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Abstract: ‘The value of a particular confidence set is traditionally measured by

two quantities, its volume and probability of coverage. Irom 2 practical point of

view, it is desirable to have a procedure that performs well against each measure.
guch an approach, however, suffers in theoty, for there is no one well-defined loss
function which would place the problem ir a true decision-theoretic setting. We

" derive necessary and sufficient conditions for minimax equivalence of the solution,
using a linear combination loss function, to that of the component loss problem,
Using this equivalence, it js possible to construct comp onentwise minimax estimators
via thelinear combination loss. We apply these results to estimation of a multivariate
normal mean with unknown variance.

Key words and phrases: Confidence sets, multivariate normal density, minimax
estimnation.

1. Introductién

"The theory of set estimation has progressed at a slower rate than that of
point estimation. One possible reason for this is the lack of a reasonable, widely
accepted loss function. Without such a loss function it {s impossible to put the
set estimation problem in a true decision-theoretic setting, and even defining
guch concepls as minimaxity can become gsomewhat contrived.

Tf € is a set estimator for a parameter 7, there are two natural measures
of the worth of C'. One is a measure of the size of the set C and the other is a
measure of the containment of v by C. The measure of size, which is taken to
be a function of volume, is denoted by ¢(C), and the measure of containment,
which is taken to be an indicator function, is denoted by I, where L(C)=1
‘ifye Cand0 otherwise. It is reasonable, when attempting to decide upon 2

particular estimator, C, to evaluate it asing both ©(C) and L,(C), and choose &
procedure that performs well against each measure. While this is appealing from
a practical point of view, it is decidedly difficult to deal with in theory. From 2
theoretical point of view it is desirable to combine @(C) and Ly(C) into one loss
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function and choose a procedure which performs well against this loss function.
This approach, however, can suffer in the eye of the practitioner, who may not
see a reasonable way to combine ¢(C) and L,(C). (For some suggestions see
Casella, Hwang and Robert (1989).)

The purpose of this paper is to demonstrate when these approaches are
equivalent. That is, for a particular linear combination of ¢{C) and 1,(C),
to identify procedures which perform well against the linear combination loss
function and also perform well against each measure. It will follow that the set
estimation problem can be placed in a decision-theoretic framework and, whether
or not one accepts the reasonableness of the loss function is irrelevant. The use of
the loss function is justified through its connection to componentwise optimality.
Thus, the loss function may provide a straightforward means of constructing set
- estimators that are componentwise optimal.

Most previous work on decision-theoretic set estimation has dealt with eval-
vation of procedures against either a linear combination loss or against ¢(C') and
L,(C) separately, with no investigation of a connection. For example, Winkler
(1972) considers a variety of linear combination loss functions, and determined
conditions that optimal intervals must satisfy. Cohen and Strawderman (1973},
building on the work of Brown (1966), demonstrated that for a wide class of
loss functions the best invariant confidence interval for a translation or scale
parameter is an admissible minimax estimator.,

Our main concern is with equivalence with respect to minimaxity. (It is
straightforward to establish that if a confidence set is admissible against a loss
function that is a linear combination of ¢(C) and I,(C), then it is admissible

- componentwise. See'Joshi (1969) for a complete discussion of this.) One of the
only papers to explicitly deal with minimax equivalence is that of Blyth (1951).
Although he was concerned mainly with sequential problems (and considered
loss components of sampling cost and estimation loss), some of his results are
quite general. He showed that, under certain conditions on the procedure C, if
C is minimax against a linear combination loss, then C is minimax against a
component loss. Our results both extend and strengthen those of Blyth.

The results reported in this paper have influenced other decision-theoretic
investigations concerning the behavior of set estimators. (The results reported
here were originally the basis for the technical report by Casella and Hwang
(1982).) These include papers by Casella and Hwang (1983, 1987), who construct
improved confidence sets using an empirical Bayes approach with loss functions;
Cohen and Sackrowitz (1984), who investigate the relationship between com-
ponentwise loss and a random linear combination loss; Meeden and Vardeman
(1985), who study the relationship between admissibility and Bayesianity; and
Casella, Hwang and Robert (1989), who study nonlinear set estimation losses.

