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Abstract

In the rapidly evolving field of genomics, many clustering and classification meth-

ods have been developed and employed to explore patterns in gene expression data.

Biologists face the choice of which clustering algorithm(s) to use and how to interpret

different results from the various clustering algorithms. No clear objective criteria

have been developed to assess the agreement and compare the results from differ-

ent clustering methods. We describe two generally applicable objective measures to

quantify agreement between different clustering methods. These two measures are

referred to as the local agreement measure, which is defined for each gene/subject,

and the global agreement measure, which is defined for the whole gene expres-

sion experiment. The agreement measures are based on a probabilistic weighting

scheme applied to the number of concordant and discordant pairs from two cluster-

ing methods. In the comparison and assessment process, newly-developed concepts

are implemented under the framework of reliability of a cluster. The algorithms are

illustrated by simulations and then applied to a yeast sporulation gene expression

microarray data. Analysis of the sporulation data identified ∼ 5% (23 of 477) genes

which were not consistently clustered using a neural net algorithm and K-means or
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pam. The two agreement measures provide objective criteria to conclude whether or

not two clustering methods agree with each other. Using the local agreement mea-

sure, genes of unknown function which cluster consistently can more confidently be

assigned functions based on co-regulation.

Key words: Clustering algorithms; Agreement measure; Microarray gene
expression data.

1 Introduction

A central goal of biologists is to elucidate the biochemical functions of genes

and their roles in growth, development, and adaptation. Rapid advances in mi-

croarray techniques enable simultaneous monitoring of gene expression levels

for thousands of genes. To uncover patterns in microarray-based gene expres-

sion data, clustering and classification are among the most important analyt-

ical methods. Their importance lies in the assumption that genes with similar

changes in expression during growth or development are co-regulated and thus

are involved in the same or similar biological processes. Hence, co-expressed

genes are part of regulatory networks that provides some insight into their bi-

ological functions. In the case of genes with no sequence similarity with genes

of known function from which their biochemical function cannot be predicted,

their co-expression may be some of the only information available about these

genes.

Two broad types of clustering and classification methods exist: One is based on

heuristic algorithms, for example, K-means clustering [1], self-organizing maps
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[2], hierarchical clustering [3], the recently developed re-sampling based tight

clustering [4] and so on, which do not require an underlying statistical model

for the mean and the covariance structure; the other methods use model-

based algorithms, for example, supervised clustering based on multivariate

Gaussian mixtures [5], model-based clustering algorithms [6,7], and so on.

Given one particular dataset, different clustering algorithms are very likely

to generate different clusters. This is almost always the case when analyzing

large-scale gene expression data from microarrays. Therefore, biologists face

the problem of choosing the appropriate clustering algorithm for their data

and interpreting differences arising from the various clustering algorithms. To

address these problems, appropriate quantitative agreement measures of the

clustering methods need to be developed.

Guidelines to develop such quantitative measures in genomic data analysis

were pioneered by Yeung, Haynor, and Ruzzo [8]. They provided a quanti-

tative, data-driven framework to compare different clustering algorithms. By

defining a figure-of-merit (FOM) scale, they rated the predictive power of a

clustering arrangement based on a leave-one-out technique. Along this line,

very recently, Thalamuthu et al. [9] performed a comprehensive comparative

study to evaluate the effectiveness of several commonly used clustering meth-

ods. They proposed a weighted Rand index to measure similarity of two clus-

tering algorithms and assessed the performance of the methods by a predictive

accuracy analysis through verified gene annotations. They found that tight

clustering and model-based clustering consistently outperform other cluster-

ing methods.

Nearly at the same time as Yeung et al., 2001 [8], Wu et al. [10] followed an-

other way to resolve a similar problem. They assigned likely cellular functions
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with confidence values to new yeast proteins by making use of a database

of clusters produced from different clustering algorithms. Recently, Monti et

al. [11] developed a method of clustering validation and class discovery called

“consensus clustering”. Their approach, in conjunction with some re-sampling

techniques, provides a way to assess the stability of discovered clusters and

to represent the consensus across multiple runs of a clustering algorithm. The

consensus algorithm was implemented in a single clustering method with ap-

propriately perturbed data.

More recently, Swift et al. [13] proposed a fusion of the approaches described

by Wu [10] and Monti [11] to generate both robust and consensus clusters

of gene expression data. In this method a consensus matrix is constructed

to produce robust clusters which include all full agreement pairs across all

clustering methods. Threshold values can be set to relax the full agreement

requirement to allow for the inclusion of more genes. A weighted-kappa metric

is used to compare the resultant clusters from the different methods. However,

the assignment of the strength of the agreement from the value of weighted-

kappa is still somewhat arbitrary rather than fully objective. It is therefore

ambiguous whether or not the robust or consensus clusters are significantly

better than the other clusters.

