Some basic results in
probability and statistics

This chapter contains some basic results in probability and statistics. It is
intended as a reference chapter to which you may refer as you read this book.
Sometimes, specific references to results in this chapter are made in the text. At
other times, you may wish to refer on your own to particular results in this
chapter as you feel the need.

You may prefer to scan the results on probability and statistical inference in
this chapter before reading Chapter 2, or you may proceed directly to the next
chapter.

1.1 SUMMATION AND PRODUCT OPERATORS

Summation operator

The summation operator X is defined as follows:

(1.1) SV =T+ 4t Y,
i=1
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Some important properties of this operator are:

(1.2a) > k=nk  where k is a constant
=1
(1.2b) ST+ Z)y=>1+ >Z
i=1 i=1 i=1
(1.2¢0) >(a+cY)=na+c)Y, wherea andc are
=1 =1 constants

The double summation operator 22 is defined as follows:

I

(1.3) SOV = Yn o+ Y
i=1j=1 i=1
:Y11+"'+Y1m+Y21+"'+Y2m+"'+Ynm

An important property of the double summation operator is:
(1.4) ZEYz'j:z ‘ Yy

Product operator

The product operator Il is defined as follows:

(1.5) Y=Y, Yy Y5+ Y,
i=1

4

1.2 PROBABILITY

Addition theorem

Let A; and A; be two events defined on a sample space. Then:

(1.6) P(A; UA)) = P(A;) + P(A) — P(A; N A))

where P(A; U A;) denotes the probability of either A; or A; or both occurring;
P(A;) and P(A;) denote, respectively, the probability of A; and the probability of
A;; and P(A; N A)) denotes the probability of both A; and A; occurring.
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Multiplication theorem

Let P(A;|A;) denote the conditional probability of A; occurring, given that A;
has occurred. This conditional probability is defined as follows:

_ P(A; N Ay

(1.7) P(A;]A) = P(A) P(Ay) #0
J

The multiplication theorem states:

= P(A)P(4;|A))

Complementary events

The complementary event of A; is denoted by A;. The following results for
complementary events are useful:

(1.9) P(A) =1 - P(A)
(1.10) P(A;UA) =P(A; N A)

1.3 RANDOM VARIABLES

Throughout this section, we assume that the random variable Y assumes a
finite number of outcomes. (If Y is a continuous random variable, the summation
process is replaced by integration.)

Expected value

Let the random variable Y assume the outcomes Yi, . . ., Y, with probabilities
given by the probability function:
(1.11) f(Yy)=PY =Y, s=1,...,k

The expected value of Y is defined:

k
(1.12) EY) = > Y. f(T)
s=1

An important property of the expectation operator E is:

(1.13) E(a + cY)=a + cEX) where a and ¢ are constants
Special cases of this are:

(1.13a) E@@) =a

(1.13b) E(cY) = cE(Y)

(1.13¢) E(@a+Y)y=a+ E®Y)
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Variance

The variance of the random variable Y is denoted by o*(Y) and is defined as
follows:

(1.14) o*(Y) = E{[Y — E()I*}
An equivalent expression is:
(1.14a) oY) = E(Y?) — [E(Y)]?

The variance of a linear function of Y is frequently encountered. We denote
the variance of a + ¢¥ by o*(a + c¥) and have:

(1.15) o%(a + c¥Y) = c?c*(Y)  where a and c are constants
Special cases of this result are:

(1.15a) oXa+Y) = oY)

(1.15b) a2(cY) = c?o?(Y)

Joint, marginal, and conditional probability distributions

Let the joint probability function for the two random variables ¥ and Z be
denoted by g(¥, Z):

(1.16) g(Y,,Z)=P¥=Y.NZ=2Z) s=1,..,kt=1,....m

The marginal probability function of ¥, denoted by f(Y), is:

(1.17a) f¥y) = ig(Ys,Z,) s=1,...,k
=1

and the marginal probability function of Z, denoted by h(Z), is:

k
(1.17b) WZ)= > 8Y,Z) t=1,....m

s=1
The conditional probability function of ¥, given Z = Z,, is:

(1.18a) rlzy =Yoo o s=1. ik
s t h(Zt) t s ’ s

and the conditional probability function of Z, given Y =Y, is:

(1.18b) nzlvy =892 ey o =1 om

fX)
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Covariance
The covariance of Y and Z is denoted by o (Y, Z) and is defined:
(1.19) o(¥,Z) = E{lY - EMIIZ — E@D)]}
An equivalent expression is:
(1.19a) o(Y,Z)=EXYZ) — [ED)][EZ)]

The covariance of a; + ¢,Y and a, + ¢,Z is denoted by o(a; + ¢\Y, a, + ¢22),
and we have:

(1.20) o(a; + c1Y, a, + cx2) = cic,0(Y, Z) where a;, a,, ¢y, ¢, are
constants

Special cases of this are:
(1.20a) o(c\Y, coZ) = ci1c,0(Y, Z)
(1.20b) olay +Y,a, +2) =0, 2Z)
By definition, we have:
(1.21) a¥,Y) = oY)

where o>(Y) is the variance of Y.

Independent random variables

(1.22) Random variables Y and Z are independent if and only if:
¥, Z) =fXYph(Z) s=1,...,kt=1,...,m

If Y and Z are independent random variables:

(1.23) oY,Z)=20 when Y, Z are independent

(In the special case where Y and Z are jointly normally distributed, o (Y, Z) = 0
implies that ¥ and Z are independent.)

Functions of random variables

LetY,...,Y, be nrandom variables. Consider the function 2a;Y; where the a;
are constants. We then have:

(1.24a) E <2 ain) = > aE(Y;)  where the a; are constants
i=1 =1

n

(1.24b) 02(2 a,—Y,~> = > > aqa0(Y;,Y;)  where the g; are
=1 i=1;=1 constants
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Specifically, we have for n = 2:
(12521) E(alYl + (12Y2) == alE(Yl) + azE(Yz)
(1.25b)  o*(a)Y) + ao)s) = d3o(Yy) + a3o*(Ys) + 2a1a,0 (Y, Yo)

If the random variables ¥; are independent, we have:

(1.26) UZ(Z al-Y,-> = > a}o*(Y;)  when the ¥; are
=1 =1 independent

Special cases of this are:

(1268) 0'2(Y1 + Yz) = O'z(Yl) + 0.2(Y2) when Yy, Y2 are
independent

(1.26b) oY, — Y,) = oXY,) + 0%(Y,) when Yy, Y, are
independent

When the Y; are independent random variables, the covariance of two linear
functions 2q,Y; and 2cjY; is:

(1.27) O'(E a¥, > ciYi> = > ac;0%(Y)  when the Y; are
=1 =1 =1 independent

Central limit theorem

(1.28) If Yy,...,Y, are independent random observations from a popula-
tion with probability function £(¥) for which o*(Y) is finite, the
sample mean Y:

n
Y;
=

14

Y =

n

is approximately normally distributed when the sample size n is
reasonably large, with mean E(Y) and variance o(Y)/n.

1.4 NORMAL PROBABILITY DISTRIBUTION AND
RELATED DISTRIBUTIONS

Normal probability distribution

The density function for a normal random variable Y is:

1 1Y —pu)\?
(1.29) f(Y) = Voro exp[—?( ) } —o <Y< 4w
o
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where p and o are the two parameters of the normal distribution and exp(a)
denotes e“.

The mean and variance of a normal random variable Y are:
(1.30a) EY)=pn

(1.30b) a(Y) = a2

Function of normal random variable. A linear function of a normal ran-
dom variable Y has the following property:

(1.31) If Y is a normal random variable, the transformed variable
Y’ = a + c¢¥Y (a and ¢ are constants) is normally distributed, with
mean a + ¢E(Y) and variance c?a?(Y).

Standard normal variable. The standard normal variable z:

(1.32) z=

where Y 1s a normal random variable
o

is normally distributed, with mean 0 and variance 1. We denote this as follows:
(1.33) zi1s N(O, 1)
Mean Variance

Table A—1 in the Appendix contains the cumulative probabilities A for percen-
tiles z(A) where:

(1.34) Piz=<zA}=A

For instance, when z(A) = 2.00, A = .9772. Because the normal distribution is

symmetrical about 0, when z(A) = —2.00, A = 1 — .9772 = .0228.
Function of independent normal random variables. Let Y;,...,Y, be

independent normal random variables. We then have:

(1.35) When Y1, . . .,Y, are independent normal random variables, the lin-
ear combination a,Y; + a,Y, + -+ a,Y, is normally distributed,
with mean Sa,E(Y;) and variance Sa?a(Y)).