A
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In Section 2 we derive the main equivalence results in a general setting,
establishing a necessary and sufficient condition for minimax equivalence between
the linear combination solution and the component solution, Section 3 considers
the case of estimating the mean vector of a multivariate normal distribution with

unknown variance. Using standard techniques, it is established that the usual

confidence set is minimax against a linear combination loss, and the results of
Section 2 are applied to establish minimaxity against the component loss. An
appendix is included, which contains details of some of the calculations needed
in Section 3.

2. Minimax Equivalence

Let « be an observation on the random variable X from the sample space
X = RP, and let B be the o-field of all subsets of X. Tor each v € @, let P,(%)
be a probability measure on B. Following Joshi (1969), we define a confidence
procedure C to be a Borel measurable subset of the product space X’ X . Asso-
ciated with each confidence procedure C are two cross sections, the ¥ section, a
Borel subset of X' given by

Cy = {e: (,7) € O},
and the X section (the confidence set for v), a Borel subset of Q given by
Cx ={y:(z,7) € C}.

The coverage probability of a confidence procedure C, denoted by P,(C), is the
probability content of the set C,, when 7 is the true state of nature, i.e.,

B/C)= By{1€ Cx) = Pi(X € Cy) = [ dPy(a).

With each confidence procedure C, we also associate a measure of size, (C).
‘This can be given a quite general definition, but it suffices to consider (C) as a
scaled measure of volume., Define ¢(C) by

#(C) = kVol(Cx), (2.1)

where k£ > 0 is a constant and Vol(Cx) is the Lebesgue measure of Cx. (The
results of this section actually hold for a more general form of (2.1), where k is

replaced by k(z,7), a nonnegative, measurable function on X x £ and Vol(Cx) is,

the Lebesgue measure of C'x.) The expected size of C, E.(C), is the expected
value of ¢(C) when 7 is the true state of nature, that is, E,o(C) = [¢(C)dP,{(2).

A confidence procedure ¢ is unique only up to an equivalence relation.
Two procedures Cy and Cy are equivalent if the set (Cy\C3) U (C2\C1) has
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Lebesgue measure zero (where C1\C; = C1 N Cf, the superscript “c” denoting
complement). Such a restriction is necessary for otherwise it would be possible for
two seemingly identical procedures to have very different coverage probabilities.
{One confidence procedure could have its coverage probability increased, without
increasing its volume, by simply adding isolated points.) This would render many
loss criteria meaningless in establishing a preference ordering among confidence
sets. '

We now give two definitions of a minimax confidence procedure.

Definition 2.1. A confidence procedure C* is said to be a-minimaz if, for a
given a,

i) Py(C*Y21-a forall «
ii) sup Eyp(C*) = inf sup E,(C) ,
g : c 7

where the infimum is taken over all confidence procedures C that satisfy i). Let
G« denote the class of all a-minimax confidence procedures.

This is a more practical definition of minimaxity: an a-minimax confidence
set minimizes the maximum expected volume among all 1 — o confidence sets.
For the other definition of minimaxity, we introduce the loss function

L(1,€) = ¢(C) - L(C). (2.2)

Such a loss function has many drawbacks, but has often heen considered
in the literature (see, for example, Joshi (1969), Winkler (1972), Cohen and
Strawderman (1973}, or Meeden and Vardeman (1985)). Recall, however, that
our goal (as with Cohen and Sackrowitz (1984)) is to only use the loss function
as a means to an end. That is, we are only interested in using it to establish
connections with the component loss problem.

The risk of a confidence procedure C' is then given by

R(1,C) = B,L(1,C) = Eyp(C) — Py(C). (2.3
Definition 2.2. A confidence procedure C* is said to be k-minimaz if

sup R(y,C*) = infsup R{y,C),
¥ c

where thé infimum is taken over all confidence procedures C'.