To address these concerns of the method described by Swift et al., we de-

veloped local and global measures for assessing the agreement of different

clustering methods. The global agreement measure is calculated for the whole

microarray experiment, and the local agreement measure is calculated for each

gene/subject. We then utilize the reliability concept from [12] and apply our

proposed agreement measures to bootstrapped samples to obtain a sampling

distribution of agreement measures for one specific clustering algorithm. The
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sampling distribution provides a reference for assessing whether partitions

from a different clustering algorithm vary within an acceptable range. We also

determine local agreement measures for each gene. If a gene with unknown

function has a reasonably high local agreement measure, its co-regulation with

other genes of known function can be more confidently predicted. We illus-

trate the method with a yeast sporulation gene expression microarray data and

draw conclusions on the agreement of two clustering algorithms and possible

class assignments for stably clustered unknown genes.

The two general agreement measures are described in Section 2. Section 3

shows the algorithm for assessing agreement and the results of a simulation

study. Section 4 shows the results of applying the agreement measures to a

yeast sporulation gene expression microarray data, and in Section 5 we discuss

our findings.

2 Agreement Measures

2.1 Concepts and Notation

Let V1, V2 be two vectors which record the clustering results for a gene expres-

sion data set of size n with the numbers of clusters k1 and k2, respectively.

Without exception, we refer to clustering result one whenever we mention V1

and refer to clustering result two whenever we mention V2. Here the cluster-

ing results can be cluster membership assignments from different clustering

algorithms, or they can be partitions using the same clustering method but

applied respectively to the original data and perturbed data (see details in

sections 3.1 and 3.2). Throughout this paper, unless otherwise noted, sub-
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ject/sample/individual represents one gene in the gene expression data.

For method k, k = 1, 2, and each pair of subjects (i, j), i = 1, . . . , n; j =

1, . . . , n, we define c
(k)
ij = 1 if Vk(i) = Vk(j) and c

(k)
ij = 0 otherwise, i.e.,

c
(k)
ij = 1 if subject i and subject j fall into the same cluster and 0 otherwise.

We denote by C(1) the matrix with elements c
(1)
ij and by C(2) the matrix with

elements c
(2)
ij . We will refer to matrices C(1) and C(2) as symmetric pairwise

matrices for clustering methods one and two, respectively. Note that elements

of C(k), k = 1, 2 are always independent when taken in pairs (because in one

cluster membership assignment, knowing that subject i and j are in the same

cluster provides no information on whether subject i and k are in the same

cluster or not) but may not be so in triples because of transitivity. For each

pair of genes (i, j), the c
(1)
ij and c

(2)
ij takes and only takes one of the four

combinations:

1. c
(1)
ij = 1 and c

(2)
ij = 1;

2. c
(1)
ij = 1 and c

(2)
ij = 0;

3. c
(1)
ij = 0 and c

(2)
ij = 1;

4. c
(1)
ij = 0 and c

(2)
ij = 0.

We denote by a, b, c, d the number of counts of these four combinations re-

spectively, or equivalently,

a =
∑

i,j

c
(1)
ij c

(2)
ij , b =

∑

i,j

c
(1)
ij (1− c

(2)
ij ), c =

∑

i,j

(1− c
(1)
ij )c

(2)
ij , d =

∑

i,j

(1− c
(1)
ij )(1− c

(2)
ij ).

We define a consensus matrix D = C(1) + C(2). By its definition, elements in

the consensus matrix D can only take the value of 0, 1, or 2.
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2.2 Two General Agreement Measures

We propose two measures of agreement, a global and a local, to objectively de-

termine the agreement between two clustering methods. The global agreement

measure focuses on the overall agreement of two clustering algorithms across

the whole gene experiment study. It takes all possible pairs of genes into ac-

count. On the other hand, the local agreement is defined for each gene/subject

to indicate whether a particular gene/subject is consistently clustered with

other genes by different methods.

The global agreement measure for vectors V1 and V2 is defined as follows:

Rg =
w1a + w4d

w1a + w2b + w3c + w4d
, (1)

where w1, w2, w3, w4 are weights for the above four types of pairs respectively

and satisfy
∑4

i=1 wi = 1. A straightforward way is to assign equal weights to

all four types of pairs and thereby simplifying the deductions and calculations.

Unfortunately, equal weights do not account for the fact that the probability

that two genes are in the same group is usually not the same as the proba-

bility that two genes are not in the same group. Therefore rather than using

equal weights, we prefer to assign different weights to these four types of pairs

according to a probabilistic weighting scheme.