x?2 distribution

Let z1,...,z, be v independent standard normal variables. We then define:
(1.36) vy =22+z3+---+z2  where the z are
independent

The x? distribution has one parameter, v, which is called the degrees of freedom
(df). The mean of the x* distribution with v degrees of freedom is:

(1.37) Elx*Wl=v



8

/

Some basic results in probability and statistics

Table A-3 in the Appendix contains percentiles of various x* distributions.
We define x*(A; v) as follows:

(1.38) P{x*(v) = x’(A; )} = A

Suppose v = 5. The 90th percentile of the x* distribution with 5 degrees of
freedom is x?(.90; 5) = 9.24.

t distribution

Let z and x*(v) be independent random variables (standard normal and x?,
respectively). We then define:

Z

Z(V) = X2(V) 1/2
1%

The ¢ distribution has one parameter, the degrees of freedom v. The mean of the
t distribution with v degrees of freedom is:

(1.40) E[t(¥)] =0

(1.39)

where z and x*(v) are independent

Table A-2 in the Appendix contains percentiles of various ¢ distributions. We
define #(A; v) as follows:

(1.41) Pit(v) = t(A; v)} = A

Suppose v = 10. The 90th percentile of the 7 distribution with 10 degrees of
freedom is #(.90; 10) = 1.372. Because the ¢ distribution is symmetrical about 0,
we have #(.10; 10) = —1.372.

F distribution

Let x*(v;) and x*(»,) be two independent x* random variables. We then
define:

2 2
(142)  Flwy, vy = X0 L XD e () and x2(w)

'\ " V2 are independent

Numerator Denominator
df df
The F distribution has two parameters, the numerator degrees of freedom and the
denominator degrees of freedom, here v; and v,, respectively.
Table A—4 in the Appendix contains percentiles of various F distributions. We
define F(A; v, v,) as follows:

(1.43) P{F(vi, ) = F(A; v, )} =A

Suppose v; = 2, v, = 3. The 90th percentile of the F distribution with 2 and 3

degrees of freedom, respectively, in the numerator and denominator is
F(.90; 2, 3) = 5.46.
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Percentiles below 50 percent can be obtained by utilizing the relation:
1
F(1—A; v, vy)

Thus, F(.10; 3, 2) = 1/F(.90; 2, 3) = 1/5.46 = .183.
The following relation exists between the ¢ and F random variables:

(144) F(A, vV, V2) =

(1.45a) [t(»)]* = F(1, v)
and the percentiles of the ¢ and F distributions are related as follows:
(1.45b) [t(.5 + Al2; v)]* = F(A; 1, v)

1.5 STATISTICAL ESTIMATION

Properties of estimators

(1.46) An estimator § of the parameter 0 is unbiased if:
E) =6

(1.47) An estimator 6 is a consistent estimator of 0 if:

limP(6—6|=¢e =0 forany e >0
(1.48) An estimator 6 is a sufficient estimator of 6 if the conditional joint
probability function of the sample observations, given 8, does not
depend on the parameter 6.

(1.49) An estimator 6 is a minimum variance estimator of 6 if for any
other estimator 6*:

a2(0) < a2(6%)  for all 6%

Maximum likelihood estimators

The method of maximum likelihood is a general method of finding estimators.
Suppose we are sampling a population whose probability function f(Y; 6) in-
volves one parameter, . Given independent observations Yq,...,Y,, the joint
probability function of the sample observations is:

(1.50a) gtr,....Y) =11/ 0

i=1

When this joint probability function is viewed as a function of 6, with the obser-
vations given, it is called the likelihood function L(6).

(1.50b) L(6) = T1£%; 0)
i=1
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Maximizing L(60) with respect to # yields the maximum likelihood estimator of 6.
Under quite general conditions, maximum likelihood estimators are consistent
and sufficient.

Least squares estimators

The method of least squares is another general method of finding estimators.
The sample observations are assumed to be of the form (for the case of a single
parameter 0):

(1.51) Y,=f(@+e i=1,...,n

where fi(6) is a known function of the parameter 6 and the ¢; are random varia-
bles, usually assumed to have expectation E(g;) = 0.

With the method of least squares, for the given sample observations, the sum
of squares:

(1.52) 0= > v, — f(OF
i=1

is considered as a function of 6. The least squares estimator of 6 is obtained by
minimizing Q with respect to 8. In many instances, least squares estimators are
unbiased and consistent.