The “k” in the name k-minimax refers to the constant k of (2.1), the factor
by which the volume is scaled. Let G denote the class of k-minimax confidence
procedures,
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Finally, we define a class of confidence procedures, G*, which provides an
important link between o-minimaxity and k-minimaxity. This class is defined by

G* = {C €X x Q : there exists {7,}52; such that

lim E., ¢(C)=sup E,p(C) and

n—oo ¥

’311’130 P, (C)= 1ng¢(C) =1-a}.
G* can be thought of as a class of confidence sets for which the maximum expected
scaled volume and minimum coverage probability occur at the same parameter
value. Note that G* contains any procedure with constant volume or constant
coverage probability. Under suitable conditions, invariant confidence procedures
will be in G*. (Goutis and Casella (1989) provide an example of an invariant
confidence procedure that does not have constant coverage probability.) This
fact is explored in the next section.

The following theorem establishes an equivalence between k-minimax confi-
dence sets and a-minimax confidence sets.

Theorem 2.1, Suppose G, NG* # . Let C € Gi be a1 — e« confidence set. Then
C € G, if and only if C € G*. ’

Proof. To prove sufficiency, assume C € G*. "l‘hen
stp R(y,C) = Sgp{Ew(C’) - P, (C)}
= S%P Eyp(C) - ingAf(C)
= sup Eyvp(C) —~ (1~ a),

where the second equality follows from the fact that C € G*. Now suppose '
has confidence coefficient at least 1 — a. We have

sup Eyp(C) — (1 ~ &) < sup R(v,C") < sup Eyp(C') - (1 - @),
v g ~

and hence, C' € G,. To prove the necessity let C' € G N G*, which implies that
we also have C' € G,. Now

sup R(v,C) = suﬁ Ep(C") —inf P,(C') = sup E4p(C) — (1 —a).  (2.4)
g y v ~
Let 71 be a value that satisfies

‘ Slflyp R(y,C) = R(m, C) = By (C) — Py (). (25)
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Since C € Go, By, 0(C) < sup, Eyp(C"), it follows from (2.4) and (2.5) that
£y (C) £ 1~ a. But inf, P,(C) = 1 — e, so it must be the case that P, (C) =
1 - a = inf, Py(C). But then it also follows that E., ¢(C) = sup, E,p(C') =
supy Ey9(C) and, hence, C € G*.

The sufficiency part of this theorem is quite similar to Lemma 5 of Blyth
(1951), although the conditions are stated somewhat differently. For reasonable
choices of k it is usually possible to find & such that G, N G* # (. For instance, a
minimax equalizer rule will be a member of Gx N G*. In such situations, the pro-
cedure for verifying c-minimaxity of a confidence set is clear; find a k-minimax
confidence set and verify that it is in G*. As will be seen in the next section, work-
ing with the linear combination loss function is a great advantage, yielding an
easy characterization of Bayes scts, and straightforward methods of establishing
minimaxity. )

Although it is of less practical importance, it is of interest to inquire when
an a-minimax confidence set is also A-minimax. The next theorem establishes
this result.

Theorem 2.2. Suppose G NG* £ §. If C € G, then C € Gy
Proof. Note that 1 —a < inf, P,(C), and let C’ € G NG* (and hence C” € G,,).

Then
B(7,C) = Eyp(C) — P4(C) < S‘;P Evp(C)-(1—a)
< sup Eyo(C") — (1 — &) = sup R(7,C").
% %
Hence, R(y,C) < sup, R(v,C") for all v, so C € Gy.

3. The Multivariate Normal Distfibution

In this section we specialize to the case of constructing a confidence set for
the mean of a multivariate normal distribution with unknown variance. Using a
standard argument, if is established that the usual confidence set is &-minimax for
a particular choice of k. Theorem 2.1 is then applied to establish a-minimaxity.