Intuitively, the weights should be inversely proportional to the probabilities

of the events. Hence if the probability of two genes in the same group is

higher than the probability that they are in different groups, a lower weight

is assigned to the first combination count a and a higher weight is assigned to

the fourth combination count d, and vice versa. In practice, we choose weights

as follows: We assume there are K clusters in the data (K can be estimated

7



by, for example, the GAP statistic as proposed in [22]). We further assume

the probability that one gene falls into cluster 1, 2, . . . , K with probability of

pk, k = 1, . . . , K such that
∑

k pk = 1. With this notation, A =
∑

k p2
k and

B = 1 − A respectively are the probabilities that two genes are in the same

cluster and in different clusters. According to the relations between weight

and probability discussed above, we will use

w1 =
1

A2
, w2 = w3 =

1

AB
, w4 =

1

B2
. (2)

In a real data analysis, pk is usually unknown, consequently, we will substitute

the empirical estimates of these probabilities.

The global agreement measure is connected to well known statistical ap-

proaches for specific sets of weights. For example:

1. If we take w1 = w4 = w2 = w3 = 1
4
, the global agreement measure is

equivalent to the Rand index measure [16], which measures the proportion

of agreements.

2. Let w1 = w2 = w3 = 1
3
, w4 = 0, we then obtain the Jaccard’s index

[17,18].

3. If we know the truth of the cluster membership assignment, say, V2 is the

true cluster membership, the global agreement measure is actually 1−
misclassification rate.

Besides the global agreement measure, it is also of interest to investigate

whether a particular gene is consistently grouped or separated from other

genes by different clustering methods. For example, if two clustering meth-

ods consistently group gene A with genes B and C and consistently separate

gene A from genes D and E, then the two methods are in complete agree-
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ment. However, such groupings are not always the same when two clustering

methods are compared. To quantify the agreement of the clustering methods

for a particular gene, we propose a local agreement measure for each indi-

vidual gene/subject. The local agreement measure supplies more detailed and

comprehensive information on how a particular gene is grouped by different

clustering methods. The information on individual genes helps to refine the

clustering methods, to assign co-regulation of genes, and to screen out dubi-

ous genes/subjects with very low agreement measures. Such information can

be valuable to biologists because it alerts them to be more cautious about

interpreting these differences arising from different clustering algorithms.

The definition of a local agreement measure between V1 and V2 for the gene/subject

i is given as follows:

Ri =
w1ai + w4di

w1ai + w2bi + w3ci + w4di

, (3)

where ai, bi, ci, di are the number of counts of the four types of pairs based

on c
(1)
ij , j = 1, 2, . . . , n and c

(2)
ij , j = 1, 2, . . . , n with i being fixed, for exam-

ple, ai =
∑n

j=1 c
(1)
ij c

(2)
ij . The connection between the local agreement measures

R1, R2, . . . , Rn and the global measure can be seen as Rg =
∑n

i=1
Ri

n
when

w1 = w2 = w3 = w4 = 1
4

are the equal weights. For consistency and ease of

interpretation, the weights used in the local agreement measures are equal to

those used in the global agreement measure.
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3 Algorithm and Simulation

3.1 Assessing the Agreement between Two Partitions

Our goal is not to evaluate the merits of a particular clustering algorithm,

rather, our interest is to assess the agreement between the results of two

clustering methods applied on the same data set. Therefore, we use two well

known and well implemented algorithms, K-means with random initialization

and Partitioning Around Medoids (pam), to illustrate our agreement mea-

sures [1,19]. To facilitate comparisons between different clustering methods,

we adapt known parameters wherever appropriate. For example, the number

of clusters is assumed to be known.

With a dataset, two clustering methods and the formula given in the previous

section, we can easily calculate the agreement measures. However, the value at

which the agreement between the two methods is satisfactory needs to be ob-

jectively related to the agreement strength. In [13], Swift et al. graded values

of the weighted-kappa metric from zero to one into five levels of agreement

strength from “poor” to “very good”. In this grading a weighted-kappa of

zero indicates non-agreement for all genes; whereas, a weighted-kappa of one

indicates full agreement. However, the grading between 0 and 1 is somewhat

arbitrary. Consequently, the conclusion on whether the agreement is satis-

factory is still subjective although such subjectivity is usually enough to give

researchers a rough idea on how two clustering methods agree with each other.

In order to construct a fully objective measure, we first tested the reliability

of one clustering algorithm, referred to as the reference algorithm, in light

of appropriately perturbed data [11,12]. When we perturb the data using
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some random noise with mean 0 and variance σ2, the same method often

produces different clustering results. If we denote by V1 the clustering result

of the original data and V2 the clustering result of the perturbed data, we can

compute the agreement measures for V1 and V2. The sampling distribution

of these agreement measures can be obtained by repeating the perturbation

many times. Under this framework, because the two clustering results are the

same when the observed noise (perturbation) σ2 is below a critical level σ2
0, we

can not distinguish the two clustering results. A special case is when there is

little perturbation and the clustering algorithm performs stably; the perturbed

clustering results will be very similar to the original clustering membership

assignment and the agreement measures will be close to 1. A natural yet

conservative choice of σ2
0 would be based on the predicted variation, which

can be computed by differencing the adjacent two measurements within the

same subject (see equation (5) in section 3.2).

