that are based on simpler algorithms in order to allow our methods to
apply to more complex models. It seems that, for example, the faster recursions in
Fearnhead (2006) do not apply to very general models without embedding them in
a Gibbs sampler.

We also point out that our search algorithm is driven by a very specific objective
function, the posterior probability of the models. In searching such spaces, we have
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found that a Metropolis-Hastings algorithm with a well-chosen candidate is hard to
bea t. Even with isolated modes, where we may need transition kernels based on
a tempering structure, the Metropolis-Hastings Algorithm is typically an excellent
choice (Jerrum and Sinclair, 1996).
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