Let X have a p-variate normal distribution with mean @ and covariance
matrix ¢?I(X ~ N(8,0?I)), where both 0 and o? are unknown. Let s be an
observation on §%, an estimate of 02 (independent of X), with §? ~ (o2 /v)x2.
Let € be a set estimator of #, and consider the loss function

L4(6,%,C) = =Vol(C) - L(C), (3.1)

a special case of (2.2) with & replaced by k/o?,k constant. As will be seen,
there is a direct relationship between the value of £ in (8.1) and the confidence
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coefficient 1 — o of C. Indeed, just as we requite 0 £ 1 — o < 1, there is a
range of reasonable values of & , namely 0 < &k < (2n)7?/%, I k > (27)-P/2,
the volume component of the loss overwhelms the indicator function, making the
loss function useless,

The usual confidence set for # is

C®={0:10-2| < es}, | (3.2)

a p-sphere of radius ¢s centered at z. If 02 is known, then C® (with s replaced
by o) is both A-minimax and a-minimax for appropriate k and «. This result,
however, has not been extended to the unknown variance case. The minimaxity
of C? is an important benchmark for use in measuring the performance of other
set estimators in the unknown variance case. Establishment of Stein-type dom-
ination results must start from a classically optimal estimator, and C° provides
such a starting point.

We begin by establishing, for given & and an appropriate choice of ¢, that C°
is the best invariant set estimator of § against the loss (3.1). To establish that
(O is best invariant, we must also consider randomized confidence procedures
which, following Joshi (1969), we define in the following way.

Definition 3.1. A randomized confidence procedure A(z,s,6) is a Lebesgue mea-
surable function on B? x(0, 00)x R?, taking values in {0,1). We interpret Az, s,8)
as the probability of including @ in the confidence set when X — zand § = s
are observed.

It is straightforward to verify that the problem remains invariant under the
transformation

(2,5) = (ax + b,as), (8,6) - (af +0b, ao), (3.3)

where @ > 0 and b € R?. The invariant rules must satisly A(z,s,0) = Aazx +
b,as,af 4 b), which implies that the invariant rules are of the form '

Xz,5,0) = M(z - 0)/s). (34)

it immediately follows that for any invariant rule A, both its expected scaled
volume and coverage probability are constant with respect to # and o. We are
now ready to prove the following theorem. ‘

Theorem 3.1. If 0 < k < (2m)72/2, then the best invariant estimator against
the loss L(8,0%,C) = (k/o?)Vol(C) — I5(C) s given by (3.2) where c? satisfies
(2) 22w f(v + 402 = g,
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- Proof. Note that E(SP|o) = a”(2/v)”721‘[(p + v)/2)[T(v/2)]™! = 0P M (say).
Straightforward calculation shows that for any invariant rule A,

R(8,0% ) = (B/a")E(S%l0) [ et - [ Aoy
- f (M = p (@),

where p,(+) is a multivariate Student’s ¢ density with v degrees of freedom.
From the Neyman-Pearson Lemma, this risk is minimized by choosing A(t) =
{t : p.(t) > kM}. From the definition of M and the form of the multivariate t
density, it is easily seen that this set is equivalent to C?,

Remark. The bounds on k are quite important. Obviously, if & = 0 then the
volume term is eliminated from the loss function, and the optimal set estimator
is the entire parameter space. More important, if k > (2r)~#/2, the loss function
places too much weight on the volume term. The consequences of this will be
seen later.

Since the invariant confidence sets have constant scaled volume and cover-
age probability, it immediately follows that the confidence set C° given in (3.2)
has minimum volume (and minimum expected volume) among all invariant con-
fidence procedures A satisfying P(A|6,0) > P(C°|, ). This property is usually
taken to be the definition of a best invariant confidence set (see, e.g., Stein
(1962)), rather than the definition arising from the use of the loss function. As
can be seen, the loss function approach implies best invariance according to this
definition also. Furthermore, the relationship given between &k and ¢ in Theorem
3.1 uniquely determines the best invariant set.