That said, the spread of the sampling distribution of the global agreement

measures between clustering results of the perturbed data and the original

data indicates reasonable departure from the null hypothesis. Consequently,

in order to produce a reasonable level of concordance or agreement, the global

agreement measures should be at least the corresponding lower quantiles of

the sampling distribution (obtained by perturbing data with Normal(0, σ2
0)),

which becomes our objective merit to determine whether the algorithms agree.

Similarly, the sampling distribution of the local agreement measures will pro-

vide objective merit to determine whether one gene/subject is consistently

clustered or not by the two clustering algorithms.
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3.2 Algorithm

Both the K-means and pam clustering algorithms are powerful and popular

data mining techniques with which to group data having similar characteristics

or features [20]. As an illustration, we compare K-means with pam clustering,

where K-means is the reference algorithm. Results are similar if we change the

reference algorithm to pam (results not shown). The detailed procedure is as

follows.

3.2.1 Data Standardization

Given one dataset yi(tj) where i = 1, 2, . . . , N denotes the indices of genes/subjects,

and j = 1, 2, . . . , J denotes the indices of time points. Subjects similar to each

other as measured by some dissimilarity measures will be grouped together.

For quantitative variables, there are two main types of dissimilarity measures

Euclidean distance and correlation. Euclidean distance is a measure of the

magnitude/absolute differences whereas correlation is a measure of the trends

or relative differences. For instance, the Euclidean distance between two J

dimensional vectors (x, y) would be much different from that between (ax +

b, y) where a, b are both not zero. This is because ax+ b may take large values

depending on the choice of a, b, which, in turn, will dominate the distance

between (ax + b, y). On the other hand, the correlation between (x, y) and

that between (ax + b, y) stays the same for a > 0, which is often a desirable

property.

The choice of which dissimilarity measure to use should be based on what

types of similarities in the data researchers are trying to identify. In microarray
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experiments [14,21] suggested that a correlation measure is preferable when

clustering time course data. Since K-means uses the Euclidean distance as

the dissimilarity measure, we propose to standardize the data yi(tj) first by

subtracting its mean ȳi = 1
J

∑J
j=1 yi(tj) and dividing by its standard devia-

tion si =
√

1
J−1

∑J
j=1(yi(ti)− ȳi)2. It is self-evident that the two dissimilarity

measures are equivalent after standardization. In this paper, unless otherwise

noted, the clustering algorithm is applied to the standardized data, which we

will still denote by yi(tj).

3.2.2 Perturbation Model

We first apply the K-means algorithm with a total of K clusters to the stan-

dardized data yi(tj). We denote by Ĉ0 the clustering results. To assess the

reliability of K-means, we perturb the data according to the model as follows:

y∗i (tj) = yi(tj) + εj, (4)

where y∗i is the perturbed data for the ith gene/subject. The random errors

εj, j = 1, . . . , J are a variant (because of the standardization step) of poten-

tial measurement errors introduced from experimental procedures including

sample acquisition, scanning, and/or cross-hybridization. These small random

errors are from a normal distribution with mean 0 and variance σ2
0, where σ2

0

are based on the predicted variation. Specifically, we first remove the trend

from each curve by subtracting its corresponding cluster center, then esti-

mate the predicted variation of gene/subject i by differencing the adjacent

two measurements. It can be computed from the following equation:

σ2
i =

J∑

j=2

(ei(tj)− ei(tj−1))
2

2(J − 1)
, i = 1, 2, . . . , N, (5)
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where ei(tj) = yi(tj) − c(i)(tj) with c(i) being the cluster center to which

subject i belongs. Once again, please note that yi(tj) is standardized with

mean of 0 and variance of 1 before computing σ2
i , because each gene has its own

expression intensity and it is unreasonable to combine the raw variances (the

interest is in the shape of the gene expression profile, but not the magnitude).

Based on this definition of σ2
i , σ0 is taken as the arithmetic average of σi, i.e.,

σ0 = (σ1 + σ2 + . . . + σN)/N .

The perturbation model described above can be used to evaluate the reliability

of any clustering method against potential experimental errors.

3.2.3 Agreement Between K-means and Pam

As stated before, we apply the K-means clustering procedure on each per-

turbed data set. Let us denote by Ĉb the clustering results for the b-th dataset,

b = 1, 2, . . . , B. The global and the local agreement measures are computed

between each Ĉb and Ĉ0, where Ĉ0 serves as the common reference. The sam-

pling distribution of these agreement measures will be shown in the form of a

histogram. The pam algorithm is then applied to the original dataset yi(tj). We

denote by Ĉpam the clustering results. Agreement measures are also computed

between Ĉpam and Ĉ0.