1.6 INFERENCES ABOUT POPULATION MEAN—NORMAL
POPULATION

We have a random sample of n observations Y1, . . ., Y, from a normal popula-
tion with mean w and standard deviation o. The sample mean and sample stand-
ard deviation are:

XY
n

(¥ - 7y

(1.53a) =

1/2

(1.53b) s =
n—1

and the estimated standard deviation of the sampling distribution of Y is:

A

(1.53¢) s(Y) = 7
n

We then have:

7 —
(Y)M is distributed as ¢ with n — 1 degrees of freedom when the
§
random sample is from a normal population.

(1.54)
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Interval estimation

The confidence limits for u with a confidence coefficient of 1 — « are ob-
tained by means of (1.54):

(1.55) Y+t = a2;n— DsY)

Example 1. Obtain a 95 percent confidence interval for u when:
n=10 Y=20 s=4

We require:

s(Y) = = 1.265 1(.975; 9) = 2.262

4
V10
so that the confidence limits are 20 + 2.262(1.265). Hence, the 95 percent con-

fidence interval for w is:

171 = u <229

Tests

One-sided and two-sided tests concerning the population mean w are con-
structed by means of (1.54), based on the test statistic:
Y - Ho

s(Y)
Table 1.1 contains the decision rules for each of three possible cases, with the
risk of making a Type I error controlled at «.

(1.56) =

TABLE 1.1 Decision rules for tests concerning mean u of normal

population
Alternatives Decision Rule

(a)
Ho: = o If || =11 — a/2;n — 1), conclude H,
H, 1 # o If |#%| > t(1 — &/2; n — 1), conclude H,

where: 3
* — __—_Y ~ o
s(Y)

(b)
Hy p= g If #* = t(a; n — 1), conclude Hy,
H,p <y If = <t(a;n — 1), conclude H,

(0
Hy = pg Ifr*=1t(1 - an—1), conclude Hy

Hg p> uo If #*>t(1 — a;n— 1), conclude H,
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Example 2. Choose between the alternatives:
Ho: =20
H,. pn>20
when « 1s to be controlled at .05 and:
n=15 Y =24 s=6

We require:

S(Y) = % = 1.549

1(.95; 14) = 1.761

so that the decision rule is:

If t* =< 1.761, conclude H,
If #* > 1.761, conclude H,

Since #* = (24 — 20)/1.549 = 2.58 > 1.761, we conclude H,,.

Example 3. Choose between the alternatives:
Hy: =10
H, pn##10
when « is to be controlled at .02 and:
n=25 Y=57 s5=38
We require:

— 8
S(Y)‘—:*\/?:‘lﬁ

1(.99; 24) = 2.492
so that the decision rule is:

If |#*| < 2.492, conclude H,
If |£#| > 2.492, conclude H,,

where the symbol | | stands for the absolute value. Since |#*| = (5.7 — 10)/1.6|
=|—2.69| = 2.69 > 2.492, we conclude H,.

P-value for sample outcome. The P-value for a sample outcome is the
probability that the sample outcome could have been more extreme than the
observed one when p = ug. Large P-values support Hy while small P-values
support H,,. A test can be carried out by comparing the P-value with the specified
a risk. If the P-value equals or is greater than the specified «, Hy is concluded. If
the P-value is less than «, H, is concluded.
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Example 4. In Example 2, r* = 2.58. The P-value for this sample outcome
is the probability P[t(14) > 2.58]. From Table A-2, we find #(.985; 14) =
2.415 and #(.990; 14) = 2.624. Hence, the P-value is between .010 and .015. In
fact, it can be shown to be .011. Thus, for @ = .05, H, 1s concluded.

Example 5. In Example 3, t* = —2.69. We find from Table A-2 that
P[t(24) < —2.69] is between .005 and .0075. In fact, it can be shown to be
.0064. Because the test is two-sided and the ¢ distribution is symmetrical, the
two-sided P-value is twice the one-sided value, or 2(.0064) = .013. Hence, for
a = .02, we conclude H,,.

Relation between tests and confidence intervals. There is a direct relation
between tests and confidence intervals. For example, the two-sided confidence
limits (1.55) can be used for testing:

Ho: = o
Hg: 7 o

If o is contained within the 1 — « confidence interval, then the two-sided deci-
sion rule in Table 1.1a, with level of significance «, will lead to conclusion Hy),
and vice versa. If ug is not contained within the confidence interval, the decision
rule will lead to H,, and vice versa.