Now that C? has been established to be the best invariant (equalizer) rule,
establishing k-minimaxity can proceed in a straightforward manner. Indeed,
there are two distinct ways to proceed. One way is to verify that the assumptions
of the Hunt-Stein Theorem (Kiefer (1957)) are satisfied, and then apply the
theorem to establish the k-minimaxity of C°® (see also Hooper (1982) for a similar
development). The other technique is to verify that R(f, ¢%,C%) is a limiting
Bayes risk.

‘We choose to employ the more standard technique, that of establishing that
R(0,0?,C") is a limiting Bayes risk. This method seems to be the more instruc-
tive one, for it gives more information about the structure of the problem, and
also some hint about the type of Bayes rules which might lead to k-minimax set
estimators. It also avoids the tedious and difficult task of verifying the assump-
tions of the Hunt-Stein Theorem.
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The Bayes rules against the loss (3.1) are particularly easy to characterize.
Let 7(:|-) be the general notation for 2 conditional (posterior) distribution, with
() denoting an unconditional (prior) distribution. The proof of the following
theorem is straightforward. |

Theorem 3.2. Let Li(8,0%,C) = (k/a?)Vol(C) — Is(C), and suppose x(8,0%)
is @ prior distribution. The Bayes rule is given by

C™ = {0 : w(fle, s%) > k/ -—1—ﬁ(02]m,32)d02}.
. 0 ok

To establish k-minimaxity of C° against the loss function Ly, it remains
to find a sequence of Bayes rules with Bayes risks converging to the risk of C°.
Consider the prior density

1 1
I'(a)be (o?)*—1

x(0,0%)d8do? = (2nr?) P27 WP/T e 19" dgda?,  (3.5)
i.e., 8 is distributed as p-vatiate normal with zero mean and covariance matrix
721, and o* ~ Inverse Gamma (e,b). The Bayes rule against Ly, along with

evaluation of the limiting Bayes risk, is given in the appendix. A limiting Bayes
risk is given by

- o f2me /2 r(Lﬂ:)
e »=H")" rmta e <
b—oo ‘

" where ¢* = v[k(2m)?/ 2]:’% —v. A limiting Bayes rule is
N =
o= o0 (rptons) - 24
The k-minimaxity of C® can now be established.

Theorem 3.3. If0 < k < (2m)~?/2, then C° = {0:]0 — «| < cs} is k-minimaz
if and only if k and ¢ satisfy the relationship in Theorem 3.1.

Proof. The theorem is established by noting that C° is equivalent to cr,
and Rx(8,0%,C") equals the limiting Bayes risk, if and only if k and ¢ satisfy
(2x) P2 {w /(v + ))P/? = k. We thus have

sup Ri(8, 0?,C°) = limr(x,C"),

8,02
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and it follows (see, for example, Berger (1985)) that C° is k-minimax. The
necessity follows from Theorem 3.1,

It is interesting to note that the conjugate prior (which is the same as
(3.5) with the exception that 6lo? ~ N(0,720%I)) cannot be used to estab-
lish the k-minimaxity of C°. This is hinted at by the fact that C? is generalized
Bayes against the improper prior n(8,0%) = 0~2, and the conjugate prior can-
not approach this as a limit. More precisely, if we denote the conjugate prior
by #*(6, "), there does not exist a sequence of functions m(r?, a, b) such that
m(r?,a,b)7*(6,0*) —» o2, Also, in the Bayes risk of x*, the term I'[a — (p/2)]
appears, so the parameter a cannot approach zero.

Thus, using standard techniques, the k-minimaxity of C'° has been estab-
lished. The major goal, however, is to establish q-minimaxity of C°. This follows
immediately, however, from Theorem 2.1, since C® € G*.