With these computations and sampling distributions, we still need some no-

tation in order to objectively assess the agreement between the two clustering

algorithms, K-means and pam. Let us denote by Rgα, Rlα the lower α quantile

value of the global and local agreement measures from the sampling distribu-

tion respectively, where we take α = 0.05. We also denote by Rg,pam , Rl,pam

the corresponding global and local agreement measures between pam and the
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reference algorithm K-means (omitted in the index). For the global agreement

measure, if Rg,pam ≤ Rgα, then there is little concordance between these two

methods. On the other hand, if Rg,pam ≥ Rgα, then we have no evidence to say

that the methods are disconcordant. Thus, when two clustering methods are

in better agreement, the global agreement measure is higher than the lower α

quantile values of the corresponding sampling distribution. Similar arguments

hold for the local agreement measures. By checking local agreement measures,

we can single out genes for further investigation which are clustered inconsis-

tently by the two clustering algorithms, for example, we may look at a third

clustering algorithm to enhance the confidence level of assigning membership

of these genes. Please refer to section 4 for more details on this.

3.3 Simulation Study

To evaluate the agreement measures, we used simulated gene expression pat-

terns of nine clusters over 10 time points similar to the one described in [15].

Briefly, only one array from one sample was obtained at each time point dur-

ing the course of the study. A total of 10 samples were analyzed. This is an

independent sampling scheme with an identity correlation matrix because a

sample at one time points represents an independently sampled unit. There

were 49, 42, 51, 53, 57, 46, 38, 51, 56 genes respectively in the nine clusters (em-

pirical genomic evidence [9] suggests that the cluster sizes are often different).

With these data we added random noise (Normal(µ = 0, σ2 = 0.16)) to each

element of the log2 expression values. We estimate the perturbation noise

level in the data based on (5) and σ0 = 0.56. Figure 1 (a)-(b) shows heatmaps

of the simulated examples with and without perturbations whereas (c) (no
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apparent pattern at all) shows differences between (a) and (b). Although the

cluster patterns are apparently similar in (a) and (b), it can be seen that the

experimental variability weakens the signal intensity as expected (c).

As mentioned in section 2.2, the weights in computing both agreement mea-

sures should be inversely proportional to the probabilities of two genes in the

same group. However, since the probabilities pk, k = 1, . . . , K, where pk is the

probability that one gene falls into cluster 1, 2, . . . , K, are often unknown, we

will use the empirical estimates for these probabilities, i.e., the proportion of

genes in each cluster obtained from clustering the standardized raw data. The

empirical weight estimates in this simulation study are w1 = 0.787, w2 = 0.10,

w3 = 0.10, w4 = 0.012 based on equation 2. Since these weights are data-driven

estimators, they may be different values for different data sets.

In the simulation, we conducted B = 10, 000 runs according to the procedure

described in section 3.2. Figure 2 (a) presents histograms of the global agree-

ment measures obtained from perturbing the simulated data, which will serve

as the reference distributions. It shows an example where α = 0.05, Rgα is

0.84, and the global agreement measure of K-means and pam is Rg,pam = 0.91.

This global agreement measure clearly exceeds the threshold value 0.84 and we

draw the conclusion that with this simulated data set K-means and pam are in

agreement. We also conducted 100 replicate runs with data sets of similar kind

(nine clusters, ten time points, σ = 0.4). With σ0 being estimated from (5)

and B = 100 for each data set, we observe that K-means and pam agree100%

of the time. This result is fully expected because K-means and pam have high

global agreement measures because their working principles are very similar

and the noise level in the simulated data is in a reasonable range.

Figure 3 (a) presents variation of mean local agreement measures for all genes.
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We link every gene’s strength of co-expression with other genes within the same

cluster to its mean local agreement measure. As observed, genes with very

high mean local agreement measures in the same cluster are always/strongly

co-expressed despite the influence of perturbation. In contrast, genes with

very low mean local agreement measures are rarely/weakly co-expressed with

other genes and perturbation often displaces them to other clusters. Genes

with medium mean local agreement measures are those that are sometimes

co-expressed with genes in the same cluster and sometimes not. A closer ex-

amination of the range of mean local agreement measures of each cluster

clearly reveals that genes in the fourth and fifth clusters are most strongly

co-expressed (with the range of [0.92, 0.96] and [0.91, 0.96], respectively).