There are similar correspondences between one-sided confidence intervals
and one-sided decision rules.

1.7 COMPARISONS OF TWO POPULATION
MEANS—NORMAL POPULATIONS

Independent samples

There are two normal populations, with means w, and w,, respectively, and
with the same standard deviation o. The means u,; and u, are to be compared on
the basis of independent samples for each of the two populations:

Sample 1: ¥;,...,Y,
Sample 2: Z;,...,Z,,

Estimators of the two population means are the sample means:

R

(1.57a) Y=
1
D Zi
(1.57b) Z=—
(%)

and an estimator of w; — uy is ¥ — Z.
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An estimator of the common variance g2 is:

S - D+ 3@ - 27

1.58 2=
( ) > ny+n, — 2
and an estimator of o*(Y — Z), the variance of the sampling distribution of
Y—2Z, is:
2/ 7a 2 1 1
(1.59) sY—Z)=s|—+—
n Ny
We have: ‘
Y—-27) - -

(1.60) ( ) = (1 7 #2) o gistributed as 7 with n + n, — 2 degrees

s(Y — Z)
of freedom when the two independent samples come from normal
populations with the same standard deviation.

Interval estimation. The confidence limits for w; — u, with confidence
coefficient 1 — « are obtained by means of (1.60):

(1.61) Y=-2)=t(1 —a2;n +n,—2s(Y —2Z)

Example 6. Obtain a 95 percent confidence interval for w; — m, when:

n=10 Y=14 3 —7Y)?=105

We require:

, 105+ 224
10 +20 — 2

s = 11.75

_ 1 1
AY —Z) = 11.75| — + — | = 1.7625
10 20

s(Y—Z)=1.328

1(.975; 28) = 2.048
3.3 =(14 —8) — 2.048(1.328) =< p; — up = (14 — 8) + 2.048(1.328) = 8.7
Tests. One-sided and two-sided tests concerning u; — u, are constructed by

means of (1.60). Table 1.2 contains the decision rules for each of three possible
cases, based on the test statistic:

L&2 s Y=Z
(1.62 Y- 2)

with the risk of making a Type I error controlled at a.
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TABLE 1.2 Decision rules for tests concerning means w4 and uo of two
normal populations (o = o2 = o)

Alternatives Decision Rule
(a)
Hy: py =y If |#%| = t(1 — &/2; ny + n, — 2), conclude H,
Hy: iy # o If |#*| > t(1 — &/2; ny + ny — 2), conclude H,
where:
t* = _Y..i
s(Y — Z)
(b
Hy p1 = If t* = t(a; ny + 1y — 2), conclude Hy
Hyp < up If t* <it(a; ny + ny, — 2), conclude H,
(0
Ho: i = o If t* =1(1 — a; ny + ny, — 2), conclude Hy
Hypy > g If *>1t(1 — a;,n; + ny, — 2), conclude H,

Example 7. Choose between the alternatives:

Ho: py = 2
Hy: oy # o

when « is to be controlled at .10 and the data are those of Example 6. We require
1(.95; 28) = 1.701, so that the decision rule is:

If || = 1.701, conclude Hy
If |#%| > 1.701, conclude H,

Since |¢*| = | (14 — 8)/1.328| = |4.52| = 4.52 > 1.701, we conclude H,,.

The one-sided P-value here is the probability P[#(28) > 4.52]. We see from
Table A-2 that this P-value is less than .0005. In fact, it can be shown to be
.00005. Hence, the two-sided P-value is .0001. For a = .10, the appropriate
conclusion therefore is H,.

Paired observations

When the observations in the two samples are paired (e.g., attitude scores Y;
and Z; for the ith sample employee before and after a year’s experience on the
job), we use the differences:

(1.63) Wi=Y -2, i=1,...,n

in the fashion of a sample from a single population. Thus, when the W; can be
treated as observations from a normal population, we have:
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W — (= o)
s(W)
when the differences W, can be considered to be observations from

a normal population and:

(1.64)

is distributed as 7 with n — 1 degrees of freedom

W,

n

> W~ W2
S2(W): i +n
n—1

W =

1.8 INFERENCES ABOUT POPULATION
VARIANCE—NORMAL POPULATION

When sampling from a normal population, the following holds for the sample
variance s* where s is defined in (1.53b):

2

—1
(n )$ is distributed as x* with n — 1 degrees of freedom when

0_2

(1.65)

the random sample is from a normal population.