Theorem 3.4. If ¢? satisfies P(F,, < c2[p) ='1 — «, then the set C° =
{0:16 — z| < ¢s} is a-minimaz,

Throughout this section we have required the condition that k < (27)~#/2,
" This condition is needed so that the volume component of the loss does not
overwhelm the indicator function in the loss. Also, the relation between ¢ and k,
that is,

v

k= (2?[‘)—1;/2(';":;-/—65-) , (3.6)

shows that there is a 1 — 1 correspondence between the confidence level of C°
and k, and implicitly places this bound on k. It is, of course, possible to consider
values of k greater than (27)~?/2, but as there is no relation with the component
loss problem for such values of k, we would hope that this is reflected in the solu-
tion of the linear combination loss problem. We now investigate the case where
k > (2x)~?/%, and find a rather surprising result, which shows the importance
of tying the loss function to the componentwise problem (or, more generally, the
importance of not evaluating the loss function in a vacuum).

Theorem 3.5. If k > (21)77/2, the empty set, § (or, eguivalently, any set of
Lebesgue measure zero), is the unique minimaz set estimator of 9. Moreover, §
is the unique proper Bayes (hence admissible) set estimator.

Remark. Another way of characterizing the difference between the situation
0 <k < (2r)P/* and k > (27)7/2 is that, for k > (2r)?/? the best invariant
set estimator is the unique minimax admissible estimator, which is probably not
the case if k& < (21)~7/2,
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Proof. The risk of § is, of course, R(6,0%,0) = 0 for all 6 and ¢. The minimaxity
of @ can be deduced from the proof in the Appendix, but it will also follow
immediately when it is demonstrated that {} is proper Bayes (since its Bayes risk
will also be equal to zero).

To show that @ is proper Bayes, we can consider the conjugate priors, which
are similar to those given in (3.5) with the exception that the prior distribution
on @ is |lo* ~ N(0,720%I). For this prior, the Bayes rule is given by (after some
algebra) :

0?={0:0- @ < (577) 6 - )20ebe)}, @0

where cSB(:c) = [r*)(r* + D=, T(le];8) = vs® + (2/b) + [2*/(r* + 1), and

; oxr? \ P/? 55am
=EFR) T

Now suppose that k = (21)"P/%(1 4 ¢) for some € > 0. Choose 2 to satisfy
72 > 1/[(1 + €)*/P — 1], which implies u > 1 and that the right-hand side of the
inequality in (3.7) is negative. Hence C2 = § for this choice of 7%, If we let 7y
denote the prior for which § is the Bayes rule, then it follows that any minimax
set estimator must be Bayes against 7.

Let C' be any confidence procedure which is not equivalent to @, that is,
there exists a set B with positive Lebesgue measure such that for all (z,s) € B,
the confidence set C, , is a set of @ values with positive Lebesgue measure. We
then have '

r(mg, C) — r(mg,B) = r(my, C) — (7, C N P) = r(my,C - §) > 0,

where the last inequality follows from Theorem 3.2. Therefore, C' cannot be Bayes
against my and, hence, § is unique Bayes and unique minimax, hence admissible.

Thus the correspondence between the linear combination loss and the com-
ponent loss is complete, If & > (2#)‘?’/ ? there is no value of a which corresponds
to k. This shows that this choice of weights in the loss is absurd, but the solu-
tion to the linear combination loss function problem reflects this: the best set
estimator is the empty set. Thus, although it is possible to obtain unreasonable
results when the loss function is used alone, such results will not happen if the
correspondence with componentwise loss is maintained.