Figure 3 (b)-(d) show histograms of local agreement measures of three exem-

plary genes. Figure 3 (b) shows the histogram of a gene that clustered con-

sistently in most of the perturbations because of it is strongly co-expressed

with other genes. Its mean is 0.96 with lower and upper 5% quantiles being

0.95, 0.98 respectively. Figure 3 (c) shows the histogram of a gene that clus-

tered consistently in many perturbations; whereas, in some perturbations it

did not cluster consistently. Its mean is 0.77 with lower and upper 5% quan-

tiles being 0.41, 0.93 respectively. Figure 3 (d) shows the histogram of a gene

that did not cluster consistently in most of the perturbations because it is

weakly co-expressed with other genes. Its mean is 0.62 with lower and upper

5% quantiles being 0.33, 0.90, respectively. Comments on the distributions of

these agreement measures are given in section 5.

Beyond the results presented above, we investigated the effects of sample size

(or the number of chips, here corresponding to the number of time points),

and increasing levels of noise in the generation of data (σ2) on the perfor-
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mance of the agreement measures. Experimental results with six noise levels

(0.1, 0.2, 0.3, 0.4, 0.6, 0.8) are similar with slight variations: The global agree-

ment measures correspond to lower quantiles (0.87, 0.85, 0.82, 0.78, 0.74, 0.71)

of sampling distribution as the noise levels increases. Four sample sizes (5, 7, 8, 10)

are tested. The corresponding lower 5% quantiles of the global agreement

measures (B = 200, σ = 0.4, σ0 = 0.47) are 0.77, 0.81, 0.82, 0.83, respec-

tively, which clearly indicates that the global agreement measures correspond

to higher quantiles of sampling distribution as the sample size increases. These

results indicate that the proposed measures are suitable for objectively assess-

ing the agreement of clustering algorithms.

4 Application to Yeast Gene Expression Microarray Data

In addition to testing the measures with the simulated gene expression data,

we illustrate the methods with actual budding yeast gene expression data

from a sporulation experiment reported by Chu et al. [14]. In this experiment,

yeast cells were shifted to sporulation media and mRNA samples were taken

at the time intervals of 0, 30 minutes, and 2, 5, 7, 9, and 11 hours represent-

ing different stages during sporulation. Chu et al. identified over 1000 of the

6200 genes on the cDNA spotted array as expressed at different levels rela-

tive to control diploid vegetative stage [14]. During sporulation, about half

were down-regulated and half were up-regulated. The 477 up-regulated genes

were assigned to seven temporal patterns with a neural net algorithm. For our

analysis, we focused on these 477 up-regulated genes and their corresponding

cluster assignments (see additional file 1) from Chu et al. [14].

We first applied both the K-means and pam clustering algorithms to the log-
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ratio data (re-scaled so that the mean of each gene is 0 and standard deviation

is 1). The empirical weight estimates in this study are w1 = 0.64, w2 = 0.16,

w3 = 0.16, w4 = 0.04 based on equation 2. In the analysis that follows, the

first goal was to determine whether, globally, pam and the published results

agree with those obtained from K-means. The second goal was to use the

local agreement measures to identify genes from the published results that did

not cluster consistently with K-means and pam and to provide biologically

meaningful interpretations.

The stability of the K-means clusters was assessed by perturbing the stan-

dardized raw data. The perturbation is done according to the model given in

equation (4). For ε, we use normal random noise with mean of 0 and stan-

dard deviation of 0.3. According to equation (5), σ0 = 0.31 was calculated

from the standardized data. We repeat the-perturbation-then-cluster with K-

means 9999 times. The result is 10, 000 K-means clustering results, one for the

standardized raw data and 9999 for perturbed data.

Figure 2 (b) gives the sampling distribution of the global agreement measure.

At α = 0.05, Rgα is 0.711. The global agreement measure between K-means

and pam, is Rg,pam = 0.836. The global agreement measure of K-means and the

published result from Chu et al. [14] is 0.777. These two global agreement mea-

sures both exceed the threshold value Rgα = 0.711. Therefore, K-means and

Chu et al. cluster results agree globally with each other. The high global agree-

ment indicates that the assigned clusters in general were consistent between

the three methods. This is of significance, because each clustering method

needs to be parameterized for optimal results.

We propose that the criterion for choosing the objective cut-off value of the

global agreement measure is given in terms of percentiles of its sampling dis-

19



tribution. Particularly, to determine whether the global agreement measure

0.77 is good or not, the objective cut-off value in this example is 0.711 and the

answer is yes. One should note that, however, as discussed in the simulation

studies, percentiles of the sampling distribution are affected by the sample size

and noise level. In order to get a correct interpretation of the global agreement

measure and the subsequent clustering results, we need to relate the value to

its position in the corresponding sampling distribution.

Local agreement measures were calculated for the 477 genes up-regulated dur-

ing sporulation. Similar to the simulation study, we present the variation of

mean local agreement measures for all genes in Figure 4 (a). A quick examina-

tion of the range of mean local agreement measures shows that the genes in the

Metabolic class are most strongly co-expressed (with the range [0.83, 0.96]).