Interval estimation

The lower confidence limit L and the upper confidence limit U in a confidence
interval for the population variance o* with confidence coefficient 1 — a are
obtained by means of (1.65):

(n — 1)s? (n — 1)s?

1.66 L= U=
(1.66) X1 —a2;n—1) XX a/2;n — 1)

Example 8. Obtain a 98 percent confidence interval for o2, using the data of
Example 1 (n = 10, s = 4).
We require:

2=16  x2(.01;9) =2.09  x%.99;9) = 21.67

9(16) S 9(16)
21.67  2.09

= 68.9

Tests

One-sided and two-sided tests concerning the population variance o2 are con-
structed by means of (1.65). Table 1.3 contains the decision rule for each of three
possible cases, with the risk of making a Type I error controlled at .
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TABLE 1.3 Decision rules for tests concerning variance a2 of normal

population

Alternatives

Decision Rule

Hy 0% = a3

(a)
-1 2
If Y32 n — 1) = 2D
g0
conclude Hy

Otherwise conclude H,

(b)
— 2
If (n 21)s = x*(a; n — 1), conclude Hy
Oo
— 2
If e 21)s < x*(a; n — 1), conclude H,
Go

(¢)

_ 2
L5 <321 = asn— 1, conclude Hy

> x*(1 — a;n — 1), conclude H,

=¥l —a/2;n—1),

1.9 COMPARISONS OF TWO POPULATION
VARIANCES—NORMAL POPULATIONS

/
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Independent samples are selected from two normal populations, with means
and variances of u; and o1 and u, and o3, respectively. Using the notation of
Section 1.7, the two sample variances are:

> ¥ — Y
(1.67a) 2= —
ny — 1
>z -2y
(1.67b) $3=—
ny — 1
We have:
51 5
(1.68) —= + —1s distributed as F(n; — 1, n, — 1) when the two inde-
ol o3

pendent samples come from normal populations.

Interval estimation

The lower and upper confidence limits L and U for o$/03 with confidence
coefficient 1 — « are obtained by means of (1.68):
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=3 !
53 Fl—a/2;n;— 1, n,— 1)
(1.69)
57 1

s_%- Fa/2;ny — 1,n,— 1)

Example 9. Obtain a 90 percent confidence interval for 0/a'3 when the data

are:
n; = 16 ny, = 21
52 =54.2 s5=17.8
We require:
F(.05; 15, 20) = 1/F(.95; 20, 15) = 1/2.33 = .429
F(.95; 15, 20) = 2.20
542 1 o3 542 1
1.4 = = = =7.1
17.8 2.20 o3 17.8 .429
Tests

One-sided and two-sided tests concerning o-3/a3 are constructed by means of
(1.68). Table 1.4 contains the decision rules for each of three possible cases, with
the risk of making a Type I error controlled at «.

TABLE 1.4 Decision rules for tests concerning variances ¢% and o3 of two
normal populations

Alternatives Decision Rule

(a)
51
If Flal23ny — 1, np— 1) =—
§2
1, n, — 1), conclude Hy

a2 = g2
Ho.O'l—U'z

=F(1 —a/2;n —
Otherwise conclude H,

(b)
2
Hy: 07 = 03 It % > F(a;ny — 1, m, — 1), conclude H,
2
2
Hyo0?< 03 If —::;— < F(a;n, — 1, n, — 1), conclude H,
2
(c)

2
If i.lz‘ =F( —a;n —1,n, — 1), conclude H,
S2

2
If °L > F(1 — a;ny — 1,1, — 1), conclude H,
82




1.9 Comparisons of two population variances—normal populations

Example 10. Choose between the alternatives:
HQI g % =0 %
H, 0% # o3

when « is to be controlled at .02 and the data are those of Example 9.

We require:

F(.01; 15, 20) = 1/F(.99; 20, 15) = 1/3.37 = .297
F(.99; 15, 20) = 3.09

so that the decision rule is:

st

s

If 297 < = 3.09, conclude H,

Otherwise conclude H,

Since s3/s3 = 54.2/17.8 = 3.04, we conclude H,.

/
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