Lastly, we note that all the results in this section can be made to apply to
the case of known o?, simply by replacing s* by ¢ and letting » - oco. For this
case the conjugate prior can be used to establish the minimaxity of C°, making




170 GEORGE CASELLA AND JIUNN TZON OWANG

the calculations a bit simpler. Also, the restriction 0 < & < (2m)~?/% remains
the same, but the relation (3.6) becomes k = (2m) =P/ exp(—c2 /2).
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Appendix: Convergence of Bayes Risk

Let E(:|-} be the general notation for conditional expectation, with E() de-
noting unconditional expectation. Let 7(8,0?) be the (proper) prior distribution
given by (3.5), and let C™ be the Bayes rule against this prior using the loss
(8.1), which is given by

o - {9 _ e—lalzlz‘rzp(%(;p +v)+ a.)
T 1 1) 3(pt+e)+a
(3o ~ 012 + Jus? 1 1)2

.12
[ _anr? \PPemE el
Zkf a’ s,
¢

o? 4 r2 (0?)i(pHv)tatt (A.1)
Theorem A1l. The Bayes risk, v(m,C™), satisfies
lim r(r,C™) = Ry(8,0%,0), v o, (A.2)
¢ 00 .
b—oo
a—0
where
C={0:|0-z] <ecs}, ‘ (A.3)
and . +
¢? = u[(k(27r)”/2) R 1] , (A4)
with “3+” denoting positive part,
Proof. Straightforward calculation shows
E[Vol(C)/0?18,4°] = E[Vol(C) o7}
_ (21rc2)p/2 I((p+ v)/2) (A.5)
v L(v/2)Y((p/2) + 1]

and
E[Io(C)l6, 0*) = E[I(C)] = P(F,, < ¢*/p),
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where F,, is an F random variable with p and v degrees of freedom. We will
show that

lim E[Vol(C™)/a?] > E[Vol(C)/o?] , (A.6)
b
and
lim E[I;(C™)] < E[I(C)]. (A7)

Inequalities (A.6) and (A.7) establish that the limit in (A.2) is less than or equal
to Ri(f#,0°,C). The opposite inequality is immediate, since O™ is Bayes against
7 for every 72,b, and a. Hence, the equality in (A.2) will be established.
To establish (A.6), we will bound Vol{(C™) from below with the set C; given
by
={0:10= o <),

where we define the random variable

. . ol
M= mm{(k - 1)t (v8% + 2/b),A - pa- |X|2},

where A is an arbitrary positive constant and k* = [k(2r)?/ z]ﬁ

It can be established that C; is contained in C’" Moreover, the expected
scaled volume of C1, 4, E(r/0)?, is independent of 72, where 4, = /2 /T(E+1)
-~ is the volume of a umt p-sphere. This follows because r/o depends only on the
random vector [§%,0%,|X[?/(o? + 7?)], which has a distribution independent of
72, We can use monotone convergence to bring the limit inside the integral, and
conclude

Jim lim B[Vol(C1)/o%] = o[k ~ P B{[vS® + (2/8))/0?}""".

A—o00 72

The last expectation can be evaluated explicitly and, after collecting terms and
using the fact that [v.5? 4 (2/b)]/0® ~ x2,,, we have

E[ﬁz_é'ﬂ_(z_ﬂl).]p/z _ prr(p+‘;+ a) [r(u-zka)]—l

independent of b. Now, as @ — 0,k* ~ 1 — c/v (for ¢? given in (A.4)). Hence,
we have

lim E[Vol(C™)/a®] > (2nc’ [v)?! ’Ti(p + VAT /2)0(p/2) + 1

b—aoo ’
a—0

= E[Vol(Cy)/o?),
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establishing (A.6).
To establish (A.7), we proceed in a similar fashion, using the set Cy =
{0:9%(%,%,8) > k}, where g*(2,s%,8) is given by

r(ety oo —EHMEHY) g
. =52 g g Fe Lo 0 (e
1 Ll e
RCOZE [L;L+ w %]

It can then be established that
Am E{I(C™)] < EolI4(Cy)).

Also, recall that k* — 1 4 /v asa— 0, for ¢ of (A.4). Hence, it can be shown
that

lim Bo[1o(Cy)] = PI(1X - 8/0%) < (25 /0%,

b— 00

and it therefore follows that

lim E[o(C™)] < PI(IX = 01} /0?) < (25 /o]
PF, < (/)] = E[1,(C)),

establishing (A.7) and completing the proof,
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