Figure 4 (b)-(d) show histograms of local agreement measures of three ex-

emplary genes, with high, medium, and low mean local agreement measures,

respectively. The histograms look similar to those from the simulated data.

To further explore the differing results of these clustering algorithms, we se-

lected some specific genes based on their local agreement measures for inves-

tigation. The selection criteria of genes is as follows: If the local agreement

measure of a gene satisfies Rl,pam > Rlα and Rl,Chu < Rlα, then the gene is

consistently clustered by K-means and pam, but not so by K-means and the

neural net algorithm. By this criteria, ∼ 5% of the genes (23) do not cluster

consistently with the different algorithms. Table 1 summarizes these genes.

The lack of agreement using the local measure suggests that their classifica-

tion needs to be reevaluated.

Seven of these 23 genes show no similarity with other sequences of known

function in the database. Of these seven genes with unknown function three
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(YDL050C, YNL171C, YPL114W) had dubious open reading frames that are

unlikely to code for functional proteins. For these genes with dubious open

reading frames, one possibility is that they represent pseudo-genes, whose

expression is less tightly regulated due to their divergence and loss of function.

Interestingly, three of the five genes that were categorized as metabolic are

involved in DNA replication and cell division, suggesting that these genes

may have been incorrectly clustered.

5 Discussion

Many clustering algorithms are available for grouping genes with similar ex-

pression profiles. However, due to different data structures and characteristics

it is unrealistic to assume that one clustering algorithm will perform the best

with all the datasets. Consequently, it is necessary to consider appropriate

quantitative measures of comparing and assessing agreement between cluster-

ing methods.

In this paper, we introduce two generally applicable approaches to objectively

quantify the agreement between different clustering methods: (1) a global

agreement measure for an experiment and (2) a local agreement measure

for each gene/subject. The global agreement measure, defined for the whole

gene expression experiment, measures the overall strength of agreement for all

of the genes between different clustering methods; whereas, the local agree-

ment measure, defined for each gene/subject, measures whether a particular

gene/subject is consistently clustered with other genes by the different meth-

ods. Both measures provide us with objective guidelines to draw conclusions

about the agreement between two clustering algorithms. Application of these
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agreement measures with both simulated and real gene expression microarray

data demonstrate the strength of the proposed quantitative measures.

By their nature, the agreement measures are designed to evaluate the extent

that two clustering algorithms agree with each other and further enhance the

confidence of assigning membership to novel genes. For example, if a gene with

unknown function has a high local agreement measure, its co-expression with

other genes with known functions can be more confidently predicted. On the

other hand, by choosing the appropriate cutoff, dubious genes with relatively

low local agreement measures can be screened out for further investigation into

why the agreement was low. A low local agreement score does not necessarily

mean that this gene is problematic (an outlier), because the basis for this

low score may lie in the analytical methods as well as in its behavior on

microarrays.

The proposed concept and method can be easily applied to any biological

dataset or other datasets. As an example, we applied it to budding yeast gene

expression data from the sporulation experiment reported by Chu et al. [14].

Chu et al. used a neural net algorithm, to assign 477 up-regulated genes to

seven temporal patterns [14]. The global agreement and all but 5% of the

local agreement measures were consistent between the neural net algorithm

and K-means or pam clusters. This is somewhat surprising given that neural

net algorithms work like blackboxes, and it is not straightforward to figure

out their relation with the other two clustering algorithms.

To objectively compare the agreement between two clustering algorithms, one

clustering algorithm needs to be chosen first as the reference. The reliability

of the reference algorithm is then evaluated by perturbing the data according

to a model. A straightforward extension can be used to compare multiple
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clustering methods. To address this problem, two options are available: either

compare them pairwise or choose one clustering method as the reference and

then compare all the other methods with this reference. In the latter case

the reference clustering method can be chosen randomly (usually one that

is widely used and easy to implement). If the clustering methods form an

equivalent class under the agreement measures, then we can draw pairwise

comparison conclusions even when one is randomly chosen.

Missing values for genes in microarray data may affect downstream analysis,

such as clustering and network analysis [23–27]. In particular, the stability of

clusters is reduced as the proportion of missing values increases when some

concordance measures, for instance, the Conserved Pairs Proportion (CPP)

in [23], which is a variant of the Rand index or the Jaccard score in [27] are

used. This work also provides an alternative way to perturb the data and

consequently, assess the stability of clusters accordingly using the proposed

agreement measures.

It remains open as to the best way to find the threshold values for the agree-

ment measures. Ideally it is more convenient if we can identify the exact

distribution of the proposed agreement measures in light of the perturbed

data. Unfortunately, this is not an easy task, as the sampling distributions are

not necessarily continuous (because they are defined based on count data);

they can be bimodal or even multimodal, depending on the experimental vari-

ation σ2
0 used to perturb the data. As σ0 increases, the deviation from the

true cluster membership becomes bigger. As noted by one referee, the avail-

ability of biological replicates may improve the estimation of σ0, and thus

the performance of the clustering algorithms and subsequent analysis. For the

time being, the empirical lower quantiles of the reference distribution serve
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well as the threshold values for the agreement measures. Thus, an advance

in the methods described here would be to derive the exact or approximate

distributions of the agreement measures.

The R-code implementing the agreement measures algorithm is included in the

additional files (see additional file 2 for simulation study and additional file 3

for real data analysis). It provides a readily useable tool for biologists whose

interest is to quantify the agreement of different clustering algorithms and

thus arrive at meaningful biological interpretation of the clustering results.
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Table 1
Summary of genes with low local agreement measures

ORF SGD Name SGD Function/Gene Product Temporal Class

YBL015W ACH1 acetyl-CoA hydrolase Metabolic

YAR007C RFA1 replication factor A, heterotrimeric ssDNA binding Metabolic

YBR088C POL30 PCNA -DNA polymerase processivity factor Metabolic

YDL050C unknown-ORF dubious Mid-Late

YDL193W NUS1 Nuclear Undecaprenyl pyrophosphate Synthase Early II

YDR089W unknown Middle

YDR148C KGD2 alpha-KetoGlutarate Dehydrogenase Early II

YDR219C MFB1 Mitochondria-associated F-Box protein Early-Mid

YDR380W ARO10 Phenylpyruvate decarboxylase Mid-late

YDR438W THI74 THI regulon Middle

YGR110W unknown Early-Mid

YGR224W AZR1 Plasma membrane transporter -major facilitator Early II

superfamily

YIL132C CSM2 Protein required for accurate chromosome segregation Metabolic

during meiosis

YJR137C ECM17 Sulfite reductase beta subunit Early I

YKL042W SPC42 spindle pole body component Early-Mid

YLR054C OSW2 unknown function proposed to be involved in the Mid-Late

assembly of the spore wall

YKR099W BAS1 Myb-related transcription factor Early-Mid

YNL171C unknown-ORF dubious Middle

YNL270C ALP1 basic amino acid transporter Early-Mid

YNR026C SEC12 guanine nucleotide exchange factor for Sar1p Mid-Late

YOR214C unknown Early-Mid

YPL111W CAR1 arginase Metabolic

YPL114W unknown-ORF dubious Middle
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Additional Files

Additional File 1: Supplemental Data. Containing budding yeast gene

expression data from the sporulation experiment reported by Chu et al. [14].

Each row represents one gene. Columns are the gene ORF, ratios at the time

intervals of 0, 30 minutes, and 2, 5, 7, 9, 11 hours, and the temporal classes

reported by [14].

Format: CSV, size: 22KB.

Additional File 2: R code for Simulation Model. Containing the R code

for the simulation study where K-means and pam are used to illustrate the

algorithm.

Format: rtf, size: 20KB.

Additional File 3: R code for Real Data. Containing the R code for

implementing the algorithm to the budding yeast gene expression data.

Format: rtf, size: 18KB.
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Figures

Figure 1- Heatmaps of simulated data

(a) A simulated example of 443 curves in nine clusters. (b) A simulated ex-

ample obtained by perturbing data in (a) using random normal distribution

with mean 0 and σ0 = 0.4. (c) Data for differences between (b) and (a). Rows

correspond to genes and columns correspond to time points. Color bars on

the row side indicate the nine clusters (with the first cluster starting at the

bottom then moving to the top).

Figure 2 - Histograms of the global agreement measures

Agreement measure values are plotted on the x-axis, and the y-axis is the

frequency that agreement measures fall into each group/bin of the original

and 9999 sets of perturbed data. (a) Histogram of the global agreement mea-

sures for K-means algorithm for simulation data. (b) Histogram of the global

agreement measures for K-means algorithm for the yeast sporulation gene

expression data.

Figure 3 - Histograms of the local agreement measures for simulation data

Agreement measure values are plotted on the x-axis, and the y-axis is the

frequency that agreement measures fall into each group/bin of the original and

9999 sets of perturbed data. (a) Histogram of mean local agreement measures

for all 443 genes. (b)-(d) are histograms for three exemplary genes with high,

medium and low mean local agreement measures.

30



Figure 4 - Histograms of the local agreement measures for the yeast sporulation

gene expression data

Agreement measure values are plotted on the x-axis, and the y-axis is the

frequency that agreement measures fall into each group/bin of the original and

9999 sets of perturbed data. (a) Histogram of mean local agreement measures

for all 477 genes. (b)-(d) are histograms for three exemplary genes with high,

medium and low mean local agreement measures.
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